

STATE BOARD OF TECHNICAL EDUCATION & TRAINING

DIPLOMA IN ENGINEERING & TECHNOLOGY

N - SCHEME

FIRST YEAR SYLLABUS

IMPLEMENTED FROM 2020 - 2021

CURRICULUM DEVELOPMENT CENTRE DIRECTORATE OF TECHNICAL EDUCATION GUINDY, CHENNAI - 600 025.

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020-2021 onwards)

CURRICULUM OUTLINE

FIRST SEMESTER (FULL TIME)

Col.	Subject	Subject	Subject Hours Per Week				
No.	Code		Theory	Drawing	Tutorial	Practical	Total
1	40011	Communication English I	5				5
2	40012	Engineering Mathematics I	5				5
3	40013	Engineering Physics I	5				5
4	40014	Engineering Chemistry I	5				5
5	40015	Engineering Graphics I		6			6
6	40006	Engineering Physics Practical (Semester examination in the second semester)				2	2
7	40007	Engineering Chemistry Practical (Semester examination in the second semester)				2	2
8	40001* 40002^	Communication Skill Practical * Computer Application Practical ^				2	2
· · · · ·		20	6		6	32	
Ext	ra / Co-	Physical Education					2
Curricular activities		Library					1
Total							35

* For Circuit Branches only

^ For Non-Circuit Branches only

<u>Blank Page</u>

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020-2021 onwards)

CURRICULUM OUTLINE

SECOND SEMESTER (FULL TIME)

Col.	Subject	Subject	Subject Hours Per Week				
No.	Code		Theory	Drawing	Tutorial	Practical	Total
1	40021	Communication English II	4				4
2	40022	Engineering Mathematics II	4				4
3	40023	Engineering Physics II	4				4
4	40024	Engineering Chemistry II	4				4
5	40025	Engineering Graphics II		5			5
6	40006	Engineering Physics Practical				2	2
7	40007	Engineering Chemistry Practical				2	2
8	40028	Basics of Industries and Workshop Practical	2			3	5
9	40001* 40002^	Communication Skill Practical * Computer Application Practical ^				2	2
		18	5		9	32	
Ext	tra / Co-	Physical Education					2
curricular activities		Library					1
		Total					35

* For Non-Circuit Branches only

^ For Circuit Branches only

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implements from the Academic year 2020-2021 onwards) <u>CURRICULUM OUTLINE</u>

FIRST SEMESTER (PART TIME)

Col	Subject	Subject	Hours Per Week						
.No	Code		Theory	Drawing	Tutorial	Practical	Total		
-									
1.	40011	Communication English I	3				3		
2.	40012	Engineering Mathematics I	4				4		
3.	40013	Engineering Physics I	4				4		
4.	40014	Engineering Chemistry I	3				3		
5.	40006	Engineering Physics Practical (Semester examination in the second semester)				2	2		
6.	40007	Engineering Chemistry Practical (Semester examination in the second semester)				2	2		
		Total	14			4	18		

40015 Engineering Graphics I

40001* Communication Skill Practical \succ will be in the second year

40002[^] Computer Application Practical

* For Circuit Branches only.

^ For Non-Circuit Branches only.

SECOND SEMESTER (PART TIME)

Col.	Subject	Subject	Hours Per Week					
No.	Code		Theory	Drawing	Tutorial	Practical	Total	
1.	40021	Communication English II	3				3	
2.	40022	Engineering Mathematics II	3				3	
3.	40023	Engineering Physics II	3				3	
4.	40024	Engineering Chemistry II	3				3	
5.	40006	Engineering Physics Practical (Semester examination in the second semester)				2	2	
6.	40007	Engineering Chemistry Practical (Semester examination in the second semester)				2	2	
7.	40028	Basics of Industries and Workshop practical				2	2	
	1	Total	12			6	18	

40025 Engineering Graphics II

40001* Communication Skill Practical

40002^A Computer Application Practical

will be in the second year

* For Non-Circuit Branches only.^ ForCircuit Branches only.

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(Implemented from the Academic Year 2020 - 2021 onwards)

Chairperson

Thiru K. VIVEKANANDAN I.A.S. Director Directorate of Technical Education, Guindy, Chennai.

Co-ordinator Dr. M.S. PADMANABAN, M.Tech., Ph.D., Principal i/c Central Polytechnic College, Chennai – 113.

Subject: Communication English I and II & Communication English Practical

Convener

Tmt. S.Rajalakshmi Lecturer (Sr.Grade) / English Murugappa Polytechnic College, Avadi, Chennai – 600 053

Members

Mr. R.Karthikeyan Lecturer (Sr.Grade) / English P.A.C. Ramasamy Raja Polytechnic College, Rajapalayam.

Ms. M.Alagumalar Lecturer / English TPEVR Government Polytechnic College, Vellore

Ms. Tessy John Lecturer (Sr.Grade) / English Aalim Mohammed Salegh Polytechnic College, Avadi, Chennai. Mr.S.Mani Lecturer / English Government Polytechnic College for Women, Coimbatore

Ms. S.Anandhi Lecturer / English Murugappa Polytechnic College Avadi, Chennai

STATE BOARD OF TECHNICAL EDUCATION& TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(Implemented from the Academic Year 2020 - 2021 onwards)

Chairperson

Thiru K. VIVEKANANDAN I.A.S. Director Directorate of Technical Education, Guindy, Chennai.

Co-ordinator Dr. M.S. PADMANABAN, M.Tech, Ph.D., Principal i/c Central Polytechnic College, Chennai – 113.

Subject: Engineering Mathematics I & II

Conveners

Tmt. M.Narayanavadivoo,	Thiru J.Krishnan,
Lecturer/Mathematics,	Senior Lecturer/Mathematics,
Murugappa Polytechnic College,	Ramakrishna Mission Polytechnic
Sathyamurthy Nagar, Avadi, Chennai.	College, Mylapore, Chennai.

Members

Thiru. I. Nagarajan,	Tmt. V. Kavithamani,
HOS/Maths,	Lecturer(SS)/ Maths,
Thiagarajar Polytechnic College,	Arasan Ganesan Polytechnic College,
Salem – 636005.	Anaikuttam (P.O), Sivakasi – 626 103.
Thiru. R. Saravanakumar,	Thiru. N.Eswaran, Lecturer/ Maths,
Lecturer/ Maths,	Thiru. K. Sekar, Lecturer/ Maths,
GRG Polytechnic College,	Thiru.S.Ramasamy, Lecturer/ Maths,
Kuppepalayam, SS kulam (P.O),	Sri Ramakrishna Mission Vidyalaya
Coimbatore – 641 107.	Polytechnic College, Coimbatore – 20.
Tmt. R. Valarmathi, Lecturer/ Maths	Tmt. R.S. Suganthi, Lecturer/ Maths,
PAC Ramasamy Raja Polytechnic	TPEVR Government Polytechnic

PAC Ramasamy Raja Polytechnic College, Kumarasamy Raja Nagar, Rajapalayam – 626 108.

Tmt. M. Sasikala, Lecturer (SG)/ Maths, Tmt. M. Sivapriya, Lecturer (SG)/Maths, PSG Polytechnic College, Coimbatore – 641 004. College, Vellore. Tmt. D. R. Muthu Bhavani, Lecturer/ Maths,

Rajagopal Polytechnic College, Gandhi Nagar, Gudiyatham, Vellore – 632 602.

STATE BOARD OF TECHNICAL EDUCATION& TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(Implemented from the Academic Year 2020 - 2021 onwards)

Chairperson

Thiru K. VIVEKANANDAN I.A.S. Director Directorate of Technical Education, Guindy, Chennai.

Co-ordinator

Dr. M.S. PADMANABAN, M.Tech, Ph.D., Principal i/c Central Polytechnic College, Chennai – 113.

Subject: Engineering Physics I &II and Engineering Physics Practical

Convener

Thiru A.L.M. Perumal Pillai Lecturer (SI.Grade) / Physics Government Polytechnic College, Nagercoil – 629 004

Members

Thiru M.Mohanadas	Thiru D.Navilan
Lecturer (S G) / Physics	Lecturer (S.G) / Physics
Kamarajar Polytechnic College,	Sankar Polytechnic College
Pazhavilai, Nagercoil.	Sankar nagar Thirunelveli .
Thiru S Sabaroosh	Thiru D Dazhani

Thiru S.Sabareesh Lecturer (S.G) / Physics Sree Krishna Polytechnic College, Nagercoil. Thiru R.Pazhani Lecturer / Physics Government Polytechnic College, Nagercoil

Thiru John Louis Lecturer (S.G.) / Civil Engg. Government Polytechnic College, Nagercoil

STATE BOARD OF TECHNICAL EDUCATION& TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(Implemented from the Academic Year 2020 - 2021 onwards)

Chairperson

Thiru K. VIVEKANANDAN I.A.S. Director Directorate of Technical Education, Guindy, Chennai.

Co-ordinator

Dr. M.S. PADMANABAN, M.Tech, Ph.D., Principal i/c Central Polytechnic College, Chennai – 113.

Subject: Engineering Chemistry I &II and Engineering Chemistry Practical

Conveners

Dr. M.Govindarajan Lecturer (SI.Grade) / Chemistry Muthiah Polytechnic College, Chidambaram. Thiru D.Muralidharan Lecturer / Chemistry Central Polytechnic College, Tharamani, Chennai.

Members

Thiru A.Baskaran Lecturer (S.G)/ Chemistry Srinivasa Subbaraya Polytechnic College,Puttur, Sirkazhi.

Thiru M.S.Kather Lecturer / Chemistry Swami Abedhananda Polytechnic College, Thellar, Thiruvannamalai. Thiru A.V.Jagadeesan Lecturer (S.G) / Chemistry SSM Polytechnic College, Komarapalayam.

Thiru F.Arumainathan Lecturer (S.G.) / E.E.E. Muthiah Polytechnic College Chidambaram.

STATE BOARD OF TECHNICAL EDUCATION& TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(Implemented from the Academic Year 2020 - 2021 onwards)

Chairperson

Thiru K. VIVEKANANDAN I.A.S. Director Directorate of Technical Education, Guindy, Chennai.

Co-ordinator

Dr. M.S. PADMANABAN, M.Tech, Ph.D., Principal i/c Central Polytechnic College, Chennai – 113.

Subject: Engineering Graphics I & II

Convener

Dr. S.Chandrasekaran HOD / Mechanical Sri Ramakrishna Mission Vidhyalaya Polytechnic College, Coimbatore – 641 020.

Members

Thiru M.Sugumaran Principal Ramakrishna Mission Polytechnic College, Mylapore, Chennai.

Tmt. J.Prema Lecturer (Sr.Gr) / Mechanical GRG Polytechnic College, Coimbatore Thiru T.Jothiram Lecturer (S.G)/ Mechanical NPA Centenary Polytechnic College, Kothagiri

Thiru J.Jebasteen HOD / Mechanical Nanjiah Lingammal Polytechnic College, Mettupalayam.

STATE BOARD OF TECHNICAL EDUCATION& TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME (Implemented from the Academic Year 2020 -2021 onwards)

Chairperson Thiru K. VIVEKANANDAN I.A.S. Director Directorate of Technical Education, Guindy, Chennai.

Co-ordinator Dr. M.S. PADMANABAN, M.Tech, Ph.D., Principal i/c Central Polytechnic College, Chennai – 113.

Subject: Basics of Industries and Workshop Practical & Computer Applications Practical

Convener

Thiru M.Sugumaran Principal Ramakrishna Mission Polytechnic College, Mylapore, Chennai – 600 004.

Members

Dr. S.Chandrasekaran HOD / Mechanical Sri Ramakrishna Mission Vidhyalaya Polytechnic College, Coimbatore.

Dr. P.Dhinakaran Lecturer (Sr. G) Electrical Engg. Govt. Polytechnic College R.K.Nagar, Chennai.

Dr.C.Ramakrishnan Vice Principal Sri NallalaghuNadar Polytechnic College, Redhills, Chennai.

Thiru S.Palani Principal Jayam Polytechnic College Nallanur, Dharmapuri Thiru N.Thirunavukkarasu Lecturer (Sr. G) / Mechanical Central Polytechnic College, Tharamani, Chennai.

Dr. S.Aruna Lecturer / Civil Engg. P.T.Lee. Chengalvaraya Polytechnic College, Vepery, Chennai.

Thiru D.Dhilipkumar HOD / Computer Ramakrishna Mission Polytechnic College, Mylapore, Chennai

ANNEXURE- I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name	:	All branches of Diploma in Engineering and Technology and
		Special Programmes except HMCT and film &TV.
Subject Code	:	40011
Semester	:	I

Subject Title : COMMUNICATION ENGLISH – I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Insti	ructions		Examination			
Subiect	Hours	Hours /	Marks				
	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration	
COMMUNICATION ENGLISH – I	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс			
1	Functional Grammar and Usage	17		
2	Vocabulary Enrichment	15		
3	Situational English	15		
4	Creative English	15		
5	English for Scholarly Presentation/ Fluency	11		
	Test & Model Exam	7		
	Total			

RATIONALE:

- With the advent and supremacy of the Internet, smart phones, e-Commerce and Social Media in global communication, English has metamorphosed itself with new dimensions to get the communicator's thoughts, feelings and interactions dressed in alien colours.
- To execute the tasks in Technical Environment, whether academic, professional or social, proficiency in English plays a vital role and a requisite for communication skills has gained momentum both for e-communication, higher studies abroad and placement in MNCs.
- Amazing and inconceivable developments in technology has led various industries to coin and employ their own new words every day and hence revision of syllabus, especially to cater to the need for essential updated vocabulary has become in evitable.
- In addition to the retention of certain functional grammar parts to attest accuracy in communication, new components such as vocabulary enrichment, situational English, Creative English and English for Scholarly Presentation have been introduced to equip the learners to cope up with revamping technical scenario.

OBJECTIVES:

At the completion of the study of I and II semesters, the students will be able to

- > Apply functional grammar to produce pristine presentations in English.
- > Carry out effective interaction with the aid of formation of interrogatives.
- > Enrich his/her vocabulary to cater to the needs of changing linguistic requirements.
- Understand and respond to the e-content available elsewhere in academic, professional and social environments.
- Understand and review e-books, movies and TV programmes and post his/her reviews online.
- Execute dialogues with his/her friends, teachers and colleagues in day-to-day situations.
- Describe and interpret visuals, images, machine drawings, events in books and on the Net.
- Understand, acquire and employ new structures in scholarly presentations with an exposure to works of Great personalities.
- Communicate effectively with idioms and phrases appropriate to real-life situations.

40011 COMMUNICATION ENGLISH –I DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Functional Grammar and Usage	17
	Parts of Speech	
	Functional Units	
	Use of Main Verb & Auxiliary Verb	
	Application of Tense Forms (Simple Present, Present Continuous,	
	Present Perfect, Simple Past, Past Continuous, Past Perfect, Simple	
	Future, Future Continuous only)	
	Framing Yes / No Questions	
	Framing Wh-Questions	
	Application of Active Voice and Passive Voice	
	Use of Prepositions	
II	Vocabulary Enrichment	15
	Word Conversion (selective 25 words)	
	Collocation - Noun with Verb, Adjective with Noun (Selective	
	25collocations)	
	Homophones (selective 25 homophones)	
	One-word Substitution (Textual)	
	Idiomatic expressions for Daily Life (frequently used 25 expressions)	
	Frequently Used Phrasal verbs (selective 25 phrasal verbs)	
- 111	Situational English	15
	Dialogue for Day to Day Situations	
	Short Messages for e-Communication	
	Letter Writing for Academic Purpose (Leave Application, Requisition	
	for Bonafide Certificate, Applying for TC)	
	Writing the Essentials	
	Comprehension	
IV	Creative English	15
	Review Writing (Book / Movie / TV Program)	
	Visual Description	

	Advertisement Writing	
	Word Cloud	
	Transforming Verbal Passage into Graphics	
V	English for Scholarly Presentation/ Fluency	11
	"A Snake in the Grass" by R.K. Narayan	
	"Of Parents and Children" by Francis Bacon	
	"On His Blindness" by John Milton	
	"When I Have Fears" by John Keats	

Reference Books

Glossaries

https://www.engineering-dictionary.com/

https://techterms.com/definition/

http://dictionary.tamilcube.com/

https://www.lexilogos.com/english/tamil_dictionary.htm

Grammar

- 1. Just Enough English Grammar Illustrated, Gabriele Stobbe, McGraw-Hill Osborne Media, 2008
- 2. Visual Guide to Grammar and Punctuation, DK Publishing, 2017
- 3. English Grammar in Use, Raymond Murphy, Cambridge University Press, 2019
- 4. Intermediate English Grammar, Raymond Murphy, Cambridge University Press, Second Edition.
- 5. Essential English Grammar, Raymond Murphy, Cambridge University Press, New edition.

Motivation

- 1. An Autobiography; Or, The Story of My Experiments with Truth, Mahatma Gandhi, Penguin Books, 2001
- 2. You Can Win, Shiv Khera, New Dawn Press, 2004
- 3. Chicken Soup for the Soul, Jack Canfield, Mark Victor Hansen, 2001

MODEL QUESTION PAPER

COMMUNICATION ENGLISH – I

Time – 3 Hours [Maximum Marks: 100]

I. Answer any TEN of the following:

10x4=40

- 1. Frame a sentence by using the parts of speech given below:
 - a) Adjective: brilliant
 - b) Verb: live
 - c) Noun : office
 - d) Adverb: well
- 2. Frame a sentence for the first two patterns and write the patterns of the last two:
 - a) S+V+O+A
 - b) S+V+C+A
 - c) She was tired.
 - d) People elected him the new president.
- 3. Make use of each of the following main verb or auxiliary verb to make four sentences of your own.
 - a) bring
 - b) have
 - c) discuss
 - d) is
- 4. Frame four sentences by using the subject Children and verb play in the following tense forms:
 - a) Simple Present
 - b) Past Continuous
 - c) Present Perfect
 - d) Simple Future
- 5. Frame four Yes/No questions for the given situations:
 - a) Context: Talking to your friend about next week exam
 - b) Context: Talking to your sister at home
 - c) Context: Talking to your teacher about weekend classes.
 - d) Context: Talking to your uncle about his arrival
- 6. Ask four WH questions to the following people you contact:
 - a) To the bus conductor
 - b) To your HOD
 - c) To your mother
 - d) To your college librarian
- 7. Fill in the blanks by writing suitable active or passive form of the verb given in bracket:
 - a) The report_____to the Head of the Committee.(submit)
 - b) He has_____from Delhi. (return)
 - c) The data on computer_____by somebody in his absence.(access)
 - d) About 150 injured people_____in the hospital. (admit)

- 8. Fill in the blanks by using suitable prepositions:
 - a) The meeting will be held_____ Tuesday.
 - b) His continuous lecture_____three hours bored everyone.
 - c) Candidates _____hall ticket will not be permitted into the exam hall.
 - d) I will be available here Monday _____Friday.
- 9. Write down any four possible derivatives of the following word. collect
- 10. Match the following and form collocations:
 - a) Heavy Ambassador
 - b) Fast a record
 - c) bottle up News
 - d) Make Food
 - e) Have your emotions
 - f) Break a difference
 - g) Hot Rain
 - h) Brand a headache
- 11. Frame a sentence for the homophones

given below: Peace – piece

- 12. Write one word substitutes for the following:
 - a. Rest or sleep in the early afternoon
 - b. Statements which are ordinary, uninteresting, and unimportant
 - c. Future generations especially the descendants of a specific person
 - d. an undesirable event such as an accident
- 13. Frame a sentence for each of the following idioms:
 - a. Once in a blue moon
 - b. At the eleventh hour
 - c. Beat about the bush
 - d. A fish out of water

14. Frame a sentence for each of the following phrasal verbs:

- a. Take care of
- b. Log in
- c. Go through
- d. Call off

II. Answer any FOUR of the following:

1. Complete the Dialogue:

Friend 1	:	Hi Ranjani,	?
Friend 2	:	I didn't expect a heavy traffic.	Sorry for coming late.

(4x5=20)

Friend 1	:	as we planned?
Friend 2	:	Sure! I'm very much interested in shopping. But Where is
		Geeta??.
Friend 1	:	
Friend 2	:	What happened to her? Anything serious?
Friend 1	:	Her father is not feeling well and has been admitted in the hospital.
Friend 2	:	Shall we go to the hospital now?
Friend 1	:	That sounds right. It's Vijaya Hospital just a mile away from here.

2. Write a short message to your friend asking him to send study materials for the forthcoming examinations.

3. Draft a letter to your HOD requesting him to issue bona fide certificate for opening a savings bank account.

- 4. Write the essentials for the purchase of a mobile phone
- 5. Read the passage below and answer the questions that follow.

Information technology (IT) is the use of computers to store, retrieve, transmit, and manipulate data or information. IT is typically used within the context of business operations as opposed to personal or entertainment technologies. IT is considered to be a subset of Information and Communications Technology (ICT). An information Technology system (IT system) is generally an information system, a communication system or, more specifically speaking, a computer system – including all hardware, software and peripheral equipment – operated by a limited group of users.

Humans have been storing, retrieving, manipulating, and communicating information since the Sumerians in Mesopotamia developed writing in about 3000 BC, but the term *information technology* in its modern sense first appeared in a 1958 article published in the Harvard Business Review; authors Harold J. Leavitt and Thomas L. Whisler commented that "the new technology does not yet have a single established name. We shall call it Information Technology (IT)".

The term is commonly used as a synonym for computers and computer networks, but it also encompasses other information distribution technologies such as television and telephones. Several products or services within an economy are associated with information technology, including computer hardware, software, electronics, semiconductors, internet, telecom equipment, and e-commerce.

Questions:

- 1. Humans have been storing information for more than 5000 years True or False
- 2. Who coined the term "Information Technology"?
- 3. The term "Information Technology" was first used in_____.
- 4. What do you mean by Information Technology?
- 5. Name the products and services that are associated with Information Technology.

III. Answer any Four of the following :

(4x5=20)

- 1. Write a review of the book "My Experiments with Truth" in about 50 words.
- 2. Describe the picture below in about 50 words.

- 3. Write an advertisement for a Home Appliances Show Room highlighting Diwali festival offers.
- 4. Frame 5 sentences using any five words from the given word cloud.
 - 5. Read and transform the following passage into a pie-chart.

A survey was conducted to study people using different browsers in Europe. Five browsers – Firefox, Chrome, Opera, Safari and Internet Explorer were selected for this purpose to see the impact of browsers on the Internet Users. It was found that as much as

37.9 % people used Firefox that was the highest of all other browsers accessed through the Net. Next came the Internet Explorer that was used by 36.9% of people, a little less than that of Firefox. Next to Internet Explorer, Chrome was accessed by 15.5% of the internet users. The number of users of the remaining two browsers equally fell around 4.55%. It was also found that all other browsers were used by less number of people who were around less than 1 percentage.

IV. Answer any FOUR of the following in about 50 words. $(4 \times 5 = 20)$

- 1. Bring out the observations of Bacon on the duties of Parents towards children.
- 2. How does Milton arrive at the conclusion-"They also served who only stand and wait."?
- 3. Explain the irony at the end of the Snake in the Grass.
- 4. Explain by listing out the fears that Keats refers to in his poem?
- 5 . Elucidate the narrative skill of R. K. Narayan with reference to the short story you studied.

ANNEXURE- I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name : All branches of Diploma in Engineering and Technology and Special Programs except DMOP, HMCT and Film &TV.

Subject Code : 40012

Semester : I

Subject Title : ENGINEERING MATHEMATICS I

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject		Hours / Semester	Marks			
	/ Week		Internal Assessment	Board Examinations	Total	Duration
ENGINEERING MATHEMATICS I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks will be reduced to 75 marks.

TOPICS AND ALLOCATION OF HOURS:

SI. No.	Topics	Time (Hrs)
1	Algebra	15
2	Complex Number	15
3	Trigonometry	14
4	Differential Calculus – I	15
5	Differential Calculus – II	14
	Test & Model Exam	7
	TOTAL	80

40012 ENGINEERING MATHEMATICS – I

DETAILED SYLLABUS

Contents: Theory

UNIT	NAME OF THE TOPICS	HOURS
I	ALGEBRA	
	1.1 MATRICES AND DETERMINANTS:	3
	MATRICES:	
	Definition, Concept and Types of Matrices.	
	OPERATIONS ON MATRICES:	
	Multiplication of a Matrix by a scalar, Addition/Subtraction of two Matrices.	
	Multiplication of two Matrices - properties. Reducing a Matrix into triangular	
	and echelon form. Transpose of a Matrix and its properties.	
	Definition and Evaluation of 2 nd and 3 rd order Determinants. Properties of	
	determinants, product of Determinants. Determinant of a square Matrix –	
	singular and non – singular Matrices - simple problems.	
	1.2 APPLICATIONS OF MATRICES AND DETERMINANTS:	
	Co-factor, Adjoint of Matrix, Inverse of Matrix and Rank of a matrix – Simple	7
	problems.	
	Solution of simultaneous equations using Cramer's rule - Matrix Inversion	
	method - Gaussian Elimination method – simple problems.	
	Characteristic Equation – Eigen Values and Eigen Vectors of a real matrix –	
	consistency and inconsistency of system of linear equations.	
	1.3 BINOMIAL THEOREM:	
	Introduction – Factorial, Permutation and Combinations – Values of nP_r and	
	nC _r .	
	Statement of Binomial theorem for positive integral index. Expansion of	5
	Binomial - Finding general term – Middle term – Coefficient of x^n and Term	
	independent of x – Binomial Theorem for rational index up to -3.	
	Applications of binomial theorem – Finding the remainder, digits of a number	
	and greatest term – simple problems.	
II	COMPLEX NUMBERS	
	2.1 ALGEBRA OF COMPLEX NUMBERS	6
	Introduction – Complex Numbers – Conjugates – Algebra of complex	

	numbers (without geometrical proof), Properties of complex conjugates -	
	Modulus and Amplitude - Polar and Euler form of a complex number –	
	Simple problems.	
	Argand Diagram – Collinear points, four points forming square, rectangle,	
	rhombus and parallelogram only - Simple problems.	
	2.2 DE MOIVRE'S THEOREM	5
	De Moivre's Theorem (Statement & Applications) – related simple problems.	
	2.3 ROOTS OF COMPLEX NUMBERS	
	Finding the n^{th} roots of unity – solving the equations of the form $x^n \pm 1 = 0$	4
	where $n \leq 7$ - Simple problems.	
	APPLICATIONS OF COMPLEX NUMBERS	
	An application of Complex numbers: AC Circuits - Definitions - Impedance	
	and Admittance - Simple Problems	
III	TRIGONOMETRY	
	3.1 TRIGONOMETRIC FUNCTIONS & ALLIED ANGLES	5
	Trigonometric functions – Properties of Trigonometric functions - Relation	
	between Degree & Radian Measure – Simple problems.	
	Applications of Radian Measure – Length of an arc of a sector – Linear and	
	angular velocity - Trigonometric Ratios of Allied angles – Simple problems.	5
	3.2 TRIGONOMETRIC IDENTITIES	
	Trigonometric Ratios of sum & difference of two angles – Multiple and Sub	
	multiple angles – Functions of 3A angles – Sum and Product Identities -	
	Simple problems.	4
	3.3 PROPERTIES OF TRIANGLE & INVERSE TRIGONOMETRIC	
	FUNCTIONS	
	Properties of Triangle – Law of Sines and Law of Cosines - Inverse	
	Trigonometric Functions – Principal value – Properties of Inverse	
	Trigonometric functions – simple problems.	
IV	DIFFERENTIAL CALCULUS - I	
	4.1 LIMITS	5
	Introduction to Calculus - The calculation of limits – Theorems on limits –	
	Limits at infinity – Limits of rational functions – Trigonometrical limits – other	
	limits – Applications of limits – Simple problems.	

	4.2 DIFFERENTIATION	5
	The derivative of a Function – Differentiation of constant, x^n , $sinx$, $cosx$,	
	$tanx$, $cotx$, $secx$, $cosecx$, $logx$, e^x , a^x , $sin^{-1}x$, $cos^{-1}x$, $tan^{-1}x$, $cot^{-1}x$,	
	$\sec^{-1} x$, $\csc^{-1} x$ (Formulae only) - Differentiation Rules: $u \pm v$, uv , uvw , $\frac{u}{v}$ &	
	Chain rule – Simple problems.	
	4.3 DIFFERENTIATION METHODS	5
	Differentiation by Substitution method – Differentiation of Implicit functions –	
	Logarithmic differentiation – Derivatives of parametric functions –	
	Differentiation of one function with respect to another function - Simple	
	problems.	
V	DIFFERENTIAL CALCULUS – II	
	5.1 SUCCESSIVE DIFFERENTIATION	5
	Successive differentiation upto second order (parametric form not included).	
	Definition of differential equation, order and degree, formation of differential	
	equation. Simple problems	
	5.2 GEOMETRICAL APPLICATIONS	5
	Curvature and Radius of curvature (cartesian form only) - Envelope of family	
	of curves – Simple problems.	
	5.3 PARTIAL DIFFERENTIATION	4
	Definition - Partial Differentiation of two variables upto second order only -	
	simple problems. Jacobian and its properties. Euler's theorem for	
	homogeneous function – Simple problems.	

Reference Book

- 1. Higher Secondary +1 Mathematics volume I&II. Tamil Nadu Text book corporation.
- 2. Higher Secondary +2 Mathematics Volume I&II. Tamil Nadu Text book corporation.
- 3. Engineering Mathematics V. Sundaram, R. Balasubramanian
- 4. Engineering Mathematics I C.B.Gupta ,A.K.Malik, New age international Publishers, 1st edition 2008.
- 5. Differential Calculus S. Balachandra Rao, CK Shantha New age Publishers
- 6. Probability Theory and Stochastic Process B.Prabhakara Rao, TSR Murthy, BS Publishers.
- 7. Vectors and Geometry GS. Pandey, RR Sharma, New age international publishers.
- 8. Engineering Mathematics I Guruprasad Samanta, New age international publishers, 2nd edition 2015.
- 9. Engineering Mathematics Reena Garg, Khanna publishing house, New Delhi, Revised edn. 2018.
- 10. Engineering Mathematics Volume I P. Kandasamy and K. Thilagavathy, S. Chand & Company Ltd.

Board Examination-Question Paper Pattern

For all theory subjects except Communication English I & II and Engineering Graphics I & II.

Note: Clarkes Table and Programmable Calculators are not permitted.

Relevant data should be provided in the question paper for solving the problems if any required.

Time: 3 Hrs.

Max.Marks:100

PART – A Five questions will be asked covering all units. All questions are to be answered. Each question carries 1 mark.

PART- B Fifteen questions will be asked covering all the units. Three questions from each unit. Answer any ten questions. Each question carries 2 marks.

PART-C Five questions will be asked Either or type. One question from every unit. Answer either A or B. Each question carries 15 marks. A and B have subdivisions. (7 + 8)

The questions are to be numbered from 1 to 25. All the units are to be covered with equal weightage.

PART A	5 X 1 = 5 Marks
Definitions and Statements.	
Question Number 1 to 5	
PART B	10 X 2 = 20 Marks
Short answer type questions	
Question Number 6 to 20	
PART C	5 X15 = 75 Marks
Descriptive answer type questions	
(Either A or B)	
Question number 21 to 25	
TOTAL	100 Marks *

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

MODEL QUESTION PAPER

40012 ENGINEERING MATHEMATICS - I

Time: 3.00 hrs.

Note:

- 1. Answer all questions in PART A. Each question carries one mark.
- 2. Answer any ten questions in PART B. Each question carries two marks.
- 3. Answer all question by selecting either A or B. Each question carries fifteen marks.
- 4. Clarkes Table and programmable calculators are not permitted.

PART – A (5×1=5)

1. If
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 0 \\ 3 & 6 \end{bmatrix}$ find A+B.

- 2. Find the values of $i^2 + i^3 + i^4$
- 3. Convert $\frac{2\pi}{5}$ into Degree measure.
- 4. Evaluate: $\lim_{x\to 0} \frac{\sin 7x}{9x}$

5. If
$$u = e^{x^2 + y^2}$$
 then show that $\frac{\partial u}{\partial x} = 2xu$

- 6. Reduce the matrix $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$ to a echelon form. $\begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$
- 7. Find the adjoint of $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$
- 8. Find the general term in the expansion of $(x + 2y)^3$.
- 9. Find the real and imaginary parts of $\frac{7+2i}{2-3i}$
- 10. If $x = \cos \theta + i \sin \theta$, find $x^m + \frac{1}{x^m}$
- 11. The voltage and current of a circuit are given by the Complex numbers 2 + j and 3 2j respectively. Find the Impedance of the circuit.
- 12. If a ball is travelling in a circle of diameter 10m with velocity 20m/s, Find the angular velocity of the ball.
- 13. Prove that $\frac{\sin 2A}{1+\cos 2A} = \tan A$
- 14. Suppose that a boat travels 10km from the port towards east and then turns 60° to its left. If the boat travels further 8 km, how far from the port is the boat?

15. Evaluate:
$$\lim_{x \to 3} \frac{x^4 - 8}{x^4 - 9}$$

Max.Mark:100

- 16. Differentiate: $\frac{1}{x^2} + \frac{1}{3x} + \frac{1}{\sin x} + \frac{1}{2}$
- 17. Differentiate: $x^2 \sin y = c$
- 18. Find $\frac{d^2y}{dx^2}$, if $y = \tan x$
- 19. If $y = ae^{x} + be^{-x}$ Prove that $y_2 = y$.
- 20. Show that $u = x^3 x^2y + xy^3$ is a homogenous function.

PART – C (5×15=75)
21. A) i. Find the inverse of
$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 8 & 2 \\ 4 & 9 & 1 \end{bmatrix}$$
 (7)
ii) Solve the equations $x + 2y - z = -1$, $3x + 9y + 2z = 29$, 8, $4x + 9y - z = 14$

ii) Solve the equations x + 2y - z = -1, 3x + 8y + 2z = 28, & 4x + 9y - z = 14by Cramer's rule. (8)

(OR)

B) i. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$ (7)

ii. Find the coefficient of
$$x^{30}$$
 in the expansion of $\left(x^4 + \frac{1}{x^6}\right)^{15}$ (8)

22. A) i. Express the Complex number
$$\frac{1+3\sqrt{3}i}{\sqrt{3}+2i}$$
 in polar form (7)

ii. Prove that
$$\left(\frac{\cos\theta + \sin\theta}{\sin\theta - i\cos\theta}\right)^4 = 1$$
 (8)

(OR)

- B) i. Solve $x^7 + x^4 + x^3 + 1 = 0$
 - ii. Two impedances $z_1 = 10 + 6j$ and $z_2 = 8 12j$ are connected in parallel across 200volts, 50 cycles per second A.C. mains. Calculate the magnitude of the current in each branch and magnitude of the total current in the circuit.
 - (8)

(7)

- 23. A) i. Find the values of all trigonometric functions of θ if $\cos \theta = -\frac{1}{2} \& \theta$ lies in III quadrant. (7)
 - ii. The point A(9,12) rotates around the origin O in a plane through 60° in the anticlockwise direction to a new position B. Find the co ordinates of the point B.
 (8)

(OR)

B) i. Prove that
$$(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2 = 4\sin^2\left(\frac{\alpha - \beta}{2}\right)$$
 (7)

- ii. Prove that $\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{8}{17}\right) = \sin^{-1}\left(\frac{77}{85}\right)$ (8)
- 24.A) i. Suppose that the diameter of an animal's pupils is given by $f(x) = \frac{80x^{-0.2}+45}{2x^{-0.2}+9}$, where x is the indensity of light and f(x) is in mm. Find the diameter of the pupils with(a) Minimum light b) Maximum light. (7)

ii. Differentiate: (i)
$$(1 + \sin x)(x - \cos x)$$
 (ii) $\frac{1 + \cos x}{1 - \cos x}$ (8)

(OR)

B) i. a) Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$
b) Find $\frac{dy}{dx}$ if $x = a\cos^3 t$, $y = a\sin^3 t$ (7)

ii. a) Find
$$\frac{dy}{dx}$$
 if $y = \sqrt{x}e^x \sin^{-1} x$ (8)

b) Find the derivative of x^x with respect to $3x^2 + 2x + 5$

25. A) i. If
$$y = x^2 \cos x$$
, then prove that $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + (x^2 + 6)y = 0$. (7)

ii. Find the radius of curvature for $y^2 = 4x$ at (1, 1) (8)

(OR)

B) i. If
$$u = x^3 + y^3 + 3xy^2$$
 then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3u$ (7)

ii. Show that the functions $u = x^2 + y^2 + z^2$, v = x + y + z, w = xy + yz + zxand are dependent. (8)

ANNEXURE- I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name : All branches of Diploma in Engineering and Technology and Special Programmes except DMOP, HMCT and film &TV.

- Subject Code : 40013
- Semester : I

Subject Title : ENGINEERING PHYSICS I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	uctions	s Examination			
Subject			Marks			
Subject	Hours / Week	Hours / Semester	Internal Assessment	Board Examinations	Total	Duration
ENGINEERING PHYSICS I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks will be reduced to 75 marks.

Topics and Allocation of Hours:

SI.No	Торіс	Duration (Hrs)
1	S I UNITS AND STATICS	15
2	PROPERTIES OF MATTER	15
3	DYNAMICS- I	15
4	DYNAMICS-II	14
5	SOUND AND MAGNETISM	14
	TEST & MODEL	7
	Total	80

40013 ENGINEERING PHYSICS - I

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
I	S I UNITS AND STATICS	
	1.1 UNITS AND MEASUREMENTS: -	5
	Unit – Definition - Fundamental Quantities – Definition - Seven fundamental	
	quantities; their SI units and symbol for the units - Supplementary quantities	
	- plane angle and solid angle; their SI units and symbol for the units Derived	
	physical quantities.	
	Dimensional formula for length, mass and time-derivation of dimensional	
	formula for area, volume, density, velocity, momentum, acceleration, force,	
	impulse, work or energy and power. Uses of Dimensional formula.	
	Conventions followed in SI Units Multiples & sub-multiples and prefixes of	
	units – Unit conversions (Horse Power to watt & calorie to joule) -	
	Applications of the method of dimensional analysis.	
	1.2 STATICS: -	10
	Scalar and vector quantities – Definitions and examples – Concurrent forces	
	and coplanar forces – Definition - Resolution of a vector into two	
	perpendicular components - Resultant and equilibrant – Definitions -	
	Parallelogram law of forces-statement - Expressions for magnitude and	
	direction of the resultant of two forces acting at a point with an acute angle	
	between them - Lami's theorem - Statement and explanation - Experimental	
	verification of parallelogram law of forces and Lami's theorem. Simple	
	problems based on expressions for magnitude and direction of resultant.	
	Moment of a force - Clockwise and anti-clockwise moments - Principle of	
	moments – Couple – Torque acting due to a Couple – Experimental	
	determination of mass of the given body using principle of moments - Solved	
	problems.	
II	PROPERTIES OF MATTER	
	2.1 ELASTICITY: -	5

Elastic and plastic bodies - Definition - stress, strain - Definitions - Hooke's

law – statement - three types of strain – Elastic and plastic limit – Young's modulus, Bulk modulus, Rigidity modulus – Definitions - Uniform and nonuniform bending of beams - Experimental determination of the Young's modulus of the material of a beam by uniform bending method - Poisson's ratio - Simple problems based on stress, strain and Young's modulus – Applications of elasticity.

2.2 VISCOSITY: -

Viscosity – Definition - Coefficient of viscosity - Definition, SI unit and dimensional formula - Stream line flow, turbulent flow – Explanation - Critical velocity – Reynolds number – Definition - Experimental comparison of coefficient of viscosity of two low viscous liquids – Terminal velocity – Definition - Experimental determination of coefficient of viscosity of a highly viscous liquid by Stokes method – Practical applications of viscosity – Practical applications of Stoke's law.

2.3 SURFACE TENSION: -

Surface tension & angle of contact – Definitions - Expression for surface tension of a liquid by capillary rise method - Experimental determination of surface tension of water by capillary rise method – Practical applications of capillarity. Simple problems based on expression for surface tension – Applications of surface tension – Solved problems.

III DYNAMICS-I

3.1. STRAIGHT LINE MOTION: -

Introduction-Newton's Laws of motion-Fundamental Equations of motion for objects- horizontal motion-falling freely-thrown vertically upwards.

3.2 PROJECTILE MOTION: -

Projectile motion, angle of projection, trajectory, maximum height, time of flight, and horizontal range–Definitions-Expressions for maximum height, time of flight and horizontal range–Condition for getting the maximum range of the projectile. Path of the projectile (the trajectory) is a Parabola - Simple problems based on expressions for maximum height, time of flight and horizontal range – Examples of projectile motion.

3.3 CIRCULAR MOTION: -

Circular motion, angular velocity, period and frequency of revolutions -

5

5

2

5

8

Definitions – Relation between linear velocity and angular velocity – Relation between angular velocity, period and frequency – Normal acceleration, centripetal force and centrifugal force – Definitions – Expressions for normal acceleration and centripetal force. Banking of curved paths – Angle of banking – Definition – Expression for the angle of banking of a curved path. $\{\tan\theta = v^2/(r g)\}$ - Simple harmonic motion, amplitude, frequency and period - Definition. Simple problems based on the expressions for centripetal force and angle of banking - Applications of centripetal force and centrifugal force – Solved problems.

IV DYNAMICS-II

4.1 ROTATIONAL MOTION OF RIGID BODIES: -

Rigid body – Definition - Moment of inertia of a particle about an axis -Moment of inertia of a rigid body about an axis – expressions – Radius of gyration – Definition – Expression for the kinetic energy of a rotating rigid body about an axis – Angular momentum – Definition – Expression for the angular momentum of a rotating rigid body about an axis – Law of conservation of angular momentum – Examples.

4.2 GRAVITATION: -

Newton's laws of gravitation – Acceleration due to gravity on the surface of earth – Expression for variation of acceleration due to gravity with altitude

4.3 SATELLITES: -

Satellites – Natural and artificial – Escape velocity and orbital velocity – Definitions – Expression for escape velocity and Orbital velocity – Polar and Geostationary satellites – Uses of artificial satellites. Simple problems based on the expressions for escape velocity and Orbital velocity.

V SOUND AND MAGNETISM

5.1 SOUND: -

Wave motion – Introduction and definition – Audible range – Infrasonic – Ultrasonics - Progressive waves, longitudinal and transverse waves – Examples - Amplitude,

Wave length, period and frequency of a wave – Definitions – Relation between wavelength, frequency and Velocity of a wave - Stationary or

4

9

3

7

standing waves. Vibrations - Free & forced vibrations and resonance -
definitions and examples - Laws of transverse vibration of a stretched string
- Sonometer - Experimental determination of frequency of a tuning fork.
Acoustics of buildings - Echo - Reverberation, reverberation time, Sabine's
formula for reverberation time (no derivation) - Coefficient of absorption of
sound energy - Noise pollution. Simple problems based on expression for
frequency of vibration. Doppler effect - Definition and Applications -
Ultrasonic and its uses - SONAR - Solved Problems.55.2 MAGNETISM: -
Pole strength - Definitions - Magnetic moment, intensity of magnetisation,
magnetising field intensity, magnetic induction, Permeability, hysteresis,
saturation, retentivity and coercivity - Definitions - Method of drawing
hysteresis loop of a specimen using a solenoid - Uses of Hysteresis loop.
Simple problems based on intensity of magnetization - Types of magnetic

Reference Book:

- 1. Physics Resnick and Haliday Wisley Toppan publishers–England
- 2. Engineering Physics B.L.Theraja S. Chand Publishers
- 3. A text book of sound R.L. Saighal & H.R. Sarna S.Chand & Co.
- 4. Mechanics Narayana Kurup S. Chand Publishers.

materials and their applications - Solved problems.

Board Examination-Question Paper Pattern

For all theory subjects except Communication English I & II and Engineering Graphics I & II.

Note: Clarkes Table and Programmable Calculators are not permitted. Relevant data should be provided in the question paper for solving the problems if any required.

Time: 3 Hrs.

Max.Marks:100

PART - A Five questions will be asked covering all units. All questions are to be answered. Each question carries 1 mark.

PART-B Fifteen questions will be asked covering all the units. Three questions from each unit. Answer any ten questions. Each question carries 2 marks.

PART-C Five questions will be asked Either / Or type. One question from every unit. Answer either A or B. Each question carries 15 marks.

A and B have subdivisions. (7 + 8)

The questions are to be numbered from 1 to 25. All the units are to be covered with equal weightage.

PART A	5 X 1= 5 Marks
Definitions and Statements.	
Question Number 1 to 5	
PART B	10 X 2 = 20 Marks
Short answer type questions	
Question Number 6 to 20	
PART C	5 X15 = 75 Marks
Descriptive answer type questions	
(Either A or B)	
Question number 21 to 25	
TOTAL	100 Marks *

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

ENGINEERING PHYSICS - I

Model Question Paper

TIME: 3hrs

MARKS: 100

PART A (5 X 1 = 5)

Note: Answer ALL questions. All questions carry equal marks.

- 1. Mention any two fundamental physical quantities.
- 2. Why rain drops fall slowly?
- 3. What is the condition for maximum range of a projectile?
- 4. Define moment of inertia of a rigid body.
- 5. Define magnetic moment.

PART B (10 X 2 = 20)

Note: Answer any TEN questions. All questions carry equal marks.

- 6. What are the uses of dimensional formula?
- 7. What is meant by coplanar force?
- 8. State Lami's theorem.
- 9. What are three moduli of elasticity?
- 10. Explain turbulent flow.
- 11. Define angle of contact.
- 12. State Newton's laws of motion.
- 13. Define normal acceleration.
- 14. Define angle of banking.
- 15. State law of conservation of angular momentum.
- 16. State Newton's law of gravitation.
- 17. Write any two uses of artificial satellites.
- 18. Define resonance.
- 19. Define Doppler effect.
- 20. Explain hysteresis.

PART B (5 X 15 = 75)

Note: Answer ALL questions by choosing either A (OR) B

21.A. i) State the conventions to be followed in the SI units.
(8)
(8)
(7)

OR

B. i) Describe an experiment to verify the parallelogram law of forces. (8)

ii) If the resultant of two equal forces is $\sqrt{3}$ times each force. Find the angle (7) between the forces.

22.A. i) Explain uniform and non-uniform bending of beams. (8)
ii) Describe an experiment to determine the Young's modulus of the material of (7)
the beam by uniform bending method.

OR

B. i) Describe an experiment to compare the coefficient of viscosities of two (8) liquids.

ii) Calculate the surface tension of water if it rises to a height of 4.2 cm in a (7) capillary tube dipped vertically in it. Radius of the capillary tube is 3.5×10^{-4} m and density of water is 1000 kgm⁻³

23.A. i) Derive an expression for the maximum height and time of flight reached by (8) the projectile.

ii) Derive expression for normal acceleration and centripetal force acting on a (7) body executing uniform circular motion.

OR

B. i) Derive an expression for the angle of banking.

(8)

ii) A ball weighing 0.5 kg tied to one end of a string of length 2 m is rotated at a (7) constant speed of 10 ms⁻¹ in a horizontal plane. Calculate the centripetal force on the ball.

24.A. i) Derive an expression for angular momentum of rotation of a rigid body (8) rotating about an axis.

ii) Derive an expression for variation of acceleration due to gravity with altitude. (7)

OR

- B. i) Write short notes on polar and geostationary satellites. (8)
 ii) If the radius of the earth is 6400 km, and acceleration due to gravity is 9.8 (7) ms⁻². Calculate the escape velocity on the surface of the earth.
- 25.A. i) Distinguish between longitudinal and transverse wave.(8)ii) Write a note on acoustics of buildings.(7)

OR

B. i) Explain the method of drawing hysteresis loop of a given specimen. (8)
ii) The vibrating length of 0.24 m of a sonometer wire is unison with a tuning (7) fork when stretched by a weight of 4.5 kg. The linear density of the wire is 0.65 X 10⁻³ kgm⁻¹. Calculate the frequency of the fork.

ANNEXURE- I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 -2021 onwards)

Course Name : All branches of Diploma in Engineering and Technology and Special Programmes except DMOP, HMCT and film &TV.

Subject Code : 40014

Semester : I

Subject Title : ENGINEERING CHEMISTRY I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	11		Marks			
Gubject	Week Semester	Internal Assessment	Board Examinations	Total	Duration	
ENGINEERING CHEMISTRY I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and will be reduced to 75 marks.

Topics and Allocation of Hours:

UNIT	Торіс	Duration
		(Hrs)
I	Basic concepts in chemistry – Atomic Structure and Chemical bonding, Periodic Table, Acids and Bases	15
П	Surface Chemistry - Colloids, Nanotechnology, Catalysis	15
	Minerals and Metallurgy – Metallurgy of Iron, Metallurgy of Tungsten and Titanium, Powder Metallurgy	15
IV	Industrial Chemistry – Nuclear Chemistry, Cement, Ceramics, Refractories and Glass	15
V	Chemistry of Engineering Materials – Polymer, Abrasives, Composite Materials	13
Test & Model Exam		
	Total	80

RATIONALE:

The subject Engineering Chemistry I lay foundation of all the elements, structure and periodic classification. The latest trends on nano technology, its application on various fields of engineering is also dealt with. It provides basic concepts about minerals and its resources, the metal extraction, heat treatment and powder metallurgy. It also imparts knowledge about few Engineering Materials like cement, ceramics, refractory and glass. It also deal with polymers, abrasives and composite materials.

OBJECTIVES:

The objective of this Course is to make the student:

- 1. Know about atomic structure, chemical bonding, periodic classification and acids and bases.
- 2. Learn about surface chemistry, colloidal particles and nano-particles and their application.
- 3. Know about the mineral resources of Tamilnadu and the fundamentals of metal extraction, iron and steel manufacture, heat treatment and powder metallurgy.
- 4. Study about the importance of Engineering Chemistry in industry.
- 5. Know about Engineering materials like cement, ceramics, refractory, glass, rubber, plastic and composites.

40014 ENGINEERING CHEMISTRY I DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hrs.
Ι	BASIC CONCEPTS IN CHEMISTRY	
	1.1 Atomic Structure and Chemical Bonding	6
	Fundamental particles – proton – electron – neutron – atomic number –	
	mass number – extra nuclear part – filling up of electrons – aufbau	
	principle -s-p-d- f orbitals - electronic configuration - definition of	
	atomic mass, molecular mass, equivalent mass, valency (definitions only)	
	- octet rule - electrovalent bond - sodium chloride formation - covalent	
	bond – formation of ammonia.	
	1.2 Periodic Table	4
	Modern periodic law – periodic classification of elements – features of	
	modern periodic table – properties of s–p–d–f block elements.	

	1.3 Acids and Bases	5
	Properties of acids and bases – Lewis concept of acids and bases –	
	advantages – pH and pOH – Definition – Numerical problems – Indicator	
	– Definition – Buffer solution – Definition – Types of buffer solution with	
	examples – Application of pH in industries	
II	SURFACE CHEMISTRY	
	2.1 Colloids	6
	Colloids – Definition – True solution and Colloidal solution – Differences –	
	Types of colloids – Lyophilic and Lyophobic colloids – Differences –	
	Properties – Tyndall effect – Brownian movement – Electrophoresis and	
	Coagulation – Industrial applications of colloids – Smoke Precipitation by	
	Cottrell's method, Purification of water, Cleansing action of soap, Sewage	
	disposal – tanning – and artificial rain.	
	2.2 Nanotechnology	4
	Nano particles – definition – properties – application of Nanotechnology	
	– Engineering – medicine – biomaterial.	
	2.3 Catalysis	5
	Catalyst – Definition – Positive – Negative catalyst – Definition – Types of	
	catalysis – Homogeneous and Heterogeneous – Promoter – Catalyst	
	poison – active centre – Definition – Characteristics of a catalyst –	
	Industrial applications of catalysts.	
III	MINERALS AND METALLURGY	
	3.1 Minerals and Metallurgy	7
	Mineral – Minerals of Tamilnadu – Sources and Uses (Basic concepts	
	only) – Extraction of iron – Blast furnace – cast iron – steel manufacture	
	– Bessemer converter – heat treatment of steel – hardening – annealing	
	– tempering.	
	3.2 Metallurgy of tungsten and Titanium	4
	Extraction and uses of Tungsten and Titanium	
	3.3 Powder metallurgy	4
	Definition – Powder metallurgical process – Preparation of Metal Powder	
	- Atomization - Reduction of Metal Oxide - blending - compacting -	
	sintering – finishing – Applications of Powder Metallurgy.	

IV	INDUSTRIAL CHEMISTRY	
	4.1 Nuclear Chemistry	6
	Nuclear reaction – Differences between nuclear reaction and ordinary	
	chemical reaction – Radioactive decay – alpha emission – beta emission	
	– gamma emission – half-life period – simple problems– Nuclear fission –	
	nuclear fusion – chain reaction - components nuclear reactor, reactor	
	core, nuclear reactor coolant, Control rods, neutron moderator – steam	
	turbine – Application of radioactive isotopes.	
	4.2 Cement and ceramics	5
	Definition – Manufacture of Portland Cement – Wet Process – Setting of	
	Cement (No equation) – Ceramics – White pottery – Definition –	
	Manufacture of White pottery – Uses – Definition of glazing – purpose –	
	Method – Salt glazing – liquid glazing.	
	4.3 Refractories and Glass	4
	Definition – requirements of a good refractory – types with examples and	
	uses – uses of silica, fire clay and alumina.	
	Composition of Glass – Manufacture of Glass – annealing of glass –	
	varieties of glass – Optical glass, wind shield glass and Photo chromatic	
	glass.	
V	CHEMISTRY OF ENGINEERING MATERIALS	
	5.1 Polymer	6
	Definition – Natural polymer – Rubber – Defects of natural rubber –	
	Compounding of rubber – Ingredients and their functions – Vulcanization	
	-Plastics - types - Thermoplastics and Thermosetplastics - Differences	
	–Mechanical properties of plastics – Polymers in Surgery – Biomaterials –	
	Definition – Biomedical uses of Polyurethane, PVC, Polypropylene and	
	Polyethylene.	4
	5.2 Abrasives	
	Definition – classification – hardness in Mon's scale – Natural abrasives –	
	Carborundum – Boroncarbide manufacture – properties and uses	
	5.3 Composite Materials	3
	Definition – examples – Classification of composites – Advantages over	
	metals and polymers – General application	

References

- 1. Introduction to Engineering Chemistry, Shradha Sinha , S S Dara & Sudha Jain, S. Chand Publishers, 2004.
- 2. S.Chand's Engineering Chemistry, S S Dara, Sudha Jain & Shradha Sinha, 2005.
- 3. A Textbook of Engineering Chemistry, Dr. Uday Kumar, 2013.
- 4. Chemistry Higher Secondary 1 st and 2nd year, Vol. I & II, Tamil Nadu Text Book Corporation, 2018.
- 5. Engineering Chemistry Fundamentals and Applications, Shikha Agarwal, Cambridge University Press, 2019.
- Government of India, Geological Survey of India, Geology and Mineral Resources of The States of India Part VI – Tamil Nadu and Pondicherry
- Indian Minerals Yearbook 2011, Government of India Ministry of Mines, Indian Bureau of Mines Indira Bhavan, Civil Lines, Nagpur – 440 004

Website references:

1. <u>https://bookboon.com/en/fundamentals-of-chemistry-ebook</u>

Board Examination-Question Paper Pattern

For all theory subjects except Communication English I & II

and Engineering Graphics I & II.

Note: Clarkes Table and Programmable Calculators are not permitted. Relevant data should be provided in the question paper for solving the problems if any required.

Time: 3 Hrs.

Max.Marks:100

PART - A Five questions will be asked covering all units. All questions are to be answered. Each question carries 1 mark.

PART-B Fifteen questions will be asked covering all the units. Three questions from each unit. Answer any ten questions. Each question carries 2 marks.

PART-C Five questions will be asked Either / Or type. One question from every unit.

Answer either A or B. Each question carries 15 marks. A and B have subdivisions. (7 + 8)

The questions are to be numbered from 1 to 25. All the units are to be covered with equal weightage.

PART A	5 X 1= 5 Marks
Definitions and Statements.	
Question Number 1 to 5	
PART B	10 X 2 = 20 Marks
Short answer type questions	
Question Number 6 to 20	
PART C	5 X15 = 75 Marks
Descriptive answer type questions	
(Either A or B)	
Question number 21 to 25	
TOTAL	100 Marks *

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

ENGINEERING CHEMISTRY I MODEL QUESTION PAPER

Part A

NB: 1. Answer all questions.

5x 1 = 5 Marks

2. All questions carry equal marks

- 1. How many electrons are there in the ultimate orbital of sodium atom?
- 2. What is the relationship between pH and pOH?
- 3. Name an ore of tungsten?
- 4. What is added to delay the setting of cement?
- 5. What is the hardness of diamond on Moh's scale?

Part B

NB: 1. Answer any 10 questions

2. All questions carry equal marks

- 6. State octet rule.
- 7. Write down the modern periodic law.
- 8. Define Lewis concept of acids and bases.
- 9. Mention the types of colloids.
- 10. What are catalytic promoters?
- 11. Define biomaterial.
- 12. Mention the composition of stainless steel.
- 13. Mention the uses of titanium.
- 14. Define powder metallurgy.
- 15. What is meant by radioactive decay?
- 16. Write down the importance of glazing in ceramics.
- 17. Define refractory.
- 18. What is meant by annealing of glass. Mention the importance of it.
- 19. Give any 2 defects of natural rubber?
- 20. How is Carborundum prepared?

Part C

NB: 1. Answer all questions5 x 15= 75 Marks

2. Answer any one of the subdivisions, either (A) or (B) from each question

21.A (i) Explain in detail about aufbau principle for filling of electrons in an atom with suitable example.

(7)

10 x 2 = 20 Marks

(ii)Define valency of an element. Explain electrovalent bond with suitable example	!
With a neat diagram	(8)
(or)	
B (i) Distinguish between s and d-block elements in the periodic table	(7)
(ii)Define pH of a solution. Calculate the pH of 0.025 N sodium hydroxide solution	(8)
22.A (i) Distinguish between lyophilic and lyophobic colloids.	(7)
(ii)Define colloid. Describe any four industrial applications of colloids.	(8)
(or)	
B (i) List the industrial applications of catalyst.	(7)
(ii)What is called nanotechnology? Illustrate the various applications of	
nanotechnology in various fields of Engineering.	(8)
23.A (i) Describe the manufacture of steel by Bessemer process.	(7)
(ii)What is meant by heat treatment of steel? Write notes on various heat treatmen	ıt
of steel.	(8)
(or)	
B (i) Explain the extraction of tungsten from its ore.	(7)
(ii)Describe the process and applications of powder metallurgy.	(8)
24.A.(i) Distinguish between ordinary chemical reaction and nuclear reaction.	(7)
(ii)Define half-life period. The decay constant of Co-60 is 0.132/yr. Calculate its	
half-life period. If the quantity of Co-60 is 2.5g, what will be the quantity that	
remain after 10.5 years.	(8)
(or)	
B (i) Describe the manufacture of Portland cement	(7)
(ii)Define refractory. What are the requirements of a refractory?	(8)
25.A (i) Explain vulcanization of rubber and give the properties of vulcanized rubber	(7)
(ii)Write a note on advantage of composite materials over metals and polymers	(8)
(or)	
B (i) What are bio-materials? List biomedical uses of use following:	
(a) Polyurethane (b) PVC (c) Polypropylene (d) Polyethylene	(7)
(ii) Write a note on the following abrasives.	
(a) Diamond (b) Corundum (c) Emery (d) Garnet	(8)

ANNEXURE - I

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N - SCHEME

(Implemented from the Academic year 2020 – 2021 onwards)

Course Name	:	All branches of Diploma in Engineering and Technology and
		Special Programmes except DMOP, HMCT and Film &TV.

- Subject Code : 40015
- Semester : I
- Subject Title : ENGINEERING GRAPHICS I

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instr	ructions	Examination			
Subject		Hours / Semester	Marks			
	Hours / Week		Internal Assessment	Board Examinations	Total	Duration
ENGINEERING GRAPHICS - I	6	6	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and will be reduced to 75 marks.

Topics and Allocation of Hours

SI. No.	Торіс	Duration	
1	Drawing Office Practice and Dimensioning		
2	Geometric Constructions and Construction of Conics 19		
3	Projection of Points & Straight Lines and Construction of Special Curves	19	
4	Orthographic Projections		
	Test & Model Exam.	07	
Total		96Hrs	

RATIONALE:

Engineering Graphics is a basic subject for all branches of diploma in engineering and technology. Since engineering drawing is considered as the language of engineers, the proper understanding and practice is required with proper use of instruments.

This subject is aimed at providing basic understanding of the fundamentals of Engineering Graphics; mainly visualization, graphics theory, standards of drawings, the tools of drawing and the use of drawings in engineering applications.

The topics covered are based on the syllabus for diploma studies in engineering. The subject is planned to include sufficient practices which would help the student in visualization of two-dimensional objects and developing the drawing.

The chapters are arranged in sequence and starts from the basic concepts of lettering, dimensioning, geometrical constructions, conic sections, projection of points and straight lines, construction of engineering curves, proceeds to the orthographic projection techniques. By learning this subject, it is expected that the students would be matured to visualize the engineering components by reading an engineering drawing.

OBJECTIVES:

At the end of the subject, the students will be able to,

- Understand the importance of drawing
- Identify and use the drawing instruments
- > Practice the rules and methods of dimensioning
- Acquire knowledge about geometric constructions
- Construct conic curves
- > Understand the concepts of projection of points and straight lines
- > Acquire knowledge about the construction of special curves
- > Draw orthographic views from the given pictorial drawing

Note: While practicing, usage of drawing instruments like drawing board, mini drafter, compass, divider, drawing clips / cello tape, H, 2H and HB grade drawing pencils, eraser etc., are mandatory for class work and examinations. Size of drawing sheet recommended: A2 size (420 x 594 mm). Use both sides of drawing sheets for practice.

40015 ENGINEERING GRAPHICS - I

DETAILED SYLLABUS

C <u>ontent</u>	s: Theory					
Unit	Name of the Topic	Hours				
I	DRAWING OFFICE PRACTICE AND DIMENSIONING					
	1.1 Drawing Office Practice	06				
	Importance of engineering drawing as a graphic communication-					
	drawing practice as per BIS code–drawing instruments: drawing					
	board, mini-drafter, compass, divider, protractor, drawing sheets,					
	drawing pencils, set squares etc., – title block– layout and folding of					
	drawing sheets.					
	Lettering and numbering as per BIS –importance of legible lettering					
	and numbering-single stroke letters-upper case and lower case					
	letters-slanting / inclined letters-general procedures for lettering and					
	numbering-height of letters-guidelines-practices					
	Scales full size scale reducing scale and onlarging scales					
	(Description only)					
	Minimum criteria for class assessment					
	No. of Drawing sneets No. of Exercises					
	1 numerals – each 5 sentences with different heights					
	1.2 Dimensioning					
	Dimensioning – need for dimensioning–dimensioning terms and					
	notations as per BIS – dimension line, extension line and leader line –					
	dimensioning systems – methods of placement of dimensions – uni-					
	directional and aligned systems – important dimensioning rules –					
	dimensioning of common features – diameters, radii, holes, chamfers					
	– addition of letters and symbols – parallel, chain and progressive					
	dimensioning – practice of dimensioning the given drawing as per BIS					
	code (one view of the object)					
	Minimum criteria for class assessment					
	No. of Drawing sheets No. of Exercises					
	1 8 - 2D drawings					

II	GEOMETRIC CONSTRUCTIONS AND CONSTRUCTION	
	OF CONICS	06
	2.1 Geometric Constructions	
	Bisect a straight line – bisect an arc – bisect an angle – divide a	
	straight line into any number of equal parts – divide the circle into	
	number of equal divisions – construct an arc touching two lines at any	
	angle – construct an arc touching two arcs.	
	Minimum criteria for class assessmentNo. of Drawing sheetsNo. of Exercises covering all methods110	
	2.2 Construction of Conics	13
	Conic sections – definition of locus, focus, directrix, axis, vertex and	
	eccentricity – practical applications of ellipse, parabola and	
	hyperbola.	
	Ellipse: Construction of ellipse by concentric circle method,	
	rectangular method when major and minor axis are given and	
	eccentricity method when focus and directrix are given-exercises in	
	practical applications.	
	Parabola: Construction of parabola by rectangular method,	
	parallelogram method when major and minor axis are given and	
	eccentricity method when focus and directrix are given – exercises in	
	practical applications.	
	Hyperbola: Construction of hyperbola by eccentricity method when	
	focus and directrix are given – exercises in practical applications.	
	Minimum criteria for class assessment No. of Drawing sheets No. of Exercises covering all methods 2 7	
III	PROJECTION OF POINTS & STRAIGHT LINES AND	
	CONSTRUCTION OF SPECIAL CURVES	
	3.1 Projection of Points and Straight Lines	11
	Projection of points – position of a point on four quadrants and on the	
	reference planes – system of notation–Place a point on four	
	quadrants with different distances – exercises.	
	Projection of straight lines-line in the first quadrant and on the	
	reference planes - parallel to one plane and perpendicular to other	

	plane – inclined to one plane and parallel to the other plane – parallel		
	to both the planes – simple exercises.		
	Minimum criteria for class assessment		
	No. of Drawing sheets No. of Exercises 2 12		
		09	
	3.2 Construction of Special Curves	00	
	Definition and construction of cycloid – epicycloid – hypocycloid –		
	involute of a circle – Archimedean spiral for one revolution – helix –		
	practical applications – exercises.		
	Minimum criteria for class assessment		
	No. of Drawing sheets No. of Exercises covering all methods		
IV	ORTHOGRAPHIC PROJECTIONS		
	4.1 First angle: Simple components Introduction – projection terms		
	-orthographic projection - planes of projection - principal	11	
	orthographic views designation of views four guadrants first		
	and projection third and projection or model and errongement		
	angle projection – third angle projection – symbols and arrangement		
	Or views for first angle and third angle projections – comparison –		
	Simple exercises in first angle projection with minimum two views of		
	simple components (Without curves and circles).		
	Minimum criteria for class assessment		
	sheets		
	4.2 First Angle Projections only: Engineering components	21	
	Draw the projections of the simple engineering components using first		
	angle projection - exercises in drawing orthographic views - three		
	views-front view, top view and right / left side views. (For Board		
	Examinations any two views can be asked.)		
	Minimum criteria for class assessment		
	sheets		
	3 12		

Reference Books:

- 1. Bhatt N.D, "Engineering Drawing", Charotar Publishing House Pvt. Ltd.
- 2. Gill P.S, "Engineering drawing", S.K.Kataria&Sons.
- 3. Gopalakrishna.K.R., "Engineering Drawing", (Vol 1 & 2 combined), Subhas Publications.
- 4. Venugopal. K, Prabhu Raja V, "Engineering Graphics", New Age International Publishers.

- 5. Natarajan KV "A Text Book of Engineering Drawing and Graphics" N Dhanalakshmi Publishers.
- 6. Shah M B, Rana B C, "Engineering Drawing", Pearson.
- 7. Basant Agrawal, Agrawal C M "Engineering Drawing", McGraw hill HED.
- 8. Parkinson AC, "First Year Engineering Drawing", Sir Isaac Pitman & Sons Ltd.
- 9. Thomas E. French, Charles J. Vierck, "The Fundamentals of Engineering Drawing", McGraw Hill Book Co. Inc.

Class assessment drawings	10	
Average of Two Assessment Tests	05	
Model Examination	05	
Attendance	05	
Total	25	

Internal Assessment Marks:

BOARD EXAMINATION

QUESTION PAPER PATTERN

Time: 3 Hrs

Max. Marks: 100

- Note: 1. Answer all the questions only in the drawing sheet.
- 2. Assume missing dimensions suitably, if required.
- 3. Proper drawing instruments and board should be used

PART - A (4x5 = 20)

Note: Five questions will be asked (SI. No: 1 to 5). Answer any four questions.

Each question carries five marks.

Minimum one question should be asked from each unit first chapter.

(Chapters: 1.1, 2.1, 3.1, 4.1)

PART - B (4x20 = 80)

Note: Six questions will be asked (SI. No: 6 to11). Answer any four questions.

Each question carries twenty marks.

Minimum one question should be asked from each unit second chapter. (Chapters: 1.2, 2.2, 3.2, 4.2)

MODEL QUESTION PAPER ENGINEERING GRAPHICS - I

Time: 3 Hrs

Max. Marks: 100

- Note: 1. Answer all the questions only in the drawing sheet supplied.
 - 2. Assume missing dimensions suitably, if required.
 - 3. Use proper drawing instruments and drawing board.
 - 4. First angle projection is to be followed.
 - 5. All dimensions are in `mm'.

PART - A (4x5 = 20)

Answer any four questions. Each question carries five marks.

1. Write the following statements in a single stroke in upper case letters of 10 mm height.

DRAWING IS THE LANGUAGE OF ENGINEERS

ALL DIMENSIONS ARE IN MM

ALL LETTERS SHOULD BE UNIFORM IN SHAPE, SIZE AND SPACING

DIMENSION LINES SHOULD NOT CROSS EACH OTHER

BUREAU OF INDIAN STANDARDS (BIS) IS OUR NATIONAL STANDARD.

2. Construct an arc of 50 mm radius touching two arcs of 25 mm and 50 mm radius externally, at a centre offset distance of 120 mm.

3. A point 'C' is 50 mm below the HP and 30 mm behind the VP. Draw the front view and top view.

- 4. A straight line AB 50 mm long is parallel to the VP and inclined at an angle of 30° to the HP. The end A is 20 mm above the HP and 15 mm in front of the VP. Draw the projections of the line.
- 5. The pictorial view of a component is given in Fig: 1. Draw its front view and right side view.

PART - B (4x20 = 80)

Answer any four questions. Each question carries twenty marks.

- 6. Redraw the object shown in Fig: 2 and make the correct dimensioning as per BIS standards.
- 7. The major and minor axes of an ellipse are 120 mm x 80 mm respectively. Draw the ellipse using rectangular method.
- 8. Construct a parabola, when the distance of the focus from the directrix is 40 mm.

- 9. A circle of diameter 40 mm rolls on the outside of another circle of diameter 160 mm without slipping. Draw the path traced by a point on the smaller circle.
- 10. The pictorial view of the machine component is given in Fig: 3. Draw the front view and right hand side view.
- 11. The pictorial view of the machine component is given in Fig: 4. Draw the front view and top view.

Fig: 3

Fig: 4

ANNEXURE-I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020-2021 onwards)

Course Name	:	All branches of Diploma in Engineering and Technology and	
		Special Programmes except HMCT and film &TV.	
Subject Code	:	40001	
Semester	:	I Circuit Branches	
		II Non-Circuit Branches	
Subject Title	:	COMMUNICATION SKILL PRACTICAL	

TEACHING AND SCHEME OF EXAMINATION

Subject	Instru	uctions	ons Examination			
	Hours /	Hours /		Marks		
COMMUNICATION	Week	Semester	Internal	Board	Total	Duration
SKILL PRACTICAL			Assessment	Examinations	Total	
	2	32	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and will be reduced to 75 marks.

Topics and Allocation of Hours

SI.No.	Торіс	Duration
		(Hrs)
1	Listening Skill	10
2	Reading Skill	6
3	Speaking Skill	10
4	Writing Skill	6
	Total	32

RATIONALE:

- "The quality of your life is in the quality of your communication" opined Antony Robins. Language is the means of self-expression and one of the prime most tools for communication. Communicative fluency augments one's personal, academic, social and professional life.
- The present syllabus, focusing on four Communication Skills, viz. Listening, Reading, Speaking and Writing, enables the students at Diploma level gain confidence and fluency in communication which in turn would enhance them face their career commitments with globalized standards.

OBJECTIVES:

At the completion of the study, the students will be able to

- Improve their auditory skills to attentively listen, effectively comprehend and to identify important information and keywords.
- Fine tune their reading skills and make them articulate lucidly with proper stress and intonation
- Perfect their reading comprehending skills using the techniques like Skimming to get the general idea and scanning to grasp specific information.
- > Pronounce words with renewed confidence.
- Express their needs, obligations, suggestions, gratitude and apology with poise and conviction.
- > Introduce themselves and others in a self-assuring manner.
- > Partake in face to face conversation with skilled agility.
- > Emphatically write and complete the missing parts.
- > Acquire a sound knowledge on the usage of non-verbal communication.

40001 COMMUNICATION SKILL PRACTICAL DETAILED SYLLABUS

Contents: Practical

Unit	Name of the Topic	Hours
I	Listening Skill	10
	Listening to Speeches by Great Speakers/ TV News	
	(Assessment Through note taking)	
	Listening to Short Stories (Assessment by Vocabulary Check)	
	Listening to Indian / British / American English (Assessment	
	by Cloze)	
II	Reading Skill	06
	Stress & Intonation	
	Tongue Twisters / Tongue Modulators Frequently	
	Mispronounced Words	
	Reading Newspaper – (Skimming & Scanning)	
	Speaking Skill	10
	Polite Expressions (Greeting, Requesting, Thanking, Apologizing,	
	Opinions, Suggestions)	
	Introducing Yourself/ Friends/ Family	
	Recite - quotes of Leaders / Scholars / Scientists	
	Face to Face Conversation	
IV	Writing Skill	06
	Thought Fillers	
	Completing an Incomplete Story	
	How to prepare PPT	
	Non-Verbal Communication	

BOARD PRACTICAL EXAMINATIONS

Note:

- 1. The students should be given proper practice in all the exercises. All the exercises should be completed before the examinations.
- 2. The students should maintain a record notebook. The record note book should be submitted during the Board Practical Examinations.
- 3. The external examiner should verify the availability of the facility for the batch strength before the commencement of Practical Examination.
- 4. PART D should be conducted first for all the students. Part A, Part B and Part C can be conducted by both examiners by dividing the students into two groups.

Part A - Listening (No. of Exercises: 3, Duration:45 min.)

Question No.1: The examiner shall play either the audio of the speech of a great speaker or that of TV news running from 3 to 5 min. The audio can be played twice. The candidates may be given 10 minutes to take notes as directed in the question paper.

Question No.2: A short story selected by the external examiner shall be played only once without transcript. The objective of this exercise is to test the Listening ability of the candidate and therefore questions should be framed accordingly in the pattern of question and answer. The time to complete this exercise is 5 minutes.

Question No.3: Any one of the audios (British English, American English or Indian English) may be selected by the external examiner and the same shall be played only once. Maximum of 5 questions for filling in the blanks may be given and the candidates may be provided maximum of 10 minutes to answer the questions.

This part shall be completed within 45 minutes including the time used for playing listening audios.

Part – B – Reading (No. of Exercises 3, Duration: 45 min.)

Each batch may be divided into two. Both examiners may engage all the students.

Question No. 1:Readout the tongue twister.

Question No. 2: A passage from newspaper can be given for reading.

Question No.3: Pronounce the words correctly. Part B shall be completed within 45 minutes.

Part – C – Speaking (No. of Exercises: 4, Duration: 45 min)

Divide the students to make it convenient for conversations in English by a pair. Both examiners can handle.

Question No.1: Polite expressions for the context provided.

Question No. 2: Self-introduction for the interview.

Question No.3: Any five quotes can be recited from the given list of quotes of Leaders, Scholars and Scientists.

Question No. 4: The candidates have to speak as directed by the concerned examiner. All the questions are mandatory. Part C shall be completed within 45 minutes.

Part D – Writing (No. of Exercises: 3, Duration: 45 min.)

All students should appear for this part.

Question No.1: Five questions with blanks shall be asked based on a list of 25 frequently used thought fillers already trained during lab classes.

Question No. 2: shall consist of an unknown incomplete story providing scope for further development and application of imagination. (minimum 3 lines for completion with suitable title and moral)

Question No. 3: Questions can be taken from a list of fifteen important questions covering the core areas of non-verbal communication. (Five out of eight questions to be answered)

Students shall be provided maximum of 30 minutes to complete Part-D.

SI. No	Detailed Allocation of Marks	Maximum Marks
A	Listening	30
В	Reading	20
С	Speaking	30
D	Writing	20
	Total	100

DETAILED ALLOCATION OF MARKS

Guidelines for Conduct of Practical Classes and Writing Record Note:

SI. No	Name of the exercise	Minimum Exercises to be Practiced / written in Record Note
Listening Skill		
1	Listening to Speeches by Great Speakers/ TV News	Each One exercise
2	Listening to Short Stories	Minimum of two exercises
3	Listening to Indian / British / American English	Minimum of two exercises
Reading Skill		
4	Reading Tongue Twisters	A list of 25 tongue twisters
5	Reading English Newspapers	Minimum 2 passages from any English Newspaper
6	Frequently mispronounced words	List of 25 words
Speaking Skill		
7	Making Polite Expressions	Polite expressions - Greeting, Requesting, Thanking, Apologizing, Opinions, Suggestions
8	Introducing oneself / friends/family	Minimum two exercises for introducing oneself and introducing others
9	Reciting quotes	Quotes of Leaders/Scholars/Scientists (List of 25 quotes)
10	Face to face conversation	Minimum two exercises
Writing Skill		
11	Use of Thought Fillers	A list of 25 frequently used thought fillers
12	Completing an Incomplete Story	Minimum of two exercises. (conclusion – minimum 3 lines, title & moral)
13	Non-Verbal Communication	A list of 10 questions and answers relating to non- verbal communication.

There are 13 experiments in total equally distributed to each skill as follows:

Notes:

- 1. Each experiment shall be awarded 20 marks and the total marks secured in all experiments shall be averaged to 20marks.
- 2. Attendance mark shall be calculated for 5 marks as per the given norms.
- 3. Total internal mark is 25 (Record 20 marks + Attendance 5 marks)
- 4. Observation note is not applicable for this practical.
- 5. Listening Skill Exercises:

For each exercise under Listening Skill, minimum exercise should be provided for practice and should be recorded in the record note.(as per the tabular column)

Open sources available online on the sites such as

www.youtube.com,

www.letstalk.co.in,

http://www.bbc.co.uk/learningenglish/english/features/6-minute-english, and

https://esl-lab.com/,

can be utilized for sessions on improving listening skill.

Note:

Since there is no observation note for English Communication Practical, the worksheets practiced by the students should be preserved along with the Record Note.

BOARD EXAMINATIONS

Model Question Paper

40001 – Communication Skill Practical

Time: 3Hrs Maximum marks:100

PART A: LISTENING (30 Marks)

I Answer the following:

- 1. Listen to the speech of a Great Speaker / TV News played to you and take notes. (10)
- 2. Listen to the Short Story / conversation read out / played to you and answer the questions.

(10)

(5)

3. Listen to the following American English / British English / Indian English Audio and fill in the blanks.(10)

PART B: READING (20 Marks)

II Answer of the following:

- 1. Read out the following tongue twisters as fast as possible:(10)
- a. Find a kind mind to wind and bind you with the kind mind like a wind.
- b. How many cookies could a good cook cook if a good cook could cook cookies?
- c. We should fight for our rights as fight is might.
- d. Can you can a can as a canner can can a can?
- e. Lesser leather never weathered wetter weather better.
- 2. Read the given newspaper passage with proper intonation. (5)
- 3. Pronounce the following commonly mispronounced words rightly. (5)

a)pizza b)dengue c) bury d)asthma e)Wednesday

PART C: SPEAKING (30Marks)

III. Answer the following:

- 1. Make polite expressions for the contexts provided:
- a. Request your teacher for a book.
- b. How will you politely apologize for coming late to the meeting?
- 2. Introduce yourself /friend/family member as a candidate appearing for the interview.(10)
- 3. Recite any five quotes of Leaders/scholars/Scientists. (5)

4. Attempt a face to face conversation with your friend about the addiction to mobile phone by youngsters.(5exchanges) (10)
PART D: WRITING (20 Marks)

IV. Answer the following:

1. Fill in the blanks with suitable thought fillers given in the brackets. (5)

(look, I mean, you know, well, anyway)

- a. I can't tell her name, _____, she may grow angry.
- b. ____What do you want me to do for that?

c. Nobody told me about this marriage, ______no one even in my own department.

- d. ___as I said, I'm going to talk to the manager to cancel this meeting.
- e. ____it is not the way to talk to your senior.

2. Complete the following story by adding three more lines and give a suitable title to it.(5)

Once upon a time there was a poor farmer in a village. He had two sons and a daughter. Both sons were lazy whereas the daughter was so intelligent. One day the father was sick at bed. The daughter who went to market in the morning did not return till late night....

3. Answer any FIVE of the following in about50 words: (5x2=10)

Questions from Non Verbal Communication

LABORATORY REQUIREMENT:

- 1. An echo-free room.
- 2. A Projector.
- 3. A minimum of two computers with internet access.
- 4. DVD player with home theatre.
- 5. P.A system with two nos. of wired/wireless mike.
- 6. Any Two Standard English Newspapers.
- 7. A White Board with Markers.
- 8. Comics / Story books 2 Nos

Blank Page

ANNEXURE-I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : All branches of Diploma in Engineering and Technology and Special Programmes except DMOP, HMCT and film &TV.
- Subject Code : 40002
- Semester : I Non-Circuit Branches

II Circuit Branches

Subject Title : COMPUTER APPLICATION PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

Number of weeks per semester: 16 weeks

Subject	Instr	uctions		Examinatio	'n	
	Hours /	Hours /		Marks		Duration
COMPUTER APPLICATION PRACTICAL	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
	2	32	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and will be reduced to 75 marks.

TOPICS AND ALLOCATION OF HOURS

UNIT	Contents	Time (Hrs.)
1	BASICS OF COMPUTER	5 Hrs.
2	WORD PROCESSING	9 Hrs.
3	SPREAD SHEET	9 Hrs.
4	PRESENTATION	9 Hrs.
	Total	32 Hrs.

40002 COMPUTER APPLICATIONS PRACTICAL

OBJECTIVES

To learn fundamentals of the computer

To understand documentation using word processor.

To understand the spread sheet and its uses.

To understand the presentation.

Contents: Practical

Units	Торіс	Hrs.
I	Basics of Computer: Computer Basics - Hardware & Software -	5
	General understanding of various computer hardware components -	
	CPU – Memory – Display – Keyboard- Mouse - HDD & Other	
	Peripheral Devices – Types of Software – Application Software &	
	System Software.	
II	Word Processing: Creating new document – Opening an existing	9
	document – Edit & Save a document – Typing a text – Deleting a	
	text – Inserting a text – Finding a text – Replacing a text – Copying &	
	Moving a text – Selecting Font & Font Size – Justifying Texts – Bold –	
	Italic – Underline – Strike – Double Strike – Coloring Text – Spell	
	Check – Ruler – Formatting Page – Line Spacing – Margins – Page	
	Size – Page Border – Page Color – Page Columns – Watermark –	
	Page Break – Section Break – Portrait – Landscape – Inserting	
	Symbols, Equations & Shapes – Text Box – Word Art – Hyperlink –	
	Inserting Pictures – Picture Arrangement - Align Objects – Bullets &	
	Numbering – Working with Tables – Header & Footer – Table of	
	Contents – Inserting Page Number – Changing Character width &	
	Line Spacing – Printing the document – Print Preview – Shortcuts for	
	various activities in Word – Exercises.	
	Spread sheet: Creating a new worksheet - Opening an existing	9
	worksheet - Editing and Saving a worksheet - Creating, Renaming	1
	and Deleting worksheets in a workbook - Types of data like Numeric,	l
	text etc Entering in a cell- Manipulation of a cell, row and column	l
	(deleting, inserting, finding, replacing, copying and moving) -	1

	Justifying in a cell, Merging cells and columns - Addition, Subtraction	
	and using formula - Selecting Font and Font Sizes - Using and	
	manipulating tables, inserting / deleting of rows and columns - Sorting	
	Columns- Using Header and footer, Inserting Page number -	
	Border and Shading of cells, rows and columns - Formatting page,	
	margins, page size, portrait and landscape - Selecting area for	
	printing, Printing of a worksheet and workbooks, Using print preview -	
	Copy / moving text between two different worksheets and workbooks	
	- Using Chart Wizard, Creation of different types of charts – Protect	
	sheet using password - Shortcuts for various activities in spreadsheet	
	– Exercises.	
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide Design - Presentation View - Adding Text - Font formatting - 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide Design - Presentation View - Adding Text - Font formatting - Paragraph formatting – Inserting Clipart & Pictures - Inserting and 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide Design - Presentation View - Adding Text - Font formatting - Paragraph formatting – Inserting Clipart & Pictures - Inserting and Manipulating Smart Art - Running a slide show Insert Slide Number 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide Design - Presentation View - Adding Text - Font formatting - Paragraph formatting – Inserting Clipart & Pictures - Inserting and Manipulating Smart Art - Running a slide show Insert Slide Number Slide Header & Footer - Applying Slide Animation – Custom 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide Design - Presentation View - Adding Text - Font formatting - Paragraph formatting – Inserting Clipart & Pictures - Inserting and Manipulating Smart Art - Running a slide show Insert Slide Number Slide Header & Footer - Applying Slide Animation – Custom Animation - Inserting Shapes - Insert Video & Sound - Insert Action - 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide Design - Presentation View - Adding Text - Font formatting - Paragraph formatting - Inserting Clipart & Pictures - Inserting and Manipulating Smart Art - Running a slide show Insert Slide Number Slide Header & Footer - Applying Slide Animation - Custom Animation - Inserting Shapes - Insert Video & Sound - Insert Action - Hyperlinks - Charts - Tables - Page Setup - Print Preview - Printing - 	9
IV	 Exercises. Presentations: Creating New Presentations - Opening Presentations Saving Presentation - Inserting new Slides - Slide Layout - Slide Design - Presentation View - Adding Text - Font formatting - Paragraph formatting – Inserting Clipart & Pictures - Inserting and Manipulating Smart Art - Running a slide show Insert Slide Number Slide Header & Footer - Applying Slide Animation – Custom Animation - Inserting Shapes - Insert Video & Sound - Insert Action - Hyperlinks - Charts - Tables – Page Setup - Print Preview - Printing - 	9

EXERCISES

EXERCISE 1 (WORD PROCESSING)

Prepare a report from the given printed document of minimum 250 words. (Use text formatting tools, header & footer, page number, line spacing, font & images)

Page Setup:

Set Margin: Left-1.5, Right-1.5, Top-1.5 & Bottom-1.5 / Orientation: Portrait / Paper Size: A4 / No. of Columns: 2

• Page Background Settings:

Watermark / Page Color / Page Borders

• <u>Text & Paragraph Settings:</u>

Title: Font size: 16 - Centered - Bold - Suitable font

Heading: Font size: 14 – Left Aligned – Underlined – Set the Suitable Font Face Body Text: Font size: 12 – Justified – 1.5 Line Spacing – Set the Suitable Font Face

• Header & Footer:

Header - Seminar Name, Name of the student, Reg. No. & Branch

Footer - Page No., Date and Time

• Insert:

Picture / Clipart / Shapes / Table.

• Minimum No. of Words: 250 words

EXERCISE 2 (WORD PROCESSING)

Create a resume for placement from the given printed template with your personal details. Publish a copy of the resume as PDF.

Page Setup:

Margin: Left-0.5, Right-0.5, Top-0.5 & Bottom-0.5 / Orientation: Portrait / Paper Size: A4 / No. of Columns: As per the given resume format.

• Page Borders:

Insert Page Border if required.

• Font & Paragraph:

Heading : Font size: 12 - Bold – Underlined – Set the Suitable Font Face

Body Text : Font size: 12 – Justified – 1 Line Spacing – Set the Suitable Font Face Insert Bullets & Numberings were ever required.

• Insert:

Photo for your Resume / Tables for Academic Records.

Save as PDF:

Publish a copy of the resume as PDF using any PDF Converting Tools.

EXERCISE 3 (WORD PROCESSING)

Create a standard covering letter and use mail merge to generate the customized letters for applying to a job in various organizations. Also, create a database and generate labels for the applying organizations.

Page Setup:

Margin: Left-1.5, Right-1.5, Top-1.5 & Bottom-1.5 / Orientation: Portrait / Paper Size: A4

Page Background:

Add Page Border for the Letter

Font & Paragraph:

Title: Font size: 16 - Centered - Bold - Suitable font

Heading: Font size: 14 - Left Aligned - Underlined - Set the Suitable Font Face

Body Text: Font size: 12 – Justified – 1.5 Line Spacing – Set the Suitable Font Face

• Mailings:

Select Recipients and add a New List of HR Database.

Start Mail Merge through Step by Step Mail merge wizard.

EXERCISE 4 (SPREAD SHEET)

Create a worksheet for the given relational data (minimum ten records) and show the data in the Line Chart, Bar Chart and Pie Chart.

10 Records

Add text to the spreadsheet to the various fields require to analyze the data in Chart

Font & Alignment

Font Face - Font Size - Font Color

• Formulae

Use Formulae for the selected data for Calculation

Insert

Charts – Line Chart, Bar Chart & Pie Chart

EXERCISE 5 (SPREAD SHEET)

Create a worksheet for the given data with various functions like Sum, Average, Count, Min, Max & Logical functions [IF, AND].

• <u>Data</u>

Create a Worksheet and Insert the various records to the cells.

• Formatting

Set the Font using Font Name, Font Size and with various Alignment tools.

• Formulas and Functions

Use some functions like Sum, Average, Count, Min, Max and Logical Functions. [IF, AND]

EXERCISE 6 (SPREAD SHEET)

Create a worksheet for the given data and analysis the data with various filters and conditional formatting.

- Data
- Formatting

Text: Font Face - Font Size - Font Color - Alignment

- Functions
- Conditional Formatting
- Filters

EXERCISE 7 (PRESENTATION)

Create a presentation of minimum 10 slides from engineering related topic.

Design & Layout

Add a suitable Theme and Layout according to the content of all 10 slides.

Header & Footer

Header: Insert the Title & Author

Footer : Insert the Date & Slide Number

• Font & Paragraph

Font Face - Font Size - Font Color - Alignment - Bullets & Numberings

• Insert

Images & Tables

EXERCISE 8 (PRESENTATION)

Create a presentation of 10 slides about your college with Slide & Custom Animation, Shapes, Header & Footer, Slide number, Video, Audio, Picture, Tables and Hyperlink between slides.

Design & Layout

Add a suitable Theme and Layout according to the content of all 10 slides.

Header & Footer

Header: Insert the Title & Author

Footer : Insert the Date & Slide Number

• Font & Paragraph

Font Face - Font Size - Font Color - Alignment - Bullets & Numberings

• Insert

Video / Audio / Tables / Shapes

Hyperlink

Use hyperlink to link between slides.

<u>Animation</u>

Custom Animation for individual Objects / Slide Transition to all slides Custom Animation for individual Objects / Slide Transition to all slides

40002 Computer Application Practical BOARD PRACTICAL EXAMINATIONS

Note:

- 1. The student should be given proper training in all the exercises. All the exercises should be completed before the examinations.
- 2. The student should maintain observation note book / manual and record notebook. The record note book should be submitted during the Board Practical Examinations. Common printout for the record note book should not be allowed. Individual student output for every exercise should be kept in the record note book.
- 3. All exercises should be given in the question paper and student is allowed to select any one by lot. All exercises with the hard copy of the template related to the exercise should be provided by the external examiner for the examination. Template can be varied for every batch.
- 4. The external examiner should verify the availability of the infrastructure for the batch strength before the commencement of Practical Examination.

DETAILED MARK ALLOCATION

	Description	Marks Awarded
A	Aim & Procedure	20
В	Execution *	50
С	Output Printout / Handout ^	20
D	Vivavoce	10
	Total Marks	100

* Should be evaluated during the execution by the examiners only.

[^] Students all actual output should be printed and submitted with the exam paper for evaluation.

Hardware and Software Requirements

Minimum Hardware Requirements:

Desktop Computers – 30Nos

Processor: 1 GHz, RAM: 1 GB, Hard Drive: 500 GB, Monitor: 15", Keyboard & Mouse, other accessories

Overhead Projector: 1 No.

Laser Printer: 1 No.

Minimum Software Requirements:

Operating System: Any GUI Operating System

Office Package (Open Office Packages)

ANNEXURE- I STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020-2021 onwards)

- Course Name : All branches of Diploma in Engineering and Technology and Special Programmes except DMOP, HMCT and film & TV.
- Subject Code : 40006
- Semester : I and II

Subject Title : ENGINEERING PHYSICS PRACTICAL

	Instru	uctions		Examinatio	on	
Subject				Marks		
	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
ISEMESTER ENGINEERING PHYSICS I PRACTICAL	2	32	25	100*	100	2 Hro
II SEMESTER ENGINEERING PHYSICS II PRACTICAL	2	32	25	100*	100	υ HIS.

TEACHING AND SCHEME OF EXAMINATION

* Examinations will be conducted for 100 marks and will be reduced to 75 marks.

RATIONALE:

In Diploma level engineering education skill development plays a vital role. The skill development can be achieved by on hand experience in handling various instruments, apparatus and equipment. This is accomplished by doing engineering related experiments in practical classes in various laboratories.

GUIDELINES:

- All the first eight experiments should be completed in the First Semester and the remaining Eight experiments should be completed in the Second Semester. All the experiments should be given for the practical examination at the end of the Year.
- In order to develop best skills in handling Instruments / Equipment and taking readings in the practical classes, every two students should be provided with a

separate experimental setup for doing experiments in the laboratory.

 The external examiners are requested to ensure that a single experimental question should not be given to more than two students while admitting a batch of 30 students during Board Examinations.

I SEMESTER

ENGINEERING PHYSICS - I PRACTICAL

LIST OF EXPERIMENTS WITH OBJECTIVES:

1. MICROMETER (SCREW GAUGE).

To measure the thickness of the given irregular glass plate using micrometer. To determine the area of the glass plate using a graph sheet and to calculate the volume of the glass plate.

2. VERNIER CALIPERS.

To measure the length and diameter of the given solid cylinder using Vernier calipers and to calculate the volume of the solid cylinder.

3. PARALLELOGRAM LAW.

To verify the parallelogram law using concurrent force.

4. LAMI'S THEOREM

To verify Lami's theorem using concurrent forces.

5. COMPARISON OF VISCOSITIES

To compare the co-efficient of viscosities of two low viscous Liquids by capillary flow method.

6. STOKES' METHOD.

To determine the coefficient of viscosity of a highly viscous liquid.

7. SONOMETER.

To determine the frequency of the given tuning fork.

8. DEFLECTION MAGNETOMETER

To compare the magnetic moments of the two bar magnets using Deflection Magnetometer in Tan A position, by equal distance method.

II SEMESTER ENGINEERING PHYSICS-II PRACTICAL

LIST OF EXPERIMENTS WITH OBJECTIVES:

9. REFRACTIVE INDEX

To determine the refractive index of a transparent liquid (water) using travelling Microscope.

10. SPECTROMETER.

To measure the angle of the prism using Spectrometer.

11. SOLAR CELL.

To draw the V – I characteristics of the solar cell.

12. LAWS OF RESISTANCES.

To verify the laws of resistances by connecting the two given standard resistances

in series and parallel, using Ohm's law.

13.JOULE'S CALORIMETER.

To determine the specific heat capacity of water.

14. COPPER VOLTAMETER.

To determine the electro chemical equivalent (e.c.e.) of copper.

15. P-N JUNCTION DIODE.

To draw the voltage – current characteristics in forward bias and to find the 'dynamic Forward resistance' & 'knee voltage' from the graph.

16. LOGIC GATES.

To find the output conditions for different combinations of the input for NOT gate and 2 inputs AND, OR, NAND & NOR logic gates, using IC chips. (IC 7404 –NOT Gate,IC 7408 – AND Gate, IC 7432 – OR gate, IC 7400 – NAND Gate,IC 7402 – NOR Gate).

BOARD PRACTICAL EXAMINATIONS

Note:

- The students should be given proper practice in all the experiments. All the experiments should be completed before the examinations.
- The students should maintain observation note book / manual and record notebook. In the observation, the student should draw diagram, mention the readings / observations, calculations and result manually. The same have to be evaluated for the observation mark.
- The record note book should be submitted during the Board Practical Examinations. The record work for the experiments should be completed and evaluated in the respective semesters.
- All experiments should be given and the students are allowed to select any one by lot.
- The external examiner should verify the availability of the infrastructure for the batch strength before the commencement of Practical Examination.
- The examiners should ensure the proper safety measures before the commencement of practical examinations.

	Description	Detailed Allocation
А	Formula & Diagram	20
В	Tabulation with proper units	10
С	Observation (including taking readings)	40
D	Calculation	15
Е	Result	10
F	Vivavoce	5
	Total Marks	100

DETAILED MARK ALLOCATION

LIST OF EQUIPMENTS

Minimum Two set of equipment / components are required for the Batch of 30 Students.

1. MICROMETER (SCREW GAUGE).

Screw gauge, graph sheet and irregular glass plate.

2. VERNIER CALIPERS.

Vernier Calipers and Solid Cylinder

3. PARALLELOGRAM LAW.

Vertical drawing board, two Z pulleys, three sets of slotted weights (5 x 50g) and twine thread.

4. LAMI'S THEOREM

Vertical drawing board, two Z pulleys, three sets of slotted weights (5 x 50g) and twine thread.

5. COMPARISON OF VISCOSITIES

Burette stand, graduated burette without stopper, rubber tube, capillary Tube, beaker, digital stop watch, two liquids and funnel.

6. STOKES' METHOD.

Stokes' Apparatus, highly viscous liquid (Castrol oil), glass beads of different radii, digital stop watch and screw gauge.

7. SONOMETER.

Sonometer, screw gauge, tuning fork, rubber hammer, slotted weight hanger set (5 \times 0.5kg) and paper rider.

8. DEFLECTION MAGNETOMETER

Deflection Magnetometer, meter scale and two bar magnets

9. REFRACTIVE INDEX

Travelling Microscope, Beaker with transparent liquid and Saw dust.

10. SPECTROMETER.

Spectrometer, Sodium vapour lamp, Reading lens and Glass prism

11. SOLAR CELL.

Solar cell Kit for drawing the V - I characteristics

- 12. LAWS OF RESISTANCES. Battery Eliminator, key, rheostat, ammeter, voltmeter, Connecting wires and two known standard resistances.
- 13. JOULE'S CALORIMETER. Joule's Calorimeter, Battery eliminator, Rheostat, Key, Ammeter, voltmeter, stop clock, thermometer, digital Balance and connecting wires.
- 14. COPPER VOLTAMETER. Copper Voltameter, Battery eliminator, Rheostat, Key, Ammeter, stop clock, digital

balance, emery sheet and Connecting wires.

15. P-N JUNCTION DIODE.

P-N Junction Diode forward characteristics kit.

16. LOGIC GATES.

Logic gates testing apparatus kit with bread board for Mounting ICs and Integrated circuit chips (IC 7404 –NOT Gate, IC 7408 – AND Gate, IC 7432 – OR gate, IC 7400 –NAND Gate, IC 7402 – NOR Gate)

40006 ENGINEERING PHYSICS PRACTICAL MODEL QUESTION PAPER

All experiments should be given for examination and the students are allowed to select any one by lot.

- 1. Measure the thickness of the given irregular glass plate using micrometer. Determine the area of the glass plate using a graph sheet and calculate the volume of the glass plate.
- 2. Measure the length and diameter of the given solid cylinder using Vernier calipers and then calculates the volume of the solid cylinder.
- 3. Verify the parallelogram law of forces using concurrent forces.
- 4. Verify the Lami's theorem using concurrent forces.
- 5. Compare the coefficient of viscosity of two Liquids by capillary flow method, using graduated burette.
- 6. Determine the coefficient of viscosity of a highly viscous liquid by Stokes' method.
- 7. Determine the frequency of the given tuning fork using Sonometer.
- 8. Compare the magnetic moments of the two bar magnets using deflection magnetometer in Tan-A position, by equal distance method.
- 9. Determine the refractive index of the given transparent liquid using travelling Microscope.
- 10. Measure the angle of the prism using Spectrometer.
- 11. Draw the V I characteristics of the solar cell.
- 12. Verify the laws of resistances by connecting the two given standard resistances in(i) series and (ii) in parallel, using Ohm's law.
- 13. Determine the specific heat capacity of water, using Joule's calorimeter.
- 14. Determine the electro chemical equivalent (e.c.e.) of copper using Copper Voltameter.
- 15. Draw the voltage current characteristics of a P-N junction diode in forward bias and then find the 'dynamic forward resistance' & 'knee voltage' from the graph.
- 16. Find the output conditions for different combinations of the input for NOT gate and two inputs AND, OR, NAND & NOR logic gates using IC chips.

ANNEXURE- I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020-2021 onwards)

- Course Name : All branches of Diploma in Engineering and Technology and Special Programmes except DMOP, HMCT and film &TV.
- Subject Code : 40007
- Semester : I and II

Subject Title : ENGINEERING CHEMISTRY PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	uctions		Examination	า	
Subiect				Marks		
	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
I SEMESTER ENGINEERING CHEMISTRY I PRACTICAL	2	32	25	100*	100	2 Ыға
II SEMESTER ENGINEERING CHEMISTRY II PRACTICAL	2	32	23	100	100	5 115.

* Examinations will be conducted for 100 marks and will be reduced to 75 marks.

OBJECTIVES:

- 1. At the end of the program the student will have knowledge about volumetric analysis in acidimetric, alkalimetric and permanganometric titration and their applications.
- 2. To get knowledge of estimation of total hardness, temporary and permanent hardness in the hard water sample.
- 3. To get knowledge about measurement of TDS, pH and to calculate Hydrogen ion concentration in a solution.
- 4. To get knowledge of estimation of dissolved chlorine in a water sample.

I SEMESTER

ENGINEERING CHEMISTRY – I PRACTICAL

Intellectual Skills

1. Carrying out Volumetric titrations and calculation of masses

2. Knowing units for Concentrations of solutions

Motor Skills

- 1. Measure quantities accurately
- 2. Observe chemical reactions
- 3.Handle the apparatus carefully

EXPERIMENTS

i) Acidimetry and Alkalimetry

- 1.Estimate the amount of sulphuric acid present in ml of a given solution using Standard solution of HCl of strength.....N and an approximately decinormal solution of NaOH.
- 2.Estimate the amount of NaOH present inml the given solution using a standard solution of KOH of strengthN and approximately decinormal solution of H₂SO₄
- 3.Compare of strength of two given hydrochloric acids and estimate the stronger/weaker solution present inml using a standard solution of sodium hydroxide of strengthN

ii) Permanganometry

- 4.Estimation of the amount of Mohr salt present in.....ml of the given solution using a standard solution of ferrous sulphate of strengthN and an approximately decinormal solution of KMnO₄.
- 5.Estimation of the amount of Fe 2+ present in.....ml of the given solution using a standard solution of ferrous ammonium sulphate of strengthN and an approximately decinormal solution of KMnO₄.
- 6.Compare of strength of two given KMnO4 solution and estimate the stronger/weaker solution present inml using a standard solution of ferrous ammonium sulphate of strengthN

iii) Water Analysis

- 7.Water analysis for residual chlorine
- 8.Estimation of total hardness of a sample using EDTA
- 9.Water quality testing, pH (3 sample)
- 10. Water quality testing TDS (3 sample)

Determination of pH and TDS using a pH meter and TDS meter respectively and calculation of hydrogen ion Concentrations (For three given samples, one of the samples brought from home by each student) (This question must be given to any two students per batch in the Board Examination).

II SEMESTER

ENGINEERING CHEMISTRY-II PRACTICAL

Intellectual Skills

- 1. Studying the effect of heating on substances and reagents
- 2. Study of the reactions of the following radicals leading to qualitative analysis of the given Inorganic simple salt soluble in water or dilute acids
- 3. Studying the harmful effects of effluents

Acid Radicals:	Carbonate, Chloride, Nitrate and Sulphate
Basic Radicals:	Lead, Copper, Aluminium, ferrous iron, Zinc, Barium, Calcium,
	Magnesium and Ammonium

Motor Skills

- 1. Handling the apparatus carefully
- 2. Awareness on Industrial safety

EXPERIMENTS

I. Analysis of Inorganic simple salt (QUALITATIVE ANALYSIS)

Analysis of nine inorganic simple salts containing any one acid radical and basic radical without omitting any of the above – mentioned radicals.

II. Analysis of Effluent containing Lead, Copper and Zinc metal ions (EFFLUENT ANALYSIS)

Analysis of three effluents, each containing the above – mentioned metal ions. Report on the metallic pollutant with procedure (Basic Radical Analysis Procedure) and their harmful effects.

BOARD PRACTICAL EXAMINATIONS

Note:

- The students should be given proper practice in all the experiments. All the experiments should be completed before the examinations.
- The students should maintain observation note book / manual and record notebook. In the observation, the student should draw diagram, mention the readings / observations, calculations and result manually. The same have to be evaluated for the observation mark.
- The record note book should be submitted during the Board Practical Examinations. The record work for the experiments in the concerned semester should be completed and evaluated in the respective semesters. Both Volumetric and Salt analysis shall be recorded in the in the same record note book. During the completion of First semester, Volumetric analysis needs to be completed and record needs to be submitted. The second semester, Salt analysis also be recorded in the same record note book.
- All experiments should be given as per the model question paper and the students are allowed to select any one by lot.
- The external examiner should verify the availability of the infrastructure for the batch strength before the commencement of Practical Examination.
- The examiners should ensure the proper safety measures as per the guidelines before the commencement of practical examinations.

	Description	Detailed
	-	Allocation
A	PART A Engineering Chemistry I Practical	53
В	PART B Engineering Chemistry II Practical	42
С	VIVAVOCE	05
	Total Marks	100

DETAILED MARK ALLOCATION

Guide lines for Evaluation

PART A: ENGINEERING CHEMISTRY I PRACTICAL

Volumetric Analysis - Distribution of Marks

FOR	MARKS
Short procedure	5
Titration I	18
Titration II	18
Calculations (3 X 4)	12
Total	53
Volumetric Analysis	
Titration value accuracy for Titration I a	nd ll
Accuracy	Marks
±0.2ml	18
above ±0.2 ml to ±0.4 ml	15
above ±0.4 ml to ±0.6 ml	12
above ±0.6 ml	5

Determination of pH: Distribution of marks

FOR	Marks
Answer for short questions on pH and TDS	5
Determination of pH of three samples (3 x 7)	21
Calculation of H ⁺ (3X2)	6
Determination of TDS - three samples (3X7)	21
Total	53
Accuracy per pH value	
Δοςμιταςν	Marks
Accuracy	Marks
±0.2	7
±0.2 above ±0.2 to ±0.4	7 5
$\begin{array}{c} \pm 0.2 \\ above \pm 0.2 \text{ to } \pm 0.4 \\ above \pm 0.4 \end{array}$	7 5 2
±0.2 above ±0.2 to ±0.4 above ±0.4 TDS Value accuracy	7 5 2
±0.2 above ±0.2 to ±0.4 above ±0.4 TDS Value accuracy Accuracy	7 5 2 Marks
±0.2 above ±0.2 to ±0.4 above ±0.4 TDS Value accuracy Accuracy ±2%	7 5 2 Marks 7
±0.2 above ±0.2 to ±0.4 above ±0.4 TDS Value accuracy Accuracy ±2% above ±2% to ±4%	Marks 7 5 2 Marks 7 5

Note: All the students should be given same question and each batch of student is given different inorganic simple salt and effluent. (Nine salt and three effluents)

PART B: ENGINEERING CHEMISTRY II PRACTICAL

Qualitative Analysis

FOR	Marks	
Identification Procedure of Acid Radical with Systematic procedure	21	
Identification Procedure of Basic Radical with Systematic procedure	21	
TOTAL	42	
Without systematic procedure		
Identification of Acid Radical with confirmatory test only	13	
Identification of Basic Radical with confirmatory test only	13	
Mere Spotting of Acid Radical and Basic Radical (3+3)	6	

EFFLUENT ANALYSIS (two samples to be given)

FOR	Marks
Identification of metallic pollutant procedure with systematic procedure Effluent sample	16
Harmful effects of metallic pollutant	5
Identification of metallic pollutant procedure with systematic procedure Effluent sample II	16
Harmful effects of metallic pollutant	5
TOTAL	42
Without systematic procedure	•
Group Identification Tests of metallic pollutant	13
Confirmatory Test of metallic pollutant	13
Mere Spotting of the pollutant (3+3)	6

MODEL QUESTION PAPER

MODEL1

PART A:

Estimate the mass of Iron present in whole of the given ferrous sulphate solution using a standard solution of ferrous ammonium sulphate of strength 0.1N and an approximately decinormal solution of potassium permanganate. (53marks)

PART B:

Analyse the given Inorganic simple salt and report the acid radical and basic radical present in it. (42 marks)

MODEL2

PART A:

Calculate the total hardness of the given sample of water using a standard hard water solution of molarity 0.01M and an approximately decimolar solution of EDTA. (53marks)

PART B:

Analyse the given samples (two samples) of effluent and report the metallic pollutant present in it with procedure and its harmful effects. (42 marks)

MODEL3

PART A:

Determine the pH of three given samples using pH meter and calculate the hydrogen ion concentration of the samples determine the TDS of the same sample. (Any two students per batch). (53marks)

PART B:

Analyse the given Inorganic simple salt and report the acid radical and basic radical present in it. (42marks)

MODEL4

PART A:

Estimate the amount of sulphuricacid present in the whole of the given sulphuric acid using a standard solution of hydrochloric acid of strength 0.1N and an approximately decinormal solution of sodium hydroxide. (53 marks)

PART B:

Analyse the given Inorganic simple salt and report the acid radical and basic radical present in it. (42marks)

Note:

Determination of pH using a pH meter and calculation of hydrogen ion concentrations in the solutions and TDS using TDS meter (For three given samples) (This question may be given to any two students per batch).

A single experiment with different skill value may be given for a batch. The eighth experiment (Determination of pH) may be given to any two students per batch.

SAFETY MEASURES (DO'S & DON'TS)

Experiment should be carried out with the supervision of Lab instructor / staff i/c.

- Do not enter into the Laboratory without proper supervision.
- Do wear protective equipment for eye protection and make sure to wear a laboratory coat.
- Do not smell, inhale taste of chemicals.
- Do label all containers with chemicals
- Do avoid direct contact with chemicals, far from your hands face, clothes and shoes.
- Do not use Hazardous chemical without proper directions
- Do Use separate cabinets for acid solutions with concentration more than 6M.
- Whenever, accidentally when concentrated acids fallen on hands / cloth wash thoroughly with running water, and after taking first aid, and the student may be taken to hospital.
- Do attach chemical labels with all necessary information to all containers.
- Do read the warning labels when opening newly received reagent chemicals. This will help to be aware of any special storage precautions such as refrigeration or inert atmosphere storage.
- Do periodic check on chemical containers for rust, corrosion and leakage.
- Do Store bottles in chemicals afe bags especially those hazardous and moisture absorbing chemicals.
- Do not use of mouth suction to fill a pipette. Use a pipette bulb or other filling devices.
- Do not Smoke, drink, eat and the application of cosmetics is forbidden in areas where hazardous chemicals are used or stored.
- Do use chemicals with adequate ventilation.
- Do wash thoroughly with soap and water whenever you leave the lab after handling any chemicals.
- Do Keep your hands and face clean free from any trace of chemicals.
- Do not play with chemicals.

List of Apparatus to be provided for each student in Chemistry Laboratory during the Engineering Chemistry –I&II Practical Classes / Board Examination in addition to the required reagents:

LIST OF EQUIPMENTS

List of Equipment Required for a Batch of 30 Students

Non-Consumable Items

SI. No.	Name of the item	Quantity
1	LPG Connection	
2	Exhaust Fan (High Capacity)	Sufficient Nos.
3	Fire Extinguisher	1
4	First Aid Box (Full Set)	2
5	Safety Chart	1
6	Chemical Balance	1
7	Fractional Weight Box	1
8	pH Meter	2
9	TDS meter	2
10	Working Table with all accessories	8

GLASSWARE AND OTHER ITEMS

SI.	Name of the item	Quantity
No.	Name of the item	Quantity
1	Burette(50ml)	35
2	Burette Stand	35
3	Pipette(20ml) (With safety bulb)	35
4	Pipette(10ml)	35
5	Conical Flask(250ml)	35
6	Funnel (3")	50
7	Porcelain Tile	35
8	Measuring Cylinder (10 ml)	5
9	Measuring Cylinder (1000 ml)	2
10	Reagent Bottle (White) (250ml)	60
11	Reagent Bottle (White) (125ml)	100
12	Reagent Bottle (Amber)(250ml)	80
13	Test Tube(15mmx1.5mm)	1000
14	Test Tube(15mmx2.5mm)	500
15	Test Tube Stand	35
16	Test Tube Holder	35
17	Test Tube cleaning brush	35

18	Glass Trough	5
19	Beaker(100ml)	35
20	Glass Rod(15cm)	100
21	Watch Glass (3")	35
22	Wash Bottle (Polythene)	35
23	Nickel Spatula	35
24	Bunsen Burner for Gas connection	35
25	Plastic Bucket(15L)	10
26	Filter Papers (Round)	Sufficient
27	Pipette bulb / filling devices	35

DIPLOMA IN ENGINEERING AND TECHNOLOGY

1010, 2010 & 3010 DIPLOMA IN CIVIL ENGINEERING

SEMESTER PATTERN

N - SCHEME

IMPLEMENTED FROM 2020-2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMIL NADU Blank page

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING AND TECHNOLOGY SYLLABUS (II & III YEAR) N- SCHEME

(To be implemented for the students from the year 2020-21 onwards)

Syllabus Revision Committee

Chairperson

Tmt. G.Laxmi Priya, I.A.S.,

Director of Technical Education Directorate of Technical Education Chennai – 600025

Co-ordinator & Convener

Dr.V.Karthikeyan, M.E., Ph.D., MCMI(UK)., FIE.,

Principal, Thiagarajar Polytechnic College Salem-636005

DIPLOMA IN CIVIL ENGINEERING (1010, 2010 & 3010)			
Merr	ibers		
Thiru.S.Loganathan, M.E., HoD/Civil, Thiagarajar Polytechnic College, Salem-636 005.	Dr. M. Geetha , Ph.D., Principal CSI Polytechnic College, Salem-636 007.		
Dr. T. Arulkumar, Ph.D., HoD/Civil Government Polytechnic College, Dr.R.K.Nagar, Chennai - 600 081 Tmt.N.Sivakami, M.E., Lecturer (SG)/Civil Algappa Polytechnic College Karaikudi - 630 004.	Tmt.S. Santhi, M.E., Lecturer (Sr.G.)/ Civil AMK Technological Polytechnic College, Chennai-600 123 Thiru. N.G. Muralidharan, B.E., Chief Executive Officer M/s. Westart Communication India Pvt. Ltd., No. 15 & 17, Lalith Towers		
	3 rd Floor, Alandur,Chennai - 600 016		
Thiru.P.Raja, M.E., Assistant Executive Engineer Public Works Department Building Construction and Maintenance Division-Medical Works Salem - 636 007.	Dr.D.Shoba Rajkumar, Ph.D., Professor & Head of Department/Civil Government College of Engineering Salem - 636 011.		

Blank Page

DIPLOMA COURSES IN ENGINEERING/TECHNOLOGY

(SEMESTER SYSTEM)

N — SCHEME

(Implemented from 2020 - 2021)

<u>REGULATIONS</u>*

*Applicable to the Diploma Courses other than Diploma in Hotel Management & Catering Technology.

1. Description of the Course:

a. Full Time (3 years)

The Course for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 semesters* and the First Year is common to all Engineering Branches.

b. Sandwich (3½ years)

The Course for the Sandwich Diploma in Engineering shall extend over a period of three and half academic years, consisting of 7 semesters* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience.

During 4th and/or during 7th semester the students undergo industrial training for six months / one year. Industrial training examination will be conducted after completion of every 6 months of industrial training.

c. Part Time (4 years)

The course for the Part Time Diploma in Engineering shall extend over a period of 4 academic years containing of 8 semesters^{*}. The subjects of 3 years full time diploma courses being regrouped for academic convenience.

* Each Semester will have 16 weeks duration of study with 35 hrs. / Week for Regular Diploma Courses and 18 hrs. / Week for Part Time Diploma Courses. The Curriculum for all the 6 Semesters of Diploma courses (Engineering & Special Diploma Courses viz. Textile Technology, Leather Technology, Printing Technology, Chemical Technology etc.) have been revised and revised curriculum is applicable for the candidates admitted from 2020 — 2021 academic year onwards.

2. Conditions for Admission:

Condition for admission to the Diploma courses shall be required to have passed in The S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.

(Or)

The Anglo Indian High School Examination with eligibility for Higher Secondary Course in Tamil Nadu.

(Or)

The Matriculation Examination of Tamil Nadu.

(Or)

Any other Examinations recognized as equivalent to the above by the Board of Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

3. Admission to Second year (Lateral Entry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for University Courses of study or equivalent examination & Should have studied the following subjects.

A pass in 2 Years ITI with appropriate Trade or Equivalent examination.

		H.Sc Academic	H.Sc Vocational		Industrial
CI	Courses	Cubicato	Subjects Studied		Training
No.	Courses	Courses Subjects		Vocational	Institutes
INU		Studied	subjects	subjects	Courses
1	All the Regular and Sandwich Diploma Courses	Physics and Chemistry as compulsory along with Mathematics / Biology	Maths / Physics / Chemistry	Related Vocational Subjects Theory& Practical	2 years course to be passed with appropriate Trade
0	Diploma Course in	English & Accountancy	English & Accountancy,	Accountancy & Auditing,	
2	Commercial Practice	English & Elements of Economics	English & Elements of	Banking,	
			Economics, English &	Business Management,	
		English & Elements of Commerce	Management Principles & Techniques,	Co-operative Management, International Trade,	
				Marketing & Salesmanship,	
			English & Typewriting	Insurance & Material Management,	
				Office Secretaryship	

- For the Diploma Courses related with Engineering/Technology, the related/equivalent subjects prescribed along with Practicals may also be taken for arriving the eligibility.
- Branch will be allotted according to merit through counseling by the respective Principal as per communal reservation.
- For admission to the Textile Technology, Leather Technology, Printing Technology, Chemical Technology and Commercial Practice Diploma courses the candidates studied the related subjects will be given first preference.

- Candidates who have studied Commerce Subjects are not eligible for Engineering Diploma Courses.
 - 4. Age Limit: No Age limit.
 - 5. Medium of Instruction: English

6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3 academic years in any institution affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and two years if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Courses are as given below:

Diploma Course	Minimum	Maximum
Dipionia Course	Period	Period
Full Time	3 Years	6 Years
Full Time	2 Vears	5 Vears
(Lateral Entry)	2 10013	5 16415
Sandwich	3 ¹ ⁄ ₂ Years	6 ¹ / ₂ Years
Part Time	4 Years	7 Years

This will come into effect from N Scheme onwards i.e. from the academic year 2020-2021.

7. Subjects of Study and Curriculum outline:

The subjects of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical subjects.

The curriculum outline is given in Annexure — I.

8. Examinations:

Board Examinations in all subjects of all the semesters under the scheme of examinations will be conducted at the end of each semester.

The internal assessment marks for all the subjects will be awarded on the basis of continuous internal assessment earned during the semester concerned. For each subject 25 marks are allotted for internal assessment. Board Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks.

9. Continuous Internal Assessment:

A. For Theory Subjects:

The Internal Assessment marks for a total of 25 marks, which are to be distributed as follows:

i) Subject Attendance

5 Marks

(Award of marks for subject attendance to each subject Theory/Practical will be as per the range given below)

80%	-	83%	1 Mark
84%	-	87%	2 Marks
88%	-	91%	3 Marks
92%	-	95%	4 Marks
96%	-	100%	5 Marks

ii) Test

10 Marks

2 Tests each of 2 hours duration for a total of 50 marks are to be conducted. Average of these two test marks will be taken and the marks to be reduced to: 5 Marks The Test-III is to be the Model Examination covering all the five units and the marks

obtained will be reduced to: 5 Marks

TEST	UNITS	WH EN TO CONDUCT	MARKS	DURATION
Test I	Unit _ I & II	End of 6 th week	50	2 Hrs
Test II	Unit _ III & IV	End of 12 th week	50	2 Hrs
Test III	Model Examination: Covering all the Units. (Board Examinations- question paper- pattern).	End of 16 th week	100	3 Hrs

From the Academic Year 2020—2021 onwards.

Question Paper Pattern for the Test - I and Test — II is as follows. The tests should be conducted by proper schedule. Retest marks should not be considered for internal assessment.

Without Choice:

iii) Assianment		5 Marks
	Total	50 Marks
Part C Type questions:	2 Questions x 15 marks	30 Marks
Part B Type questions:	7 Questions x 2 marks	14 Marks
Part A Type questions:	6 Questions x 1 mark	06 Marks

For each subject Three Assignments are to be given each for 20 marks and the average marks scored should be reduced for 5 marks.

iv) Seminar Presentation

5 Marks

The students have to select the topics either from their subjects or general subjects which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation. For the Third Year, the students should present the seminar individually.) The seminar presentation is mandatory for all theory subjects and carries 5 marks for each theory subject. The respective subject faculty may suggest topics to the students and will evaluate the submitted materials and seminar presentation. (2½ marks for the material submitted in writing and 2½ marks for the seminar presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 5 marks.
All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for one semester after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection/verification.

B. For Practical Subjects:

The Internal Assessment mark for a total of 25 marks which are to be distributed as follows:-

- a) Attendance : 5 Marks (Award of marks as theory subjects)
- b) Procedure/ observation and tabulation/ Other Practical related Work : 10 Marks
 c) Record writing : 10 Marks
 TOTAL : 25 Marks
- All the Experiments/Exercises indicated in the syllabus should be completed and the same to be given for final Board examination.
- The observation note book / manual should be maintained for 10 marks. The
 observation note book / manual with sketches, circuits, programme, reading and
 calculation written by the students manually depends upon the practical subject
 during practical classes should be evaluated properly during the practical class hours
 with date.
- The Record work for every completed exercise should be submitted in the subsequent practical classes and marks should be awarded for 10 marks for each exercise as per the above allocation.
- At the end of the Semester, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks awarded tor attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)

• Only regular students, appearing first time have to submit the duly signed bonafide record note book/file during the Practical Board Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Log Book of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Log Book of the staff, who is handling the practical subject.

10. Communication Skill Practical, Computer Application Practical and Physical Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase the Communication skill and ICT skill of students.

As per the recommendation of MHRD and under Fit India scheme, the Physical education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

11. Project Work and Internship:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work & Internship: Project Review 1 : 10 marks Project Review II : 10 marks Attendance : 05 marks (Award of marks same as theory subject pattern)

TOTAL	:	25 Marks	
			 _

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work & Internship in Board Examinations:

Demonstration/Presentation/Viva voce	:	25 marks
Report	:	25 marks
Writtent test	:	30 marks
Internship Report	:	20 marks

TOTAL	:	100* marks	

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Board examination.

12. Scheme of Examinations:

The Scheme of examinations for subjects is given in Annexure - II.

13. Criteria for Pass:

- No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
- 2. A candidate shall be declared to have passed the examination in a subject if he/she secures not less than 40% in Theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Board Examinations marks put together, subject to the condition that he/she secures at least a minimum of 40 marks out of 100 marks in the Board Theory Examinations and a minimum of 50 marks out of 100 marks in the Board Practical Examinations.

14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2023 onwards (Joined first year in 2020 -2021) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the subjects and passes all the semesters in the first appearance itself and passes all subjects within the stipulated period of study 2 / 3 / 3½ / 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate marks in all the semesters put together and passes all the semesters except the I and II semester in the first appearance itself and passes all subjects within the stipulated period of study 2 / 3 / 3½ / 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class:

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all the semesters put together and passes all the subjects within the stipulated period of study $2 / 3 / 3\frac{1}{2} / 4$ years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

Second Class:

All other successful candidates will be declared to have passed in Second Class.

The above classifications are also applicable for the Sandwich / Part-Time students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 -2021)

15. Duration of a period in the Class Time Table:

The duration of each period of instruction is 1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

<u>Blank page</u>

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1010 : DIPLOMA IN CIVIL ENGINEERING SYLLABUS N- SCHEME

(To be implemented for the students from the year 2020-21 onwards) CURRICULUM OUTLINE

THIRD SEMESTER (FULL TIME)

Subject	Subject Name	Hours Per Week					
Code	Subject Name	Theory	Drawing	Practical	Total		
4010310	Mechanics of Solids	6	-	-	6		
4010320	Construction Materials and	5	-	-	5		
	Construction Practice						
4010330	Surveying	6	-	-	6		
4010340	Building Planning and Drawing	-	4	-	4		
4010350	Civil Engineering Drawing and	-	-	4	4		
	CAD Practical – I						
4010360	Material Testing Laboratory– I	-	-	3	3		
4010370	Surveying Practice –I	-	-	4	4		
Co- curricular	Physical Education	-	-	-	2		
activities	Library	-	-	-	1		
	TOTAL	17	4	11	35		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1010 : DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards) CURRICULUM OUTLINE

FOURTH SEMESTER (FULL TIME)

Subject Subject Name		Hours Per Week				
Code	Subject Name	Theory	Drawing	Practical	Total	
4010410	Theory of Structures	6	-	-	6	
4010420	Hydraulics	6	-	-	6	
4010430	Transportation Engineering	5	-	-	5	
4010440	Hydraulics Laboratory	-	-	4	4	
4010450	Material Testing Laboratory–II	-	-	3	3	
4010460	Construction Practice Laboratory	-	-	4	4	
4010470	Surveying Practice –II	-	-	4	4	
Co- curricular	Physical Education	-	-	-	2	
activities	Library	-	-	-	1	
	TOTAL	17	-	15	35	

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1010 : DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

CURRICULUM OUTLINE

FIFTH SEMESTER (FULL TIME)

Subject	Subject Name	Hours Per Week					
Code	Subject Name	Theory	Drawing	Practical	Total		
4010510	Structural Engineering	6	-	-	6		
4010520	Environmental Engineering	5	-	-	5		
	Elective Theory–I						
4010531	Remote Sensing and						
	Geoinformatics						
4010532	Concrete Technology	5	-	-	5		
4010533	Geotechnical Engineering						
4010540	Civil Engineering Drawing and CAD	-	3	3	6		
	Practical – II						
4010550	Environmental Engineering	-	-	3	3		
	Laboratory						
	Elective Practical –I						
4010561	Advanced Surveying and Basic						
	GIS Practical	-	-	3	3		
4010562	Concrete Technology Practical						
4010563	Geotechnical Engineering						
	Laboratory						
4010570	Entrepreneurship and Startups	-	-	4	4		
Co-	Physical Education	-	-	-	2		
activities	Library	-	-	-	1		
	TOTAL	16	3	13	35		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1010 : DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards) CURRICULUM OUTLINE

SIXTH SEMESTER (FULL TIME)

Subject	Ct Subject Name		Hours Per Week				
Code		Theory	Drawing	Practical	Total		
4010610	Construction Management	6	-	-	6		
4010620	Estimation, Costing and Valuation	6	-	-	6		
	Elective Theory–II						
4010631	Sustainable and Green Building						
	Technology	5	_	_	5		
4010632	Urban Planning and Development				Ū		
4010633	Water Resources Engineering						
4010640	Computer Applications in Civil	-	-	5	5		
	Engineering Practice						
	Elective Practical – II						
4010651	Estimation and Costing Laboratory						
4010652	Highway Engineering Laboratory	-	-	4	4		
4010653	Water Resources Engineering						
	Laboratory						
4010660	Project Work and Internship	-	-	6	6		
Co-	Physical Education	-	-	-	2		
activities	Library	-	-	-	1		
	TOTAL	17	-	15	35		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

3010:DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

CURRICULUM OUTLINE

THIRD SEMESTER (PART TIME)

		Hours Per Week					
Subject Code	oject Subject Name		Drawing	Practical	Total		
4010310	Mechanics of Solids	6	-	-	6		
4010320	Construction Materials and	4	-	-	4		
	Construction Practice						
4010340	Building Planning and Drawing	-	3	-	3		
40001	Communication Skill Practical	-	-	2	2		
40015	Engineering Graphics - I	-	3	-	3		
	TOTAL	10	6	2	18		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

CURRICULUM OUTLINE

FOURTH SEMESTER (PART TIME)

Subject	ct Subject Name		Hours F	Hours Per Week		
Code	Subject Name	Theory	Drawing	Practical	Total	
4010330	Surveying	4	-	-	4	
4010430	Transportation Engineering	4	-	-	4	
4010360	Material Testing Laboratory-I	-	-	2	2	
4010370	Surveying Practice-I	-	-	2	2	
40002	Computer Application Practical	-	-	3	3	
40025	Engineering Graphics - II	-	3	-	3	
	TOTAL	8	3	7	18	

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

CURRICULUM OUTLINE

FIFTH SEMESTER (PART TIME)

Subject	Subject Name	Hours Per Week					
Code	Subject Name	Theory	Drawing	Practical	Total		
4010420	Hydraulics	5	-	-	5		
4010520	Environmental Engineering	4	-	-	4		
4010350	Civil Engineering Drawing and CAD Practical-I	-	-	3	3		
4010440	Hydraulics Laboratory	-	-	3	3		
4010470	Surveying Practice-II	-	-	3	3		
	TOTAL	9	-	9	18		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

CURRICULUM OUTLINE

SIXTH SEMESTER (PART TIME)

Subject	Subject Name	Hours Per Week					
Code	Subject Name	Theory	Drawing	Practical	Total		
4010410	Theory of Structures	5	-	-	5		
4010620	Estimation, Costing and Valuation	4	-	-	4		
4010540	Civil Engineering Drawing and CAD Practical – II	-	2	2	4		
4010550	Environmental Engineering Laboratory	-	-	3	3		
4010450	Material Testing Laboratory–II	-	-	2	2		
	TOTAL	9	2	7	18		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards) CURRICULUM OUTLINE

SEVENTH SEMESTER (PART TIME)

Subject	Subject Name	Hours Per Week					
Code	Subject Name	Theory	Drawing	Practical	Total		
4010510	Structural Engineering	6	-	-	6		
	Elective Theory – I						
4010531	Remote Sensing and Geoinformatics						
4010532	Concrete Technology	4	-	-	4		
4010533	Geotechnical Engineering						
4010460	Construction Practice Laboratory	-	-	3	3		
	Elective Practical – I						
4010561	Advanced Surveying and Basic GIS Practical						
4010562	Concrete Technology Practical	_	_	3	3		
4010563	Geotechnical Engineering Laboratory			0	0		
4010570	Entrepreneurship and Startups	-	-	2	2		
	TOTAL	10	-	8	18		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

CURRICULUM OUTLINE

EIGHTH SEMESTER (PART TIME)

Subject	Subject Name	Hours Per Week				
Code	Subject Name	Theory	Drawing	Practical	Total	
4010610	Construction Management	5	-	-	5	
	Elective Theory–II					
4010631	Sustainable and Green Building					
	Technology					
4010632	Urban Planning and Development	4	-	-	4	
4010633	Water Resources Engineering					
4010640	Computer Applications in Civil			2	2	
	Engineering Practice	-	-	3	3	
	Elective Practical –II					
4010651	Estimation and Costing					
	Laboratory					
4010652	Highway Engineering Laboratory	_	_	3	3	
4010653	Water Resources Engineering			Ŭ	0	
	Laboratory					
4010660	Project Work and Internship	-	-	3	3	
	Total	9	-	9	18	

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards)

CURRICULUM OUTLINE

THIRD SEMESTER (SANDWICH)

Subject	Subject Name		Hours	Per Week	
Code	oubjeet Name	Theory	Drawing	Practical	Total
4010310	Mechanics of Solids	5	-	-	5
4010320	Construction Materials and Construction Practice	4	-	-	4
4010330	Surveying	5	-	-	5
4010430	Transportation Engineering	4	-	-	4
4010340	Building Planning and Drawing	-	3	-	3
4010350	Civil Engineering Drawing and CAD Practical – I	-	-	4	4
4010360	Material Testing Laboratory– I	-	-	3	3
4010370	Surveying Practice –I	-	-	4	4
Co- curricular	Physical Education	-	-	-	2
activities	Library	-	-	-	1
	TOTAL	18	3	11	35

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards)

CURRICULUM OUTLINE

FOURTH SEMESTER (SANDWICH)

Subject	Subject Name	Hours Per Week				
Code	Subject Name	Theory	Drawing	Practical	Total	
4010410	Theory of Structures	5	-	-	5	
4010450	Material Testing Laboratory-II	-	-	2	2	
4010491	Industrial Training-I	-	-	-	-	

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards) CURRICULUM OUTLINE

FIFTH SEMESTER (SANDWICH)

Subiect	Subject Name		Hours Per Week				
Code	Subject Name	Theory	Drawing	Practical	Total		
4010510	Structural Engineering	5	-	-	5		
4010520	Environmental Engineering	4	-	-	4		
	Elective Theory–I						
4010531	Remote Sensing and Geoinformatics						
4010532	Concrete Technology						
4010533	Geotechnical Engineering	4	-	-	4		
4010540	Civil Engineering Drawing and CAD	_	3	3	6		
	Practical – II		5	5	0		
4010550	Environmental Engineering	_	_	З	3		
	Laboratory			5	0		
4010460	Construction Practice Laboratory	-	-	3	3		
	Elective Practical –I						
4010561	Advanced Surveying and Basic GIS						
	Practical						
4010562	Concrete Technology Practical	-	-	3	3		
4010563	Geotechnical Engineering Laboratory						
4010570	Entrepreneurship and Startups	-	-	4	4		
Co-	Physical Education	-	-	-	2		
activities	Library	-	-	-	1		
	TOTAL	13	3	16	35		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards) CURRICULUM OUTLINE

SIXTH SEMESTER (SANDWICH)

Subject	Subject Name		Hours Per Week				
Code	Subject Name	Theory	Drawing	Practical	Total		
4010610	Construction Management	5	-	-	5		
4010620	Estimation, Costing and Valuation	6	-	-	6		
	Elective Theory–II						
4010631	Sustainable and Green Building Technology						
4010632	Urban Planning and Development	5	-	-	5		
4010633	Water Resources Engineering						
4010420	Hydraulics	5	-	-	5		
4010440	Hydraulics Laboratory	-	-	3	3		
4010470	Surveying Practice-II	-	-	4	4		
	Elective Practical –II						
4010651	Estimation and Costing Laboratory						
4010652	Highway Engineering Laboratory						
4010653	Water Resources Engineering Laboratory	-	-	4	4		
Co-	Physical Education	-	-	-	2		
activities	Library	-	-	-	1		
	TOTAL	21	-	11	35		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards) CURRICULUM OUTLINE

SEVENTH SEMESTER (SANDWICH)

Subject	Subject Name	Hours Per Week					
Code		Theory	Drawing	Practical	Total		
4010640	Computer Applications in Civil Engineering Practice	-	-	2	2		
4010660	Project Work and Internship	-	-	5	5		
4010492	Industrial Training-II	-	-	-	-		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1010 : DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF EXAMINATION

THIRD SEMESTER (FULL TIME)

		Exam	ination Marks		f	
Subject Code	Subject Name	Internal assessment Marks	Board Examination Marks (Converted to 75)	Total Marks	Minimum fo pass	Duration o Exam Hour
4010310	Mechanics of Solids	25	100	100	40	3
4010320	Construction Materials and Construction Practice	25	100	100	40	3
4010330	Surveying	25	100	100	40	3
4010340	Building Planning and Drawing	25	100	100	40	3
4010350	Civil Engineering Drawing and CAD Practical – I	25	100	100	50	3
4010360	Material Testing Laboratory– I	25	100	100	50	3
4010370	Surveying Practice –I	25	100	100	50	3
	TOTAL		700	700		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

1010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF EXAMINATION

FOURTH SEMESTER (FULL TIME)

		Exam	ination Marks		or	fs
Subject Code	Subject Name	Internal assessment Marks	Board Examination Marks (Converted to 75)	Total Mark	Minimum fo pass	Duration o Exam Hour
4010410	Theory of Structures	25	100	100	40	3
4010420	Hydraulics	25	100	100	40	3
4010430	Transportation Engineering	25	100	100	40	3
4010440	Hydraulics Laboratory	25	100	100	50	3
4010450	Material Testing Laboratory–II	25	100	100	50	3
4010460	Construction Practice Laboratory	25	100	100	50	3
4010470	Surveying Practice –II	25	100	100	50	3
	TOTAL		700	700		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1010 : DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF EXAMINATION

FIFTH SEMESTER (FULL TIME)

		Examination Marks			or	f rs
Subject		Internal	Board Examinati		num fo ass	tion o Houi
Code	Subject Name	assessme	on Marks	Total	nin g	ura am
	oubject Name	nt Marks	(Converted to 75)	Mark	Ξ	Ъ
4010510	Structural Engineering	25	100	100	40	3
4010520	Environmental Engineering	25	100	100	40	3
	Elective Theory – I					
4010531	Remote Sensing and					
	Geoinformatics	25	100	100	40	3
4010532	Concrete Technology					
4010533	Geotechnical Engineering					
4010540	Civil Engineering Drawing and	25	100	100	50	3
	CAD Practical – II					
4010550	Environmental Engineering	25	100	100	50	3
	Laboratory					
	Elective Practical-I					
4010561	Advanced Surveying and Basic					
	GIS Practical	25	100	100	50	3
4010562	Concrete Technology Practical					
4010563	Geotechnical Engineering					
	Laboratory					
4010570	Entrepreneurship and Startups	25	100	100	50	3
	TOTAL		700	700		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1010 : DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF EXAMINATION

SIXTH SEMESTER (FULL TIME)

		Exar	nination Marks		or	f S
Subject Code	Subject Name	Internal assessment Marks	Board Examination Marks (Converted to 75)	Total Mark	Minimum fo pass	Duration o Exam Hour
4010610	Construction Management	25	100	100	40	3
4010620	Estimation, Costing and Valuation	25	100	100	40	3
	Elective Theory – II					
4010631	Sustainable and Green Building Technology					
4010632	Urban Planning and Development	25	100	100	40	3
4010633	Water Resources Engineering					
4010640	Computer Applications in Civil	25	100	100	50	3
	Engineering Practice					
	Elective Practical – II					
4010651	Estimation and Costing					
	Laboratory					
4010652	Highway Engineering	25	100	100	50	3
	Laboratory					
4010653	Water Resources					
	Engineering Laboratory					
4010660	Project Work and Internship	25	100	100	50	3
	TOTAL		600	600		-

ANNEXURE – II STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards) SCHEME OF THE EXAMINATION

THIRD SEMESTER (PART TIME)

	Examination Marks					f s
Subject Code	Subject Name	Internal assessment Marks	Board Exam. Marks (Converted to 75)	Total Mark	Minimum fo pass	Duration o Exam Hour
4010310	Mechanics of Solids	25	100	100	40	3
4010320	Construction Materials and Construction Practice	25	100	100	40	3
4010340	Building Planning and Drawing	25	100	100	40	3
40001	Communication Skill Practical	25	100	100	50	3
40015	Engineering Graphics- I	25	100	100	40	3
	TOTAL		500	500		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF THE EXAMINATION

FOURTH SEMESTER (PART TIME)

		Examination Marks			۲ ۲	т S
Subject Code	Subject Name	Internal assessment Marks	Board Exam Marks (Converted to 75)	Total Mark	Minimum fo pass	Duration o Exam Hour
4010330	Surveying	25	100	100	40	3
4010430	Transportation Engineering	25	100	100	40	3
4010360	Material Testing Laboratory-I	25	100	100	50	3
4010370	Surveying Practice-I	25	100	100	50	3
40002	Computer Application Practical	25	100	100	50	3
40025	Engineering Graphics-II	25	100	100	40	3
	TOTAL		600	600		

ANNEXURE – II STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards) SCHEME OF THE EXAMINATION

FIFTH SEMESTER (PART TIME)

		Examination Marks			or	fs
Subject Code	Subject Name	Internal assessment Marks	Board Exam Marks (Converted to 75)	Total Mark	Minimum fo pass	Duration o Exam Hour
4010420	Hydraulics	25	100	100	40	3
4010520	Environmental Engineering	25	100	100	40	3
4010350	Civil Engineering Drawing and CAD Practical – I	25	100	100	50	3
4010440	Hydraulics Laboratory	25	100	100	50	3
4010470	Surveying Practice-II	25	100	100	50	3
	TOTAL		500	500		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF THE EXAMINATION

SIXTH SEMESTER (PART TIME)

		Examination Marks		s or				
Subject Code	Subject Name	Internal assessment Marks	Board Exam. Marks (Converted to 75)	Total Mark	Minimum fo pass	Duration (Exam Hou		
4010410	Theory of Structures	25	100	100	40	3		
4010620	Estimation, Costing and Valuation	25	100	100	40	3		
4010550	Environmental Engineering Laboratory	25	100	100	50	3		
4010540	Civil Engineering Drawing and CAD Practical – II	25	100	100	50	3		
4010450	Material Testing Laboratory–II	25	100	100	50	3		
	TOTAL		500	500				

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF THE EXAMINATION

SEVENTH SEMESTER (PART TIME)

		Exami	nation Marks	5	for	of rs
Subject Code	Subject Name	Internal assessment Marks	Board Exam Marks (Converted to 75)	Total Mark	Minimum for pass	Duration o Exam Houi
4010510	Structural Engineering	25	100	100	40	3
	Elective Theory II					
4010531	Remote Sensing and					
	Geoinformatics					
4010532	Concrete Technology	25	100	100	40	3
4010533	Geotechnical Engineering					
4010460	Construction Practice Laboratory	25	100	100	50	3
	Elective Practical –I					
4010561	Advanced Surveying and Basic					
	GIS Practical					
4010562	Concrete Technology Practical	25	100	100	50	2
4010563	Geotechnical Engineering	25	100	100	50	3
	Laboratory					
4010570	Entrepreneurship and Startups	25	100	100	50	3
	Total		500	500		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 3010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented for the students from the year 2020-21 onwards)

SCHEME OF THE EXAMINATION

EIGHTH SEMESTER (PART TIME)

		Examination Marks			or	f S
Subject Code	Subject Name	Internal assessment Marks	Board Exam Marks (Converted to 75)	Total Mark	Minimum f pass	Duration o Exam Hour
4010610	Construction Management	25	100	100	40	3
	Elective Theory-II		100	100		
4010631	Sustainable and Green Building	25			40	
	Technology					3
4010632	Urban Planning and					5
	Development					
4010633	Water Resources Engineering					
4010640	Computer Applications in Civil	25	100	100	50	З
	Engineering Practice	20	100	100	00	0
	Elective Practical-II					
4010651	Estimation and Costing					
	Laboratory	25	100	100	50	3
4010652	Highway Engineering Laboratory	20	100	100	50	5
4010653	Water Resources Engineering					
	Laboratory					
4010660	Project Work and Internship	25	100	100	50	3
	TOTAL		500	500		-

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards) SCHEME OF THE EXAMINATION

THIRD SEMESTER (SANDWICH)

	Subject Name	Exami	r	μ Υ		
Subject Code		Internal assessment Marks	Board Exam. Marks (Converted to 75)	Total Mark	Minimum f	Duration o Exam Hour
4010310	Mechanics of Solids	25	100	100	40	3
4010320	Construction Materials and Construction Practice	25	100	100	40	3
4010330	Surveying	25	100	100	40	3
4010430	Transportation Engineering	25	100	100	40	3
4010340	Building Planning and Drawing	25	100	100	40	3
4010350	Civil Engineering Drawing and CAD Practical – I	25	100	100	50	3
4010360	Material Testing Laboratory– I	25	100	100	50	3
4010370	Surveying Practice –I	25	100	100	50	3
	TOTAL		800	800		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards)

SCHEME OF THE EXAMINATION

FOURTH SEMESTER (SANDWICH)

		Exami	nation Marks	5	or	of rs				
Subject Code	Subject Name	Internal assessment Marks	Board Exam Marks (Converted to 75)	Total Mark	Minimum for the form the matching of the marked second sec	Duration o Exam Houi				
4010410	Theory of Structures	25	100	100	40	3				
4010450	Material Testing Laboratory–II	25	100	100	50	3				
4010491	Industrial Training- I	25	100	100	50	3				
	TOTAL		300	300						

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards)

SCHEME OF EXAMINATION

FIFTH SEMESTER (SANDWICH)

		Examination Marks			or	f 'S
Subject Code	Subject Name	Internal assessment Marks	Board Exam. Marks (Converted to 75)	Total Mark	Minimum for pass	Duration o Exam Hour
4010510	Structural Engineering	25	100	100	40	3
4010520	Environmental Engineering	25	100	100	40	3
	Elective Theory I					
4010521	Remote Sensing and					
4010331	Geoinformatics		100			
4010532	Concrete Technology	25	100	100	40	3
4010533	Geotechnical Engineering					
4010540	Civil Engineering Drawing and	25	100	100	50	3
	CAD Practical – II				50	5
4010550	Environmental Engineering	25	100	100	50	3
	Laboratory	20	100	100	50	0
4010460	Construction Practice Laboratory	25	100	100	50	3
	Elective Practical-I					
4010561	Advanced Surveying and Basic					
	GIS Practical					
4010562	Concrete Technology Practical	25	100	100	50	2
4010563	Geotechnical Engineering	25	100	100	50	3
	Laboratory					
4010570	Entrepreneurship and Startups	25	100	100	50	3
	TOTAL		800	800		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards) SCHEME OF EXAMINATION

SIXTH SEMESTER (SANDWICH)

		Examination Marks			r	ŕ
Subject Code	Subject Name	Internal assessment Marks	Board Exam Marks (Converted to 75)	Total Mark	Minimum fo pass	Duration o Exam Hour
4010610	Construction Management	25	100	100	40	3
4010620	Estimation, Costing and Valuation	25	100	100	40	3
	Elective Theory II					
4010631	Sustainable and Green Building Technology	25	100 100	100	40	3
4010632	Urban Planning and Development					
4010633	Water Resources Engineering					
4010420	Hydraulics	25	100	100	40	3
4010440	Hydraulics Laboratory	25	100	100	50	3
4010470	Surveying Practice-II	25	100	100	50	3
	Elective Practical - II					
4010651	Estimation and Costing Laboratory	- 25		100	50	2
4010652	Highway Engineering Laboratory		100	100	50	3
4010653	Water Resources Engineering Laboratory					
	TOTAL		700	700		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 2010: DIPLOMA IN CIVIL ENGINEERING SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020-21 onwards)

SEVENTH SEMESTER (SANDWICH)

		Examination Marks			for	of ırs
Subject Code	Subject Name	Internal assessment Marks	Board Exam Marks (Converted to 75)	Total Mark	Minimum pass	Duration Exam Ho
4010640	Computer Applications in Civil Engineering Practice	25	100	100	50	3
4010660	Project Work and Internship	25	100	100	50	3
4010492	Industrial Training-II	25	100	100	50	3
	TOTAL		300	300		
List of Equivalent subjects for M-Scheme and N-Scheme

Sem		M Scheme	N Scheme (Implementing academic year 2020 - 21)			
	Sub Code	Subject Name	Sub Code	Subject Name		
III	31031	Engineering Mechanics	4010310	Mechanics of Solids		
w.e.f.	31032	Construction Materials and	4010320	Construction Materials and		
Oct		Construction Practice		Construction Practice		
2021	31033	Surveying I	4010330	Surveying		
	31034	Civil Engineering Drawing I	4010340	Building Planning and		
				Drawing		
	31035	Material Testing Lab I	4010360	Material Testing		
				Laboratory– I		
	31036	Surveying Practice I	4010370	Surveying Practice –I		
	30001	Computer Application	40002	Computer Application		
		Practical**		Practical		
IV	31041	Theory of Structures	4010410	Theory of Structures		
w.e.f	31042	Transportation Engineering	4010430	Transportation Engineering		
Apr	31043	Surveying II	4010330	Surveying		
2022	31044	Estimating and Costing I	4010620	Estimation, Costing and		
				Valuation		
	31045	Material Testing Lab II	4010450	Material Testing		
				Laboratory-II		
	31046	Surveying Practice II	4010470	Surveying Practice –II		
	31047	CAD in Civil Engineering	4010350	Civil Engineering Drawing		
		Drawing I		and CAD Practical – I		

List of Equivalent subjects for M-Scheme and N-Scheme

Sem		M-Scheme	N-Scheme (Implementing academic year 2020 - 21)			
	Sub Code	Subject Name	Sub Code	Subject Name		
V	31051	Structural Engineering	4010510	Structural Engineering		
w.e.f	31052	Environmental Engineering and	4010520	Environmental Engineering		
Oct		Pollution Control				
2022	Elective ⁻	Theory – I	Elective Th	eory - I		
	31071	Advanced Construction	4010532	Concrete Technology		
		Technology				
	31072	Remote Sensing and GIS	4010531	Remote Sensing and Geo		
				Informatics		
	31073	Soil Mechanics and	4010533	Geotechnical Engineering		
		Foundation Engineering				
	31074	Water Resources	4010633	Water Resources Engineering		
		Management				
	31054	Civil Engineering Drawing II	4010540	Civil Engineering Drawing and		
				CAD Practical – II		
	31055	Construction Practice Lab	4010460	Construction Practice		
				Laboratory		
		CAD In Civil Engineering	4010540	Civil Engineering Drawing and		
	31056	Drawing II		CAD Practical – II		
	30002	Life and Employability Skills	40001	Communication Skill Practical		
		Practical				

Sem		M-Scheme	N-Scheme (Implementing academic year 2020 - 21)		
	Sub Code	Subject Name	Sub Code	Subject Name	
VI w.e.f	31061	Construction Management with MIS	4010610	Construction Management	
Apr 2023	31062	Hydraulics	4010420	Hydraulics	
		Elective Theory- II	Elective Theory–II		
	31081	Steel Structures		No equivalent	
	31082	Town Planning	4010632	Urban Planning and Development	
	31083	Earthquake Engineering		No equivalent	
	31084	Building Services		No equivalent	
	31064	Estimating and Costing II	4010620	Estimation, Costing and Valuation	
	31065	Hydraulics Lab	4010440	Hydraulics Laboratory	
	31066	Computer Applications In Civil Engineering Practice	4010640	Computer Applications in Civil Engineering Practice	
	31067	Project Work		No equivalent	

List of Equivalent subjects for M-Scheme and N-Scheme

DIPLOMA IN CIVIL ENGINEERING

II YEAR

N-SCHEME

III SEMESTER

MECHANICS OF SOLIDS

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMIL NADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-2021 onwards)

Subject Title	: MECHANICS OF SOLIDS
Semester	: III Semester
Subject Code	: 4010310
Course Name	: 1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks			
			Internal Assessment	Board Examination	Total	Duration
MECHANICS OF SOLIDS	6 Hrs	96 Hrs	25	100*	100	3 Hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks

Topics and Allocation of Hours

Unit	Topics	Hours
I	Simple Stresses and Strains	20
II	Shear Force and Bending Moment	17
	Geometrical Properties of Sections	18
IV	Stresses in Beams and Shafts	17
V	Pin Jointed Frames	17
	Test & Model Exam	7
	TOTAL	96

RATIONALE:

Being the basic engineering subject, this imparts basic knowledge and skill regarding properties of materials, concept of stresses and strains, bending moment and shear force diagrams, second moment of area, bending and shear stresses, slope and deflection and analysis of trusses. The above knowledge will be useful for designing simple structural components. This subject is very important to develop basic concepts and principles related to structural mechanics. This subject is much essential for the students to continue their further education.

OBJECTIVES:

On completion of the course, the student will be able to:

- Analyse the mechanical properties of engineering materials, elastic constants, relationship between elastic constants, different types of stresses and strains, the deformation of elastic bodies under simple stresses, the use and principles of composite sections;
- Analyse the structural behaviour of materials under various loading conditions.
- Interpret shear force and bending moment diagrams for various types of beams and loading Conditions, application of stress and strain in engineering field. Articulate practical applications of moment of inertia of symmetrical and unsymmetrical structural sections.
- Determine the different types of stresses induced in beams and shafts due to bending and twisting moments respectively
- Analyse perfect frames for vertical loads by analytical as well as graphical methods.

DETAILED SYLLABUS 4010310 - MECHANICS OF SOLIDS

Contents: Theory

Unit	Name of the Topics	Hours
I	SIMPLE STRESSES AND STRAINS	
	1.1 INTRODUCTION TO STRESSES AND STRAINS	10
	Definitions of: Force, Moment of force, Actions and reactions, Statics,	
	Static equilibrium of bodies, Mechanics, Engineering Mechanics -	
	Conditions of static equilibrium - Types of forces on structural members	
	- Study of strength of material - Mechanical properties of materials -	
	Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness,	
	Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity,	
	Durability - Definitions of stress and strain - Types of stresses -	
	Tensile, Compressive and Shear stresses - Types of strains - Tensile,	
	Compressive and Shear strains - Elongation and Contraction -	
	Longitudinal and Lateral strains - Poisson's Ratio - Volumetric strain -	
	Simple problems in computation of stress, strain, Poisson's ratio,	
	change in dimensions and volume etc- Hooke's law - Elastic	
	Constants - Definitions of: Young's Modulus of Elasticity – Shear	
	modulus (or) Modulus of Rigidity - Bulk Modulus - Relationship	
	between elastic constants (Derivations not necessary)- Simple	
	problems .	
	1.2 APPLICATION OF STRESS AND STRAIN IN	10
	ENGINEERING FIELD	
	Benaviour of ductile and brittle materials under direct loads - Load	
	Extension curve (or) Stress Strain curve of a ductile material -	
	Limit of proportionality, Elastic limit, Yield stress, Ultimate stress,	
	Breaking stress, Actual / Nominal stresses - Working stress -	
	Factor of safety - Percentage elongation - Percentage reduction	
	in area - Significance of percentage elongation and reduction in	
	area of cross section - Deformation of prismatic and stepped bars due	
	to uniaxial load - Deformation of prismatic bars due to its self weight -	
	Numerical problems. Composite Sections - Examples of composite	
	sections in Engineering field- Advantages - Assumptions made -	
	Principles of analysis of Composite sections - Modular ratio - Equivalent	
	area (No problems).	

Unit	Name of the Topics	Hours				
II	SHEAR FORCE AND BENDING MOMENT					
	2.1 TYPES OF LOADS AND BEAMS	8				
	Definitions of: Axial load, Transverse load, Concentrated (or) Point					
	load, Uniformly Distributed load (UDL), Varying load - Types of					
	Supports and Reactions: Simple support, Roller support, Hinged					
	support, Fixed support; Vertical reaction, Horizontal reaction, Moment					
	reaction- Types of Beams based on support conditions- Diagrammatic					
	representation of beams, loads and supports- Static equilibrium					
	equations – Determinate and indeterminate beams.					
	2.2 SHEAR FORCE AND BENDING MOMENT IN BEAMS	9				
	Definitions of Shear Force and Bending Moment – Conventional signs					
	used for S.F. and B.M – S.F and B.M of general cases of determinate					
	beams – S.F and B.M diagrams for Cantilevers, Simply supported					
	beams- Position of maximum BM - Derivation of Relation between					
	intensity of load, S.F and B.M Numerical problems on S.F and					
	B.M. (Determinate beams with concentrated loads udl and couple).					
III	GEOMETRICAL PROPERTIES OF SECTIONS					
	3.1 CENTROID	8				
	Geometrical properties – Definitions and examples of Symmetrical, Anti					
	Symmetrical, Asymmetrical shapes - Definitions of centre of gravity and					
	centroid - Centroid of Symmetrical shapes (solid / hollow					
	square, rectangular, circular, I Sections) - Centroid of					
	Asymmetrical shapes (triangular, semi circular, quadrant, trapezoidal,					
	parabolic sections) - Centroid of Anti Symmetric shapes (S, Z sections)					
	 Built up structural sections – Problems. 					

Unit	Name of the Topics	Hours
III	3.2 MOMENT OF INERTIA	10
	Definitions of: Inertia, Moment of Inertia, Polar moment of inertia,	
	Radius of gyration, Section Modulus, Polar modulus - Parallel and	
	perpendicular axes theorems - Derivation of expressions for M.I /	
	Polar M I, Section modulus and Radius of gyration of regular	
	geometrical plane sections (rectangle and circle only) – M.I about	
	centroidal axis / base, Section modulus, Radius of gyration of	
	symmetric, asymmetric, anti symmetric and built up symmetrical	
	sections – Numerical problems.	
IV	STRESSES IN BEAMS AND SHAFTS	
	4.1 STRESSES IN BEAMS DUE TO BENDING	8
	Types of Bending stresses – Neutral axis – Theory of simple bending	
	- Assumptions - Moment of resistance - Derivation of flexure/bending	
	equation M / I = E / R = σ/y – Bending stress distribution – Curvature	
	of beam – Position of N.A and centroidal axis – Stiffness	
	equation – Flexural rigidity – Strength equation – Significance of	
	Section modulus – Numerical problems.	
		•
	4.2 STRESS IN SHAFTS DUE TO TORSION	9
	Definitions of: Shaft, Couple, Torque (or) Twisting moment - Types of	
	Shafts (one end fixed and the other rotating, both ends rotating at	
	different speeds) - Theory of Pure Torsion – Assumptions -Derivation	
	of Torsion equation, T / Ip = σ_{max} / R = G Θ / / - Shear stress	
	distribution in circular section due to torsion - Strength and Stiffness of	
	shafts – Torsional rigidity - Torsional modulus - Power transmitted by a	
	shaft - Numerical problems.	

Unit	Name of the Topics	Hours
V	PIN JOINTED FRAMES	
	5.1 ANALYSIS BY ANALYTICAL METHOD (METHOD OF JOINTS)	10
	Definitions of: Frame / Truss, Pin Joint, Nodes, Rafters, Ties, Struts,	
	Slings - Determinate and indeterminate frames -	
	Classification of frames - Perfect and imperfect frames -	
	Deficient / Instable and redundant frames - Formulation of a perfect	
	frame - Common types of trusses - Support conditions - Resolution of	
	a force - Designation of a force - Nature of forces in the frame	
	members - Analysis of Symmetrical Frames – Assumptions - Methods	
	of analysis - Analytical methods - Method of Joints and Method of	
	Sections - Problems on Analysis of cantilever and simply supported	
	perfect frames (with not more than ten members) with vertical nodal	
	loads by method of joints only. Identification of members with nil force	
	in a determinate truss.	
	5.2 ANALYSIS BY GRAPHICAL METHOD	7
	Graphic statics - Advantages - Space diagram - Bow's notation-	
	Resultant force (or) Equivalent force -Equilibrant force - Vector	
	diagram - Determination of magnitude and nature of forces in the	
	members of a cantilever / simply supported determinate trusses (with	
	not more than eight members) with vertical nodal loads only.	
	Test & Model Exam	7 Hrs.

Reference Books

- 1. R.S.Khurmi "Strength of Materials", S.Chand & Company Ltd, New Delhi
- 2. S.Ramamirtham, "Strength of Materials", Dhanpat Rai (2003)
- 3. Vazirani & Ratwani, "Analysis of Structures-Vol 1", Khanna Publishers(2003)
- 4. S.B.Junnarkar, "Mechanics of Structures- Vol 1", Charotar Publishing House
- 5. Sanchayan Mukherjee, "Elements of Engineering Mechanics", PHI Learning Pvt. Ltd.
- 6. R K Bansal, "Engineering Mechanics", Laxmi Publications Pvt.Ltd.

DIPLOMA IN CIVIL ENGINEERING

II YEAR

N - SCHEME

III SEMESTER

CONSTRUCTION MATERIALS AND CONSTRUCTION PRACTICE

IMPLEMENTED FROM 2020- 2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI-600 025, TAMIL NADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-2021 onwards)

Subject Title	: CONSTRUCTION MATERIALS AND CONSTRUCTION PRACTICE
Semester	: III Semester
Subject Code	: 4010320
Course Name	: 1010 : DIPLOMA CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instru	uctions	Examination			
Subject	Hours / Week	Hours / Semester	Marks		Duration	
CONSTRUCTION			Internal	Board	Total	
MATERIALS AND	5 Hrs.	80 Hrs.	Assessment	Examination		
CONSTRUCTION			25	100*	100	3 Hrs.
PRACTICE						

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

Topics and Allocation of Hours

Unit	Topics	Hours
I	Building Materials	15
II	Building Materials (Contd.)	15
	Foundations And Masonries	15
IV	Doors,Floors,Roofs, etc.,	14
V	Pointing, Plastering, Painting, Form Work, etc.,	14
	Test & Model Exam	7
	TOTAL	80

RATIONALE:

Civil Engineering diploma holders have to supervise construction of various types of civil works involving, the use of various materials like stones, bricks and tiles, cement and cement based products, lime, timber and wood based products, paints and varnishes, metals and other miscellaneous materials. The students should have requisite knowledge regarding the characteristics, uses and availability of various building materials and skills in conducting tests to determine the suitability of materials for various construction purposes. In addition, specifications of various materials should also be known (PWD/BIS) for effective quality control.

To perform the above tasks, it is essential that students should have knowledge of various sub components of buildings like foundations, walls, roofs, stair cases, floors etc., and their constructional details. Therefore, the subject of Construction Materials and Construction Practice is very important for Civil Engineering diploma holders.

OBJECTIVES:

On completion of the course, the students will be able to:

- State different construction materials and their properties.
- Explain the different types of cement, grades of cements and tests on cement.
- State and explain the different types of modern building materials such as ceramic products, glass, metals and plastics.
- Explain the method of preparation of mortar, cement concrete and state the different types of structures.
- Describe the different types of foundations.
- Describe the classification of stone masonry & brick masonry. State the different types of doors, windows, lintels & stairs.
- Describe the types of floors and roofs.
- Describe the different methods of pointing, plastering and termite proofing.
- Explain the methods of scaffolding, shoring & underpinning and form work.
- Describe procedure of colour washing, white washing, painting and varnishing.

DETAILED SYLLABUS

4010320-CONSTRUCTION MATERIALS AND CONSTRUCTION PRACTICE

Contents: Theory

Unit	Name of the Topics	Hours
I	1.1 INTRODUCTION	2
	Physical properties of materials - Density, Bulk density, Specific gravity, porosity, water absorption, permeability, chemical resistance, fire resistance, weathering resistance, thermal conductivity, Durability. (Definitions only).	
	1.2 ROCKS AND STONES	2
	Rocks - Classification of Rocks - Geological, Physical and Chemical classification - Uses of stones - Requirements of a good building stone - Natural and Artificial stones for flooring - Examples (Detailed description not required).	
	1.3 BRICKS	2
	Definition - Brick earth - Composition of good brick earth - Manufacturing process - classification of bricks - properties of bricks - special types of bricks and their uses - compressive strength of bricks - Tests on bricks(Names only) - grades and corresponding requirements of bricks as per BIS.	
	1.4 LIME AND POZZOLANAS	2
	Sources of lime - classification of lime - Fat, Hydraulic and Poor lime - uses of lime - Pozzolanic materials - Surki, Flyash, Ground blast furnace slag, Rice husk ash - Advantages of adding pozzolanas to cement.	

Unit	Name of the Topics	Hours
I	1.5 CEMENT	3
	Definition - Composition of ordinary Portland cement - Functions of	
	cement ingredients - Different types of cements - Grades of cement	
	(33,43 and 53) - Storage of cement - Tests on cement (Names only)	
	- objects of each test - Test requirements/ BIS specifications of OPC	
	 Admixtures - Definition, types and uses. 	
	1.6 WATER	2
	General requirement of water used in construction works - Use of	
	sea water in construction works- Permissible limits of deleterious	
	materials in construction water as per BIS- Effects of Sulphates and	
	Chlorides in ground water - Minimum pH value.	
	1.7 GLASS	
	Definition - Constituents of glass - Classification of glass -	_
	Functions and Utility - Types of glass, sizes and thickness used in	2
	buildings.	
Ш	2.1 MORTAR	1
	Definition - Properties and uses of mortar - M sand for mortar -	
	Types of mortar - Cement and Lime mortar - Mix ratio of cement	
	mortars for different works.	
	2.2 CONCRETE	2
	Definition - Constituents of concrete and their requirements - uses of	Z
	concrete - Types of concrete: Lime concrete, cement concrete and	
	light weight concrete. Self compacting concrete and ready mixed	
	concrete - Definitions only.	
	Definition - Eulertions of paint Types of paints and their uses - Oil	3
	Enamel Emulsion Distember Compate Aluminium Ritumingue	
	and Plastic points. Verniches Definition Characteristics of a	
	and Prastic paints - varnishes, Definition Unaracteristics of a	
	guou varnish - rypes of varnish and their uses Oil, Turpentine,	
	Spint and water varnish.	

Unit	Name of the Topics	Hours
II	2.4 METALS AND PLASTICS	3
	Types of metals used in construction - Cast Iron. Steel. Aluminium.	
	GI, Stainless steel - Market forms of steel Steel for reinforced	
	concrete - steel for pre stressed concrete - Plastics Characteristics	
	and Uses of plastics -Types - Thermoplastics and Thermosetting	
	plastics - Various plastic products: pipes, taps, tubs, basins, doors,	
	windows, water tanks, partitions sizes, capacity and uses -	
	Advantages and disadvantages of plastic products- Asbestos - uses	
	of asbestos.	
	2.5 TIMBER AND TIMBER PRODUCTS	2
	Types of Timber -Teak, Sal, Rosewood, Mango, and Jack - Defects	
	in timber seasoning of timber- objectives - Timber Products -	
	Veneers, Ply woods, Particle Board, Fibre board, Hard board, Block	
	board, Laminated board Uses.	
	2.6ROOF COVERINGS	2
	Definition - objectives and uses - AC Sheets - FRP Sheets - G.I.	
	sheets- Steel sheets- Polycarbonate sheets- Shell roof - R C C roof	
	Advantages - Types.	
	2.7 DAMP PROOFING MATERIALS	2
	Materials used for damp proofing - Properties and functions of	-
	various types of water proofing materials - commonly available	
	chemicals used for grouting / Coating porous concrete surfaces -	
	Admixtures for cement mortar and cement concrete - Functions of	
	Admixtures, Accelerators, Retarders, Air repelling chemicals.	

Unit	Name of the Topics	Hours
III	3.1 INTRODUCTION TO STRUCTURES	2
	Permanent and temporary structures - Life of structures - Sub structure -	
	super structure - load bearing structure - framed structure - concept of	
	framed structure - advantages of framed structure.	
	3.2 FOUNDATION	3
	Definition - objectives of foundation - Bearing capacity of soil – Definition -	
	maximum/ultimate and safe bearing capacity - Bearing capacity of	
	different types of soils - Requirements of a good foundation - Types of	
	foundations - Shallow foundation: Spread foundation, Isolated column	
	footing, combined footing, continuous footing, Raft foundation - Deep	
	foundation: Pile, Stone columns Types of piles : Bearing pile, Friction pile,	
	under reamed pile - Causes of failure of foundation - Remedial measures.	
	3.3 STONE MASONRY	2
	Definition - Common terms used : Natural bed, sill, corbel, course,	L
	cornice, coping, weathering, throat, spalls, quoins, string course,	
	lacing course, through stone, plinth, jambs Classification of stone	
	masonry - Rubble masonry : Coursed, un coursed & Random	
	rubble masonry - Ashlar masonry - points to be considered in the	
	construction of stone masonry - Tools used(Names only).	
	3.4 BRICK MASONRY	3
	Definition - Common terms used - Header, stretcher, bed joint, lap,	
	perpend, closer, king, queen & bevelled, bat permissible loads in brick	
	masonry - Bond - Types Header, stretcher, English bond & Flemish	
	bond one brick thick and one and a half brick thick - 'T' junction in	
	English bond - Points to be considered in the construction of brick	
	masonry - Cavity bond masonry - Defects in brick masonry -	
	Maintenance of brick masonry - Reinforced brick masonry - purpose -	
	Its Advantage with respect to strength and Earthquake resistance.	
·	•	

Unit	Name of the Topics	Hours
III	3.5 PARTITION	2
	Definition - Requirements of good partition wall - Types Brick,	
	Concrete, glass, Aluminium frame with Glass sheet, timber, straw	
	board, wood wool, Asbestos Cement board and plastic board	
	partitions.	
	3.6 WATER PROOFING AND DAMP PROOFING	
	Dampness - Causes of dampness - Effects of dampness - Damp	3
	proofing - Damp proof courses (DPC) - Method of mixing - Bad	
	effects of excessive Admixtures in RCC - Water proofing coats for	
	sump / overhead tank wall - Methods of grouting.	
IV	4.1 DOORS, WINDOWS AND VENTILATORS	3
	Standard sizes of doors and windows - Location of doors and	
	windows - Different materials used - Doors Component parts	
	Types - Framed and panelled, glazed, flush, louvered, collapsible,	
	rolling shutter and sliding doors - Windows Types - Casement,	
	Glazed, Bay, Corner, Pivoted, Circular and Dormer windows-	
	Ventilators – Definition, purpose, Types - Ventilator combined with	
	windows / doors.	
	4.2 HOLLOW BLOCK CONSTRUCTIONS	2
	Hollow blocks - Advantages of hollow blocks - load bearing and	
	non load bearing hollow blocks - Open cavity blocks - face	
	shells, web, gross area, nominal dimensions of blocks, minimum	
	thickness of face shells and web, grades of hollow concrete blocks	
	- Materials used, admixtures added - mixing, moulding, placing	
	and compacting, curing, drying.	
	4.3 STAIRS	
	Definition - Terms used - Location of stair types - Straight,	2
	Dog legged, Open well, bifurcated and spiral stairs - Moving stairs	
	(Escalators) - Lift components uses and advantage of lifts over	
	stairs.	

	4.4 FLOORS AND FLOORING	3
	Floors - Definition - Types - Timber, Composite, RCC floors	
	Flooring - Definition- Materials used - Selection of flooring types -	
	Construction Methods (As per C.P.W.D/P.W.D Specifications) -	
	Mosaic, Granolithic, Tiled, Granite, Marble, Pre cast concrete	
	flooring, Plastic & PVC tile flooring- Carpet tile & Rubber flooring.	
	4.5 ROOFS	2
	Definition - Types of roof - Flat roof - RCC roof - Pitched roof - Tile	
	roof - Shell roof - Technical terms - Steel roof truss Types: King post,	
	Raised chord, Howe truss, Fan, fink, north light and Modified north light	
	trusses.	
	4.6 WEATHERING COURSE	2
	Weathering course - Purpose - Materials Required - Brick Jelly	
	Concrete preparation - Laying procedure- Preparation of mortar with	
	Damp Proof materials for laying pressed clay tiles- Pointing and	
	finishing of clay tiles - Use of Thermal Resistant - Weathering Tiles.	
V	5.1 POINTING	2
	Objectives - Mortar for pointing - Methods of pointing (As per	
	C.P.W.D. / P.W.D Specifications) - Types of pointing - Flush,	
	recessed, weathered, keyed or grooved pointing.	
	5.2 PLASTERING	3
	Definitions - Objectives - Cement mortars for Plastering -	
	Requirements of a good plaster - Methods of Plastering - Defects	
	in plastering - Stucco plastering - Acoustic plastering - Granites	
	silicon – plastering – Sand faced Pebble dash - Wall paper finishing	
	- Wall tiling.	

V	5.3 WHITE WASHING, COLOUR WASHING , DISTEMPERING,	3
	PAINTING & VARNISHING	
	White washing - preparation of surface - Application of white wash	
	- Colour washing - Distempering - Preparation of surfaces -	
	Application of distemper- Painting & Varnishing - Preparation of	
	Surface - Application of Painting & Varnishing.	
	5.4 ANTI-TERMITE TREATMENT	1
	Definition - objectives and uses - Methods of termite treatment.	
	5.5 SCAFFOLDING, SHORING AND UNDER PINNING	3
	Scaffolding – Definition - Component parts - Types Single, double	
	& Steel scaffolding, Shoring – Definition - Types Raking, flying and	
	dead shores - Underpinning definition - Purpose - Types - Pit	
	Methods - Pile Method.	
	5.6 FORM WORK	2
	Definition - Materials used - Requirements of a good form work -	
	Form work for column, RC beams and RC slab.	
	Test & Model Exam	7 Hrs.

CHENNAI-600 025, TAMIL NADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the student admitted from the year 2020-2021 onwards)

- Course Name : 1010 : DIPLOMA IN CIVIL ENGINEERING
- Subject Code : 4010330
- Semester : III Semester
- Subject Title : SURVEYING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours /		Marks		
	Week	Semester				Duration
			Internal	Board	Total	
SURVEYING	6 Hrs. 96 Hrs.	Assessment	Examination			
			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

Unit	Topics	Hours
I	Introduction to Surveying and Chain Surveying and campass	22
	surveying	
	Levelling	17
	Theodolite Surveying	17
IV	Tacheometric Surveying & Contour Surveying	17
V	Total Station and Global Positioning system	16
	Test & Model Exam	7
	TOTAL	96

RATIONALE:

The important functions of a diploma civil engineer include the jobs of detailed surveying, plotting of survey data, preparation of survey maps and setting out works. While framing the curriculum for the subject of surveying, stress has been given to the development of the skill in each type of survey like chain surveying, compass surveying and levelling that the Civil Engineering diploma holder will normally be called upon to perform. Each type of Survey like Chain surveying, Compass surveying, Levelling, Theodolite surveying, Tacheometric surveying, Contour surveying, Total station surveying and GPS introduced in this course.

OBJECTIVES:

On completion of the course, the students will posses knowledge about:

- Chain surveying
- Compass surveying
- Theodolite surveying
- Tacheometric Surveying
- Preparation of Contour layouts
- Total Station Surveying
- Global Positioning System

DETAILED SYLLABUS

4010330 - SURVEYING

Contents: Theory

Unit	Name of the Topics	Hours		
I	INTRODUCTION TO SURVEYING AND CHAIN SURVEYING			
	AND CAMPASS SURVEYING			
	1.1 SURVEYING	2		
	Definition - Objectives and uses of surveying -Classification of			
	Surveying - Principles of surveying.			
	1.2 CHAIN SURVEYING	10		
	Introduction - Instruments used for chaining- Chains and Tapes			
	 Types - Definitions of terms commonly used in chain 			
	surveying: Survey stations, base line, check line and tie line -			
	Ranging: Direct and Indirect ranging Offsets: Definition, types,			
	Instruments used - Errors in Chaining, Tape corrections and its			
	necessity.			
	1.3 COMPASS SURVEYING	10		
	Angular measurements-Necessity Instruments used Prismatic			
	compass - Construction details, functions and Temporary			
	adjustment - Types of meridians - Types of bearings - Whole			
	circle and Reduced bearings, Fore and Back bearings-			
	Computation of included angles from bearings - Computation			
	of bearings from included angles - Problems.			
Ш	2.1 LEVELLING	17		
	Levelling - Definition - Level Parts, Functions, Accessories-			
	Types of levels : Dumpy level, Quick setting level, Automatic			
	and Laser level Levelling staff - Types Component parts of			
	Levelling instrument - Definitions of terms used : Level			
	surface, Horizontal and Vertical surfaces, Datum, Bench marks,			
	Reduced level, Rise, Fall, Line of collimation, Axis of telescope,			
	Axis of bubble tube, Station, Back sight, Fore sight,			

	Intermediate sight, Change point, Height of instrument, Focusing	
	and Parallax - Temporary adjustment of a level - Balancing -	
	Back sight and Foresight- Principle of levelling - Simple	
	levelling -Levelling field book - Reduction of levels - Height of	
	collimation and Rise and Fall method - Comparison of	
	methods - Problems on reduction of levels - Missing entry	
	calculations : Problems.	
III	3.1 THEODOLITE SURVEYING	17
	Introduction - Types of Theodolites: Transit and non- transit	
	Theodolite, Vernier and Micrometer Theodolites, Electronic	
	Theodolite (Principles and description only) - Component parts	
	of a transit Theodolite - Functions - Technical terms used in	
	Theodolite surveying - Temporary adjustments- Measurement	
	of horizontal angle by method of repetition and reiteration-	
	Measurement of vertical angle and deflection angle - Reading	
	bearing of a line- Theodolite traversing - Methods - Field checks	
	in closed traverse - Latitude and departure - Consecutive	
	coordinates - independent coordinates - Problems on	
	computation of area of closed traverse - Omitted measurements	
	- Problems	
IV	4.1 TACHEOMETRIC SURVEYING	9
	Introduction-Instruments used in tacheometry - Systems of	
	tacheometry: Stadia and Tangential tacheometry - Principles -	
	Fixed hair method of tacheometry - Distance and Elevation	
	formulae - Anallactic lens (No proof) - Advantages and uses -	
	Direct reading tacheometers - Determination of constants of a	
	tacheometer - Problems.	
	4.2 CONTOUR SURVEYING	8
	Definition - Contour - Contouring - Characteristics of contours -	
	Methods of contouring - Direct and Indirect methods -	
	Tacheometric contouring - Interpolation of contours - Different	
	methods - Contour gradient - Uses of contour plan and map.	

V	TOTAL STATION AND GLOBAL POSITIONING SYSTEM				
	5.1 Total Station	8			
	Introduction - Application of total station - Component parts of a				
	Total Station - Accessories used - Summary of total station				
	characteristics - Features of total station - Electronic display and				
	data reading - Field procedure for co-ordinate measurement -				
	Instrument preparation, Setting and Measurement (Distance,				
	Angle, Bearing, Curve etc.).				
	5.2 GLOBAL POSITIONING SYSTEM (GPS)	8			
	Introduction - Maps - Types of Maps - Various Satellites used				
	by GPS - Differential GPS - Fundamentals of GPS - Application				
	of GPS - GPS Receivers - Hand held GPS Receiver - Function				
	Field procedure - Observation and processing applications in				
	Civil Engineering.				
	Test & Model Exam	7 Hrs.			

DIPLOMA IN CIVIL ENGINEERING

II YEAR N-SCHEME

III SEMESTER

BUILDING PLANNING AND DRAWING

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI-600 025, TAMIL NADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMIL NADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	BUILDING PLANNING AND DRAWING
Semester	:	III Semester
Subject Code	:	4010340
Course Name	:	1010 : DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/ Week	Hours/ Semester		Marks		Duration
BUILDING PLANNING AND	4 Hrs.	64 Hrs.	Internal Assessment	Board Examination	Total	
DRAWING			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

Topics and Allocation of Hours

Unit	Topics	Hours
I	Introduction	5
II	Planning of Building	5
	Basic Drawings	9
IV	Building Drawings	38
	Test & Model Exam	7
	TOTAL	64

RATIONALE:

Drawing is the language of engineers. Engineering is absolutely incomplete without a thorough knowledge of drawing. A Civil Engineering diploma holder must be capable of sketching detailed constructional drawing of various components of building for the purpose of communication with the craftsman. Planning of small buildings, developing a line plan, dimensioning, key plan, and drainage plan should be a part of curriculum. The diploma engineer must be conversant with reading and interpretation of drawing for execution of work.

OBJECTIVES:

On completion of the course, the students will be able to:

- Study Conventions and Abbreviations;
- Prepare layout of buildings;
- Gain thorough knowledge of the rules, regulations and standards of buildings;
- Read the line sketch and prepare plan, elevations of buildings and gain thorough knowledge of planning various types of buildings.

DETAILED SYLLABUS

4010340-BUILDING PLANNING AND DRAWING

Contents: Theory

Unit	Name of the Topics	Hours
I	INTRODUCTION	5
	1.1 CONVENTIONS, SYMBOLS:	
	General – Conventions- Title block- Scales- Line work- Lettering -	
	Symbols - Abbreviations	
	1.2 BUILDING BYE-LAWS AND SUBMISSION OF DRAWINGS	
	Objects of bye-laws- Importance of bye-laws- Function of local authority-	
	Set backs- Plot Coverage- Number of floors- Height of building- Built up	
	Area- Floor space index (FSI) - Views and details necessary for the	
	preparation of a civil engineering drawing- Site Plan - Necessity for	
	Approval of plans from local body- Layout plan and key plan-	
	Requirements for submission of drawing for approval- Rules and bye-	
	laws of sanctioning authorities for construction work.	
II	PLANNING OF BUILDINGS	5
	2.1 PLANNING OF RESIDENTIAL BUILDINGS	
	Types of residential buildings- Usual requirements-Types of Rooms -	
	Minimum Size requirement for each type of rooms - Furniture	
	arrangement in each room- Position of stairs / lifts- Position of Doors/	
	Windows House drainage and Sanitary fittings - Sump/Water tanks-	
	Plumbing Pipes -Preparation of line drawing for given requirements with	
	dimensions, not to scale.	
	2.2 PLANNING OF INDUSTRIAL STRUCTURES	
	Planning aspects - Requirements of industrial units - Sheets for pitched	
	roof coverings - Rolling Shutters - Ramps- Stores- Public Toilets/ Bath	
	rooms- Dining / Resting halls- Ventilation and Lighting - Preparation of	
	line drawing for given requirement with measurements (not to scale).	

	2.3 PLANNING OF PUBLIC BUILDINGS	
	Types of public buildings - Miscellaneous public buildings - General	
	requirements of Public Buildings -Landscape architecture - Preparation	
	of line plan with dimensions for the given requirements (not to scale).	
III	BASIC DRAWINGS	9
	Standard symbols used in Civil Engineering Drawing.	
	Draw the elevation of :	
	1. Fully panelled double leaf door.	
	2. Fully Panelled single leaf door	
	3. Flush door	
	4. Fully Panelled window with grill	
	5. Partly glazed and partly panelled window	
	6. Lean- to – roof	
	7. King post roof truss	
	8. Steel roof truss	
	9. Rain water Harvesting- Recharging into the ground	
	a. Shallow well system b. Percolation pit system.	
IV	BUILDING DRAWINGS	38
	Preparation of plan, section and elevation of buildings with specifications	
	for the given line drawing to suitable Scale:	
	1. A Reading room with R.C.C flat roof	
	 A House with single bed room and attached bathroom with R.C.C. flat roof. 	
	3. A residential building with two bed rooms with R.C.C. flat roof	
	4. A Two roomed house with RCC slope roof with gable ends	
	5. A Small workshop with north light steel roof truss (6 to 10m Span)	
	over R.C.C. Columns.	
	6. A Primary health center for rural area with R.C.C roof.	
	7. A Village Library building with R.C.C flat roof	
	8. A small Restaurant building with R.C.C flat roof	
	9. A Single storied School building with R.C.C flat roof	
	10. A Bank building with R.C.C flat roof.	
	Test & Model Exam	7 Hrs.

Reference Books

- 1. National Building code of India 2016
- 2. Tamil Nadu District Municipal building rules and by-laws
- 3. Civil Engineering Drawing and house planning by B.P.Verma
- 4. Elements building drawings and design by R.S.Deshpande and N.K.Karandikar
- 5. Design of Houses by J.S.Yadav
- 6. A Guide to Civil Engg. Drawing by V.R.Thothathri Dr
- 7. Building Planning and Drawing by N. Kumaraswamy and A. Kameswara Rao.
- 8. Civil Engineering Drawing by S.C.Rangwala
- 9. Building Planning and Construction Companion", G. Vaidhyanathan,
 - I. Kulasekaran, G. Sathish Kumar"

Scheme of Examination

	TOTAL	100 Marks *
From IV		
PART B		80 marks
Unit III – 1 x 12)		
From unit I and II (2 x 4,		
PART A		20 marks

Note: *Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

DIPLOMA IN CIVIL ENGINEERING

II YEAR

N - SCHEME

III SEMESTER

CIVIL ENGINEERING DRAWING AND CAD PRACTICAL- I

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Semester : III Semester	
Semester : III Semester	

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	SubjectHours /Hours /MarksWeekSemester			Duration		
CIVIL ENGINEERING DRAWING AND		64 Hro	Internal Assessment	Board Examination	Total	
CAD PRACTICAL - I	4 115.	04 115.	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

Computers play a very vital role in present day life, more so, in all the professional life of engineering. In order to enable the students, use the computers effectively in drafting, this course offers Computer Aided Drafting of various drawings in civil engineering.

OBJECTIVES:

On completion of the course, the students will be able to:

- Know about CAD commands
- Understand building components
- Draw building drawing using CAD software
- Prepare approval drawing for submission to authority

DETAILED SYLLABUS

4010350 - Civil Engineering Drawing and CAD Practical - I

Contents:Practical

Total: 64 Hours

LIST OF EXPERIMENTS

Preparation of drawing using CAD Software

Introduction of CAD software for Preparation of Drawings 6 Hours

- 1. Definition of various commands used in CAD software.
- 2. Simple Exercises for familiarizing the drawing commands in CAD software.

PART A

Draw the given drawings in Computer and take print out of all drawings in A4 sheet using Inkjet / laser printer or plotter and produced in file forms as record.

- 3. Section of semicircular Arch
- 4. Elevation of door, partly panelled and partly glazed
- Preparation of Plan showing arrangement of furniture / fixtures and other features with standard sizes for the followings (Each roomto be drawn separately
 - features and furniture may be pasted from the Blocks available in the packages)

(i) Living (ii) Bed Room (iii) Kitchen (iv) Toilet

- Steel Structures: Cross section of I, Channel, T, Angle and Tubular section, Compound Beams.
- 7. Section of Load bearing wall from parapet to foundation showing all the details across the section. (Single storey)

PART B

44 Hours

14 Hours

Draw the building drawing using available CAD software

- 8. Plan, Section and Elevation of a single bed roomed building (R.C.C. Roof)
- 9. Plan, Section and Elevation of a Double bed roomed building (R.C.C. Roof)
- 10. Plan, Section and Elevation of a Primary School Building
- 11. Plan, Section and Elevation of a Hospital Building
- Plan, Section and Elevation of a Workshop with steel columns, Steel roof truss and Metal sheet Roofing of about 300 m² area.
- 13. Preparation of approval drawing to be submitted to Corporation or Municipality showing required details in one sheet such as
 - a) Site Plan (Land boundary, Building boundary, Car Parking, Passage, sanitary layout, septic tank location etc.
 - b) G.F. Plan, F.F. Plan, Section and Elevation (line diagram is enough)
 - c) Key Plan
 - d) Septic tank Plan and section (line diagram)
 - e) Rain water harvesting pit (with all detail)
 - f) Typical foundation details (Column foundation or spread footing)
 - g) Title block showing joinery details, Specification, Area statement, colour Index, Title of the property, space for owners Signature and Licensed Surveyor's Signature with address.

IN BOARD EXAMINATION, QUESTIONS WILL BE CHOSEN AS FOLLOWS

PART – B		50 marks
Viva – voce		5 marks
	TOTAL	100 marks

LIST OF EQUIPMENTS	(for a batch	of 30 students):
--------------------	--------------	------------------

S.No.	List of the equipments	Quantity Required
1.	Computers	30 Nos.
2.	Laser printer	3 Nos.
3.	CAD software	30 Users

II YEAR N - Scheme

III SEMESTER

MATERIAL TESTING LABORATORY-I

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-2021 onwards)

Subject Title	:	MATERIAL TESTING LABORATORY-I
Semester	:	III Semester
Subject Code	:	4010360
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/	Hours/	Marka			
	Week	Semester		Widi KS		Duration
MATERIAL			Internal	Board	Total	
TESTING	3 Hrs.	48 Hrs.	Assessment	Examination		
LABORATORY- I			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

The understanding of the structural, physical and mechanical properties and behaviour of engineering materials is at the very core of engineering design. A command of this knowledge is essential for all civil engineers. This laboratory provides a hands-on experience with the testing and evaluation of civil engineering materials, including steel, wood, Cements, Aluminium, Brass and Brick.

OBJECTIVES:

- Study of UTM, Torsion testing machine, Hardness tester, Compression testing machine.
- Determine the Material Properties- test conducted on steel, wood, cement, Aluminium, Brass and Brick.

DETAILED SYLLABUS

4010360 - MATERIAL TESTING LABORATORY - I

Contents: Practical

Total: 48 Hrs.

Unit	Name of the Topics	Hours
PART A	1. Tension test on mild steel / deformed steel bars.	25 Hrs.
	2. Deflection test on Simply Supported Beams of	
	a. wood and b. steel to find Young's modulus	
	3. Torsion test on mild steel bar to determine the Modulus of	
	Rigidity.	
	4. Double shear test on M.S. bar.	
	5. Impact Test on mild steel by performing Izod / Charpytests.	
	6. Find Brinnel's hardness numbers of the following materials.	
	a. Mild steel b. Brass c. Aluminium.	
	7. Find Rockwell's hardness numbers of the following materials.	
	a. Mild steel b. Brass c. Aluminium.	
PART B	8. Compression Test on Wooden cube.	23 Hrs.
	9. Compression test on Bricks.	
	10. Compression test on Solid Blocks	
	11. Water absorption test on Bricks /pressed tiles.	
	12. Flexure test on Tiles.	
	13. Casting of Cement Mortar cubes after determining the	
	normal consistency of cement	
	14. Determining the compressive strength of Cement Mortor	
	cubes.	

4010360 - MATERIAL TESTING LABORATORY - I

S.No	Description	Part - A Max. Marks (50)	Part - B Max. Marks (45)
1.	Procedure	5	5
2.	Tabulation and Observation	20	20
3.	Calculations	15	10
4.	Sketch / Graph	5	5
5.	Accuracy of result	5	5
6.	Viva		5

DETAILLED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for a batch of 30 students):

S.No.	List of the Equipments	Quantity
1.	UTM	1 no.
2.	Rock well-cum-Brinell Hardness testing machine	1 no.
3.	Torsion testing machine	1 no.
4.	Impact testing machine for Izod and Charpy test	1 no.
5.	Deflection test verification of Maxwell theorem with magnetic	
	stand, deflection gauge, weights and sets of beam (floor type)	1 no.
6.	Weighing balance-digital 10 kg capacity one gram accuracy	
	with battery backup 8 hours/direct electrical connection	1 no.
7.	Compression testing machine 100 tons capacity (electrical	1 no.
	operated)	
8.	Flexural Testing Machine for Tiles	1 no.
9.	Spring testing Apparatus	1 no.
10.	Double shear test apparatus	1 no.
11.	Vicat's Appratus	1 no.

II YEAR

N - SCHEME

III SEMESTER

SURVEYING PRACTICE-I

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	SURVEYING PRACTICE - I
Semester	:	III Semester
Subject Code	:	4010370
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Inst	ructions	Examination		ctions Examination	
Subject	Hours /	Hours /	Marks			
	Week	Semester				Duration
			Internal	Board	Total	
SURVEYING	4 Hrs.	64 Hrs.	Assessment	Examination		
PRACTICE-I			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The important functions of a diploma civil engineer include the jobs of detailed surveying, plotting of survey data, preparation of survey maps and setting out works. Field work should be a selected one so that the student can check his work and have an idea of the results and the extent of error in the work done by him. As far as possible, the surveys done should be got plotted, as this will also reveal errors in the work and develop skill in plotting

OBJECTIVES:

- Handle surveying equipments
- Do practical exercises in Chain surveying, Compass surveying, Levelling and GPS.

DETAILED SYLLABUS

4010370 - SURVEYING PRACTICE-I

Contents : Practical

Total:64 Hrs.

Unit	Name of the Topics	Hours
PART A	1. CHAIN AND COMPASS SURVEYING	8
	Study of chain, tape and accessories used for chain survey. Study	l
	of Prismatic compass, setting up over a station and observe	
	bearings of lines.	
	Running closed traverse and finding the included angles Use	l
	Chain / Tape and Compass. Minimum 5 points. Determination of	l
	distance between two points when their base is accessible. Use	l
	Chain / Tape and Compass. Determination of distance between	l
	two points when their base is inaccessible. Use Chain / Tape and	
	Compass.	
	2. GLOBAL POSITIONING SYSTEM (GPS)	8
	Reading of various Maps like Taluk map, District Map and Topo	l
	sheets. Study of Hand held GPS. Measurement of Latitude,	
	Longitude and Altitude using hand held GPS. Selection and marking	
	of routings (Way points) using hand held GPS.	
PART B	3. LEVELLING	48
	Study of a Level - Temporary adjustment, taking readings and	l
	booking in a field book. Fly leveling Reduction by Height of	
	Collimation method - Minimum 6 points with two change points	l
	(Minimum Two exercises)	
	Fly leveling Reduction by Rise and Fall method - Minimum 6	l
	points with two change points (Minimum Two exercises). Fly	l
	levelling covering minimum 6 points with 2 inverted readings	
	(Minimum Two exercises).	
	Check levelling and reduction of levels (Minimum Two exercises)	

4010370 - SURVEYING PRACTICE-I

In Board Examination, questions will be chosen as follows:

	TOTAL	- 100 Marks		
	Viva-Voce	- 5 Marks		
PART B	Levelling (Compulsory)	- 45 Marks		
	ii. GPS	- 15 Marks		
PART A	By Lot i. Compass Survey - 35 Marks			

DETAILED ALLOCATION OF MARKS

		Part	- A	Part - B
S.No	Description	Max.Marks (35)	Max.Marks (15)	Max. Marks (45)
1.	Procedure, Handling Instruments /	5	3	5
	Tools			
2.	Field works, Observation and	15	10	20
	Tabulation			
3.	Calculations and Check / drawings.	10	0	15
4.	Accuracy of result	5	2	5
5.	Viva-Voce		5	

LIST OF EQUIPMENTS (for a batch of 30 students):

S.No.	List of the Equipments	Quantity Required
1.	Chain with (arrows)	6 nos.
2.	Prismatic compass	6 nos.
3.	Dumpy level	10 nos.
4.	Levelling staff	10 nos.
5.	Cross staff	6 nos.
6.	Ranging rod	2 nos.
7.	Hand held GPS	6 nos.

II YEAR

N-SCHEME

IV SEMESTER THEORY OF STRUCTURES

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented to the student admitted from the year 2020-2021 onwards)

Subject Title	:	THEORY OF STRUCTURES
Semester	:	IV Semester
Subject Code	:	4010410
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instr	uctions	Examination			
Subject	Hours / Week	Hours / Semester	Marks		Duration	
	6 Hrs.	96 Hrs.	Internal Assessment	Board Examination	Total	Duration
STRUCTURES			25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Slope and Deflection of beams, Propped Cantilever	18
11	Fixed Beams	
	Continuous Beams – Theorem of Three moments method	18
	Continuous Beams – Moment Distribution method	
	portal frames - moment distribution method	18
IV	Columns and Struts	
	Combined bending and direct stresses	18
V	Masonry Dams	17
	Earth pressure and Retaining walls	
	Test & Model Exam	7
	TOTAL	96

RATIONALE:

Study of structural behaviour, analysis and design is a principal part of civil engineering courses and is essential for professional accreditation. This subject enhances the structural analytical ability of the students.

OBJECTIVES:

- Determine the of Slope and Deflection of Determinate beams by area moment method.
- Analyse of Propped cantilevers and Fixed beams by Area-Moment method and draw SFD, BMD.
- Analyse of Continuous beams by Theorem of Three moments and draw SFD, BMD.
- Analyse of Continuous beams, Portal frames and Substitute frames by Moment Distribution Method and draw SFD, BMD.
- Define the different types of Columns and finding critical loads of Columns.
- Analyse of Columns and Chimneys subject to eccentric loading / moment / horizontal loads and find maximum and minimum combined stresses in their sections.
- Calculate the maximum and minimum bearing pressures and check the stability of Masonry Dams
- Calculate the maximum and minimum bearing pressures and check the stability of Retaining walls.

DETAILED SYLLABUS

4010410 THEORY OF STRUCTURES

Contents: Theory

Unit	Name of the Topics	Hours
I	1.1 SLOPE AND DEFLECTION OF BEAMS	10
	Deflected shapes / Elastic curves of beams with different support	
	conditions -Definition of Slope and Deflection- Flexural rigidity and	
	Stiffness of beams- Mohr's Theorems – Area Moment method for slope	
	and deflection of beams – Derivation of expressions for maximum slope	
	and maximum deflection of standard cases by area moment method for	
	cantilever and simply supported beams subjected to symmetrical UDL	
	& point loads - Numerical problems on determination of slopes and	
	deflections at salient points of Cantilevers and Simply supported beams	
	from first principles and by using formulae.	
	1.2 PROPPED CANTILEVERS	8
	Statically determinate and indeterminate Structures- Stable and	
	Unstable Structures- Examples- Degree of Indeterminacy- Concept of	
	Analysis of Indeterminate beams - Definition of Prop-Types of Props-	
	Prop reaction from deflection consideration – Drawing SF and BM	
	diagrams by area moment method for UDL throughout the span, central	
	and non-central concentrated loads - Propped cantilever with	
	overhang – Point of Contra flexure.	
II	2.1 FIXED BEAMS – AREA MOMENT METHOD	9
	Introduction to fixed beam - Advantages -Degree of indeterminacy of	
	fixed beam- Sagging and Hogging bending moments - Determination	
	of fixing end(support) moments(FEM) by Area Moment method -	
	Derivation of Expressions for Standard cases – Fixed beams subjected	
	to symmetrical and unsymmetrical concentrated loads and UDL -	
	Drawing SF and BM diagrams for Fixed beams with supports at the	
	same level (sinking of supports or supports at different levels are not	
	included) – Points of Contra flexure – Problems- Determination of Slope	
	and Deflection of fixed beams subjected to only symmetrical loads by	
	area moment method – Problems.	

II	2.2 CONTINUOUS BEAMS – THEOREM OF THREE MOMENTS	9
	METHOD	
	Introduction to continuous beams - Degree of indeterminacy of	
	continuous beams with respect to number of spans and types of	
	supports -Simple/Partially fixed / Fixed supports of beams- General	
	methods of analysis of Indeterminate structures – Clapeyron's theorem	
	of three moments - Application of Clapeyron's theorem of three	
	moments for the following cases - Two span beams with both ends	
	simply supported or fixed – Two span beams with one end fixed and	
	the other end simply supported – Two span beams with one end simply	
	supported or fixed and other end overhanging -Determination of	
	Reactions at Supports- Application of Three moment equations to	
	Three span Continuous Beams and Propped cantilevers – Problems-	
	Sketching of SFD and BMD for all the above cases.	
III	3.1 CONTINUOUS BEAMS – MOMENT DISTRIBUTION METHOD	10
	Introduction to Carry over factor, Stiffness factor and Distribution factor	
	-Stiffness Ratio or Relative Stiffness- Concept of distribution of un	
	balanced moments at joints - Sign conventions	
	– Application of M-D method to Continuous beams of two / three spans	
	and to Propped cantilever (Maximum of three cycles of distribution	
	sufficient) –Finding Support Reactions- Problems - Sketching SFD and	
	BMD for two / three span beams.	
	3.2 PORTAL FRAMES – MOMENT DISTRIBUTION METHOD	8
	Definition of Frames – Types – Bays and Story - Sketches of	
	Single/Multi Story Frames, Single/Multi Bay Frames- Portal Frame -	
	Sway and Non- sway Frames- Analysis of Non sway (Symmetrical)	
	Portal Frames for Joint moments by Moment Distribution Method and	
	drawing BMD only- Deflected shapes of Portal frames under different	
	loading / support conditions.	

Unit	Name of the Topics	Hours
IV	4.1 COLUMNS AND STRUTS	9
	Columns and Struts – Definition – Short and Long columns – End	
	conditions - Equivalent length / Effective length- Slenderness ratio -	
	Axially loaded short column - Axially loaded long column - Euler's	
	theory of long columns - Derivation of expression for Critical load of	
	Columns with hinged ends - Expressions for other standard cases of	
	end conditions (separate derivations not required) - Problems -	
	Derivation of Rankine's formula for Crippling load of Columns- Factor	
	of Safety- Safe load on Columns- Simple problems.	
	4.2 COMBINED BENDING AND DIRECT STRESSES	9
	Direct and Indirect stresses - Combination of stresses - Eccentric	
	loads on Columns - Effects of Eccentric loads / Moments on Short	
	columns - Combined direct and bending stresses - Maximum and	
	Minimum stresses in Sections– Problems – Conditions for no tension –	
	Limit of eccentricity – Middle third rule – Core or Kern for square,	
	rectangular and circular sections – Chimneys subjected to uniform wind	
	pressure -Combined stresses in Chimneys due to Self weight and	
	Wind load- Chimneys of Hollow square and Hollow circular cross	
	sections only – Problem.	
V	5.1 MASONRY DAMS	8
	Gravity Dams - Derivation of Expression for maximum and minimum	
	stresses at Base – Stress distribution diagrams – Problems – Factors	
	affecting Stability of masonry dams - Factor of safety- Problems on	
	Stability of Dams- Minimum base width and maximum height of dam	
	for no tension at base – Elementary profile of a dam – Minimum base	
	width of elementary profile for no tension - Middle third rule.	
	5.2 EARTH PRESSURE AND RETAINING WALLS	9
	Definition – Angle of repose /Angle of Internal friction of soil- State of	
	equilibrium of soil - Active and Passive earth pressures - Rankine's	
	theory of earth pressure - Assumptions - Lateral earth pressure with	
	level back fill / level surcharge (Angular Surcharge not required)- Earth	
	pressure due to Submerged soils – (Soil retained on vertical back	

Test & Model exam	7 Hrs.
base width for no tension.	
earth retaining walls – Problems to check the stability of walls-Minimum	
Gravity walls - Stress distribution diagrams - Problems - Stability of	
of wall only) – Maximum and minimum stresses at base of Trapezoidal	

Reference Books :

- 1. S. Ramamrutham, "Theory of structures", Dhanpat Rai Publications, New Delhi
- B.C. Punmia, Ashok Jain & Arun Jain," Theory of structures ",Laxmi Publications, 9th Edition, April1992.
- 3. S.B. Junnarkar, Mechanics of structures (Vol.II) Charator Publishing House Anand, Gujarat.
- 4. V.N. Vazirani & M.M. Ratwani, "Analysis of structures", Khanna Publishers, New Delhi.
- 5. R.L. Jindal, "Elementary Theory of Structures", S.Chand Pvt., Co. Ltd.New Delhi.
- 6. Madhan Mohan Dass, "Structural Analysis" PHI Learning Pvt. Ltd., New Delhi.

II YEAR

N-SCHEME

IV SEMESTER

HYDRAULICS

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	HYDRAULICS
Semester	:	IV Semester
Subject Code	:	4010420
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	uctions	Examination			
Subject	Hours/	Hours/	Marks			
	Week Semester			Duration		
			Internal	Board		
HYDRAULICS	6 Hrs.	96 Hrs.	Assessment	Examination	Total	
			25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks

Topics and Allocation of Hours

Unit	Topics	Hours
I	Introduction of measurement of Pressure Hydrostatic Pressure on	20
	Surfaces	
II	Flow of fluids, Flow through Orifices and Mouthpieces, Flow through	20
	Pipes	
	Flow through Notches and Flow through weirs	16
IV	Flow through Open channels	15
V	Pumps	18
	Test & Model Exam	7
	Total	96

RATIONALE:

Subject of hydraulics is a science subject and helps in solving problems in the field of Aeronautical, Electronics, Electrical, Mechanical, Metallurgical Engineering subject. The subject deals with basic concepts and principles in hydrostatics, hydro- kinematics and hydrodynamics and their application in solving fluid flow problems.

OBJECTIVES:

- Define the properties of fluids and their physical quantities.
- List the different types of pressures and various pressure measuring devices.
- Calculate hydrostatic forces on plane surfaces immersed in water.
- Understand types of forces, energy and application of Bernoulli's theorem.
- Know the different types of Orifices and Mouthpieces and to derive discharge formulae and their practical applications.
- State the different losses of head of flowing liquids in pipes and their equations.
- Know the different types of Notches and Weirs, and deriving the discharge formulas and their Practical applications.
- Study the different types of Channels and their discharge formulas and to determine the condition for maximum discharge.
- Learn the construction details, specifications and efficiencies of Reciprocating Pumps and Centrifugal Pumps.

DETAILED SYLLABUS

4010420 - HYDRAULICS

Conter	ts: Theory	
Unit	Name of the Topics	Hours
I	1.1 INTRODUCTION	6
	Hydraulics – Definition - Properties of fluids - Mass, force, weight,	
	specific volume, specific gravity, specific weight, density, relative density,	
	compressibility, viscosity, cohesion, adhesion, capillarity and surface	
	tension - Dimensions and Units for area, volume, specific volume,	
	velocity, acceleration, density, discharge, force, pressure and power.	
	1.2 MEASUREMENT OF PRESSURE	9
	Pressure of liquid at a point - Intensity of pressure - Pressure head of	
	liquid – Conversion from intensity of pressure to pressure head and vice-	
	versa - Formula and Simple problems - Types of pressures - Static	
	pressure, Atmospheric pressure, Gauge pressure, Vacuum pressure and	
	Absolute pressure - Simple problems - Measurement of pressure -	
	Simple mercury barometer - Pressure measuring devices- Piezometer	
	tube - Simple U-tube manometer - Differential manometer – Micrometer -	
	Problems.	
	1.3 HYDROSTATIC PRESSURE ON SURFACES	5
	Pressure on plane surfaces - Horizontal, vertical and inclined surfaces-	
	Total pressure-Centre of pressure - Depth of centre of pressure -	
	Resultant pressure – Problems on Practical application - Sluice gates,	
	Lock gates and Dams- Descriptions.	
II	2.1 FLOW OF FLUIDS	8
	Types of flow – Laminar and turbulent flow - Steady and $unsteady$ flow –	
	Uniform and Non-uniform flow - Equation for continuity of flow (law of	
	conservation of mass) – Energy possessed by a fluid body - Potential	
	energy and Potential Head – Pressure energy and Pressure Head -	
	Kinetic Energy and Kinetic Head - Total Energy and Total Head -	
	Bernoulli's theorem – (No proof) – Problems on Practical applications of	
	Bernoulli's theorem - Venturimeter - Orificemeter (Derivation not	
	necessary) - Simple problems.	

	2.2 FLOW THROUGH ORIFICES AND MOUTHPIECES	6
	Definitions- Types of orifices - Vena contracta and its significance -	
	Hydraulic coefficients Cd, Cv and Cc - Formula - Simple problems -	
	Large orifice – Definition – Discharge formula – Simple problems -	
	Practical applications of orifices – Types of mouthpieces - External and	
	internal mouthpieces - Discharge formula - Simple problems.	
	2.3 FLOW THROUGH PIPES	6
	Definition of pipe-Losses of head in pipes – Major losses - Minor losses -	
	Sudden enlargement, sudden contraction, obstruction in pipes (no proof)	
	- Simple problems – Energy / Head losses of flowing fluid due to friction -	
	Darcy's equation - Chezy's equation (No derivation) – Problems -	
	Transmission of power through pipes – Efficiency - Pipes in parallel	
	connected to reservoir - Discharge formula - Simple problems.	
III	3.1 FLOW THROUGH NOTCHES	6
	Definitions- Types of notches – Rectangular, Triangular and Trapezoidal	
	notches - Derivation of equations for discharges - Simple problems -	
	Comparison of V-Notch and Rectangular Notch.	
	3.2 FLOW THROUGH WEIRS	40
	Definitions - Classification of weirs - Discharge over a rectangular weir	10
	and trapezoidal weir – Derivation – Simple problems – End contractions	
	of a weir – Franci's and Bazin's formula – Simple problems - Cippoletti	
	weir - Problems - Narrow crested weir - Sharp crested weir with free	
	over fall - Broad crested weir - Drowned or Submerged weirs -	
	Suppressed weir - Stepped weir - Problems - Definition of terms -	
	Crest of sill, Nappe or Vein, Free discharge - Velocity of approach -	
	Spillways.	
IV	4.1 FLOW THROUGH OPEN CHANNELS	15
	Definition - Classification - Rectangular and Trapezoidal channels -	
	Discharge – Chezy's formula, Bazin's formula and Manning's formula -	
	Hydraulic mean depth – Problems - Conditions of rectangular/trapezoidal	
	sections - Specific energy, critical depth -Conditions of maximum	
	discharge and maximum velocity - Problems - Flow in a venturiflume -	

Uniform flow in channels - Flow through a sluice gate - Types of	
channels – Typical cross- sections of irrigation canals - Methods of	
measurements of velocities – Channel losses - Lining of canals –	
Advantages of lining of canals - Types of lining- Cement concrete lining	
with sketches - Soil cement lining with sketches - I DPE lining	
with sketches - Son cement inning with sketches – LDF L inning.	10
5.1 PUMPS	18
Pumps – Definition – Difference between a pump and a turbine-	
Classification of pumps - Positive displacement pumps and roto-	
dynamic pressure pumps - Characteristics of modern pumps - Maximum	
recommended suction, lift and power consumed- Reciprocating pump -	
Construction detail and working principle - Types - Single acting and	
Double acting -Slip -Air vessels- Discharge and Efficiency- Problems -	
Centrifugal pump	
Advantages and disadvantages over a reciprocating pump - Layout -	
Construction details - Priming of centrifugal pump - Working of the	
pump – Classification – Functions of Foot valve, Delivery valve and Non-	
return valve – Fundamental equation of centrifugal pump -	
Characteristics of a centrifugal pump – Discharge, power and efficiency	
- Problems - Specifications of centrifugal numps and their sections-	
Hand nump let nump Doop well nump Plunger numpe. Pining	
nand pump - Jet pump Deep well pump - Plunger pumps - Piping	
system- Computation of power required for pumps, Other types of	
pumps (not for exam)- Selection and choice of pump.	
Test & Model Exam	7 Hrs.
	 Uniform flow in channels – Flow through a sluice gate – Types of channels – Typical cross- sections of irrigation canals - Methods of measurements of velocities – Channel losses - Lining of canals – Advantages of lining of canals - Types of lining- Cement concrete lining with sketches - Soil cement lining with sketches – LDPE lining. 5.1 PUMPS Pumps – Definition – Difference between a pump and a turbine-Classification of pumps - Positive displacement pumps and roto-dynamic pressure pumps - Characteristics of modern pumps - Maximum recommended suction, lift and power consumed- Reciprocating pump - Construction detail and working principle - Types - Single acting and Double acting -Slip -Air vessels- Discharge and Efficiency- Problems - Centrifugal pump Advantages and disadvantages over a reciprocating pump - Layout - Construction details – Priming of centrifugal pump – Working of the pump – Classification – Functions of Foot valve, Delivery valve and Nonreturn valve – Fundamental equation of centrifugal pump - Characteristics of a centrifugal pump – Discharge, power and efficiency - Problems - Specifications of centrifugal pumps and their sections-Hand pump - Jet pump- Deep well pump - Plunger pumps - Piping system- Computation of power required for pumps, Other types of pumps (not for exam)- Selection and choice of pump.

Reference Books

- 1. Dr. Jagadish Lal Hydraulics, Fluid Mechanics and Hydraulic Machines-Metropolitan Book Company- New Delhi
- 2. P.N. Modi & S.M. Sethi Fluid Mechanics Standard Publishers New Delhi
- S. Ramamirtham-Hydraulics, Fluid Mechanics and Hydraulics Machines- Dhanpat Rai & Sons, New Delhi
- 4. K.L.Kumar Fluid Mechanics Eurasa Publshing House New Delhi
- 5. R.K. Bansal Fluid Mechanics Lakshmi Publications
- 6. Prof. S. Nagarathinam Fluid Mechanics Khanna Publishers New Delhi
- 7. K.R. Arora Hydraulics, Fluid Mechanics and Hydraulics Machines –Standard Publishers & Distributors, New Delhi
- 8. B C S Rao, "Fluid Mechanics and Machinery" Tata-McGraw-Hill Pvt. Ltd., New Delhi

II YEAR N-SCHEME

IV SEMESTER

TRANSPORTATION ENGINEERING

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMIL NADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-2021 onwards)

Subject Title	:	TRANSPORTATION ENGINEERING
Semester	:	IV Semester
Subject Code	:	4010430
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions			Examination		
Subject	Hours / Week	Hours / Semester	Marks			
	5 Hrs.	80 Hrs.	Internal Assessment	Board Examination	Total	Duration
LIGINEERING			25	100*	100	3 Hrs.

*Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Highway Engineering	15
II	Highway Engineering (Contd.)	15
	Railway Engineering	15
IV	Railway Engineering (Contd.)	14
V	Bridge Engineering	14
	Test & Model Exam	7
	TOTAL	80

RATIONALE:

Construction of roads is one of the areas in which diploma holders in Civil Engineering get employment. These diploma holders are responsible for construction and maintenance of highways. Basic concepts of road geo-metrics, surveys and plans, elements of traffic engineering, road materials, construction of rigid and flexible pavements, special features of hill roads, road drainage system and various aspects of maintenance find place in above course.

In addition, this subject will cater the needs of those technicians who would like to find employment in the construction of railway tracks, bridges. The subject aims at providing broad based knowledge regarding various components and construction of railway track, bridges.

OBJECTIVES:

- Study the importance of the roads, development of roads and classification of roads.
- Know about highway pavements, Geometrical design, Traffic controls, Road Arboriculture and Highway Lighting
- Study the highway alignment, road machineries and construction of different types of Roads
- Study the Railway fixtures, Types of stations, Signalling and Control of movement of trains
- Study the Maintenance of Track and Rapid Transport System of Railways
- Know about Bridges, Classifications and its Components

DETAILED SYLLABUS

4010430 - TRANSPORTATION ENGINEERING

Contents: Theory

Unit	Name of the Topic	Hours
	HIGHWAY ENGINEERING	
	1.1 INTRODUCTION	3
	General – Development of Roads in India - Modes of transportation -	
	Nagpur Plan - Ribbon development - Advantages of Roads -	
	Importance of roads in India - Requirements of an ideal road - Indian	
	Road Congress - Objects of Highway planning - Classifications of	
	Highways.	
	1.2 HIGHWAY PAVEMENTS	2
	Objectives - Types of Pavement - Flexible and Rigid Pavements -	
	Comparative study of Flexible and Rigid pavements - Factors affecting	
	the design of pavements - Other types of pavements (Description	
	not reqd.)	
	1.3 GEOMETRICAL DESIGN OF HIGHWAYS	3
	General - Road structure - Right of way - Land width - Width of	
	formation - Road Camber - Super elevation - Sight distances - Road	
	gradient - Road Curves - Horizontal curves - Vertical curves - Types -	
	Widening of pavement on horizontal curves.	
	1.4 TRAFFIC ENGINEERING	3
	Objectives - Traffic surveys - Road accidents - Causes of road	
	accidents - Preventive measures - Parking - Methods of parking - Road	
	junctions (Grade intersections and Grade separators) - Traffic signals	
	- Advantages - Types of road signs - Expressways.	

I	1.5 SUB GRADE SOIL	2
	Significance - Soil mass as a three phase system - Grain size	
	classification - Atterberg limits - Definition and description - I S	
	Classification of soils - Compaction - Definition - Objects of	
	compaction - Standard Proctor Compaction test - Shear strength -	
	Definition - importance - Direct shear test.	
	1.6 ROAD ARBORICULTURE AND LIGHTING	2
	Objects of Arboriculture - Selection of trees - Location of trees -	
	Highway lighting - Benefits.	
- 11	HIGHWAY ENGINEERING (Contd.)	
	2.1 HIGHWAY ALIGNMENT AND SURVEYS	3
	Definition - Principles for ideal highway alignment - Factors affecting	
	highway alignment - Surveys - Engineering surveys - Reconnaissance,	
	Preliminary and Location surveys - Project Report and Drawings -	
	Highway Re-alignment projects.	
	2.2 ROAD MACHINERIES	2
	Excavating equipments - Tractor, Bull dozer, Grader, Scraper, J C B	
	- Compaction equipments - Road roller - Types and description -	
	Equipment for Bituminous road.	
	2.3 LOW COST ROADS	3
	General - Classifications - Earthen road, Gravel road, Water Bound	
	Macadam roads - Construction with sketches - Advantages and	
	disadvantages - Maintenance - Soil stabilization - Methods.	
	2.4 BITUMINOUS ROADS	3
	General - Advantages and disadvantages - Bituminous materials used	
	- Types of Bituminous roads - Surface dressing - Types - Bituminous	
	Concrete - Maintenance of Bituminous roads.	

	2.5 CEMENT CONCRETE ROADS	2
	General - Advantages and disadvantages - Methods of construction of	
	cement concrete roads with sketches - Construction procedure for	
	concrete roads.	
	2.6 HILL ROADS	2
	Factors considered in alignment - Formation of hill roads - Hair pin	
	bends - Retaining and Breast walls.	
III	RAILWAY ENGINEERING	
	3.1 INTRODUCTION	3
	Introduction to Railways - Classifications of Indian Railways - Rail	
	Gauges - Types - Uniformity in gauges - Loading gauge -	
	Construction gauge.	
	3.2 RAILS	4
	General - Functions of rails - Requirements of an ideal rail - Types of	
	rail sections - Length of rails - Welding of rails - Wear of rails -	
	Coning of wheels - Hogged rails - Bending of rails - Creep of rails -	
	Causes and prevention of creep.	
	3.3 SLEEPERS AND BALLAST	4
	Functions of Sleepers - Types of sleepers - Requirements of sleepers -	
	Materials for sleepers - Sleeper density - Ballast- Functions of Ballast -	
	Requirements of ballast - Materials used as ballast.	
	3.4 RAIL FASTENINGS AND PLATE LAYING	3
	Rail joints - Types - Rail fastenings - Fish plates - Fish bolts	
	Spikes - Chairs and Keys - Bearing plates - Blocks- Elastic	
	fastenings - Anchors and anti-creepers - Plate laying Methods of	
	plate laying - PQRS method of relaying.	
	3.5 MAINTENANCE OF TRACK	1
	Necessity - Maintenance of Track, Bridges and Rolling stock.	

IV	RAILWAY ENGINEERING (Contd.)	
	4.1 STATIONS AND YARDS	3
	Definition of station - Purpose of railway station - Types of stations -	
	Wayside, Junction and Terminal stations - Platforms - Passenger	
	and Goods platforms - Definition of Yard - Types of yard -	
	Passenger yard, Goods yard, Marshalling yard and Locomotive	
	yards - Level crossings.	
	4.2 STATION EQUIPMENTS	2
	General - Engine shed - Ash pits - Examination pits - Drop pits -	
	Water columns - Triangles - Turn table - Traversers - Scotch Block -	
	Buffer stops - Fouling marks - Derailing switch - Sand hump -	
	Weigh bridges.	
	4.3 POINTS AND CROSSINGS	2
	Purpose - Some definitions - Turnouts - Right hand and left hand	L
	turnouts -Sleepers laid for points and crossings - Types of	
	switches - Crossings - Types of crossings.	
	4.4 SIGNALLING	3
	General - Objects of signalling - Types of signalling - Based on	
	function and location - Special signals - Control of movement of	
	trains - Different methods - Following train system - Absolute block	
	system - Automatic signalling - Pilot guard system - Centralized traffic	
	control system.	
	4.5 INTERLOCKING	2
	Definition - Principles of interlocking - Methods of interlocking -	
	Tappets and locks system - Key system - Route relay system	
	Improvements in interlocking and signalling.	
	4.6 RAPID TRANSPORT SYSTEM	2
	General - Underground railways - Advantages - Tube railways - Its	
	features.	

V	BRIDGE ENGINEERING	
	5.1 INTRODUCTION	2
	Bridge: Definition - Components of bridge - IRC loadings - Selection of	
	type of bridge - Scour - Afflux - Economic span - Waterway - Factors	
	governing the ideal site for bridge - Alignment of bridge - Factors to	
	be considered in alignment.	
	5.2 FOUNDATIONS	2
	Functions of foundation - Types of foundations - Selection of	
	foundations - Control of ground water for foundation - Caisson	
	foundation - Coffer dam – Types.	
	5.3 CLASSIFICATION OF BRIDGES	3
	Classification according to IRC loadings, Materials, Bridge floor, Type	
	of superstructure - Culverts and Cause ways - Classifications with	
	sketches - Conditions to construct causeways.	
	5.4 SUBSTRUCTURE	2
	Abutments - Types - Piers - Types - Wing walls - Types.	-
	5.5 SUPERSTRUCTURE	4
	Types - Description - Simple bridge - Types according to bridge floor	4
	- Continuous bridge - Cantilever bridge - Balanced cantilever	
	bridge - Arch bridge - Bow-string girder type bridge - Rigid frame	
	bridge - Suspension bridge - Continuous steel bridges - Steel arched	
	bridges.	
	5.6 BRIDGE BEARINGS	1
	Definition - Purpose - Importance of bearings - Types of bearings -	
	Elastomer bearings - Pot bearings.	
	Test & Model Exam	7 Hrs.

Reference Books

- 1. S.K.Khanna and C.E.G Justo, "Highway Engineering", Nem Chand and Bros, Roorkee.
- 2. RANGWALA, "Highway Engineering", Charotor Publishing House Pvt. Ltd., Edition 2010
- 3. RANGWALA, "Railway Engineering", Charotor Publishing House Pvt. Ltd., Edition 2010
- 4. RANGWALA, "Bridge Engineering", Charotor Publishing House Pvt. Ltd., Edition 2009
- 5. S P CHANDOLA, "A Text Book of Transportation Engineering" S Chand & Company Ltd.,
- 6. G V RAO, "Principles of Transportation & Highway Engineering" Tata McGraw-Hill Publishing Company Ltd.,
- 7. Madhan Mohan Dass, "Structural Analysis" PHI Learning Pvt. Ltd., New Delhi.

II YEAR N-SCHEME

IV SEMESTER HYDRAULICS LABORATORY

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

- Course Name : 1010: DIPLOMA IN CIVIL ENGINEERING
- Subject Code : 4010440
- Semester : IV Semester
- Subject Title : HYDRAULICS LABORATORY

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instr	uctions	Examination			
Subject	Hours / Week	Hours / Semester	Marks		Duration	
HYDRAULICS	4 Hrs.	64 Hrs.	Internal Assessment	Board Examination	Total	Duration
LABORATORT			25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Subject of hydraulics lab is a practical subject which deals with the basic concepts and principles in hydrostatics, hydro-kinematics and hydrodynamics and their applications in solving fluid flow problems.

OBJECTIVES:

- Understand parameters associated with fluid flow and hydrostatic pressure.
- Measure the fluid pressure using manometers
- Determine the co-efficient of discharges of Orifice, mouthpiece, orifice meter, venturimeter, notches etc.,
- Determine pipe friction factor
- Draw the characteristic curves for centrifugal and Reciprocating pumps.

DETAILED SYLLABUS 4010440 - HYDRAULICS LABORATORY

Contents: Practical

List of Experiments

Flow of Fluids:

1. Verification of Bernoulli's theorem.

- 2. Flow through Venturimeter Determination of Co-efficient of Discharge.
- Flow through Orificemeter Determination of Co-efficient of Discharge.
 Flow through orifice:
- 4. Determination of Co-efficient of Discharge by Time fall Head method
- Determination of Co-efficient of Discharge by Constant head method.
 Flow through external cylindrical mouth piece:
- 6. Determination of Co-efficient of Discharge by Timing fall in head method
- Determination of Co-efficient of Discharge by Constant head method Flow through pipes:
- Determination of friction factor for the given GI pipe / PVC pipe.
 Flow through notch:
- Determination of Co-efficient of Discharge for Rectangular Notch / V-Notch
 Pumps:
- 10. Reciprocating pump To draw characteristic curves and determine the efficiency
- 11. Centrifugal pump To draw characteristic curves and determine the efficiency
- 12. Study of working principle of a pelton wheel.

64 Hrs.
4010440 - Hydraulics Laboratory

DETAILED ALLOCATION OF MARKS

S.No	Description	Marks
1	Procedure	10
2	Tabulation and Observation	35
3	Calculations	30
4	Sketch / Graph	15
5	Accuracy of result	5
6	Viva-Voce	5
	Total	100

LIST OF EQUIPMENTS (for a batch of 30 students):

S.No.	List of Equipments required	Quantity required
1.	Bernoulli's theorem apparatus (closed circuit)	1 No.
2.	Venturimeter/Orificemeter apparatus (closed circuit) with all accessories	1 No.
3.	Pipe Friction apparatus (closed circuit) with all accessories	1 No.
4.	Orifice/Mouthpiece apparatus (closed circuit) with all accessories	1 No.
5.	Notch apparatus (closed circuit) with accessories	1 No.
6.	Reciprocating Pump test rig with accessories	1 No.
7.	Centrifugal Pump test rig	1 No.
8	Pelton wheel	1 No.

II YEAR N-SCHEME

IV SEMESTER

MATERIAL TESTING LABORATORY- II

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N -SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	MATERIAL TESTING LABORATORY- II
Semester	:	IV Semester
Subject Code	:	4010450
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instr	uctions	Examination			
Subject	Hours/	Hours/	Marks			
	Week	Semester			Duration	
MATERIAL			Internal	Board	Total	
TESTING	3 Hrs	48 Hrs	Assessment	Examination	10tai	
LABORATORY- II			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The understanding of the structural, physical and mechanical properties and behaviour of engineering materials is at the very core of engineering design. A command of this knowledge is essential for all civil engineers. This laboratory provides hands-on experience with the testing and evaluation of civil engineering materials, including sand, clay, fine aggregates, course aggregates and water.

OBJECTIVES:

On completion of the course, the students will be able to:

- Test the properties of fine aggregate and coarse aggregate.
- Test the properties of soil.
- Analyse the properties of water/waste water

DETAILED SYLLABUS

4010450 - MATERIAL TESTING LABORATORY- II

Contents: Practical

LIST OF EXPERIMENTS

PART A

24 Hours

Total: 48 Hrs.

- 1. Determination of Voids ratio and porosity of sand.
- 2. Determination of liquid limit and plastic limit of the given soil.
- 3. Determination of bulk density and specific gravity of Fine aggregates.
- 4. Determination of bulk density and specific gravity of Coarse aggregates.
- 5. Proctor's compaction test on soil.
- 6. Direct shear test on sand.
- 7. Field Density of Soil by core cutter method / sand replacement method.

PART B

1. Attrition test on Aggregate.

- 2. Abrasion test on Aggregate.
- 3. Aggregate crushing value test.
- 4. Aggregate impact value test.
- 5. Determination of Water absorption of coarse aggregate.

PART C

10 Hours

14 Hours

- 1. Determination of Total solids present in the given sample of water.
- 2. Determination of Turbidity of water by "Jackson candle turbidity meter."
- Determination of settleable solids present in the given sample of water/ waste water by "Imhoff cone."
- 4. Determination of Organic and inorganic matters present in the given sample of water.

4010450 - MATERIAL TESTING LABORATORY- II

SCHEME OF EXAMINATION:

In the examination question has to be given either as a single question from Part A or two questions, one from Part B and another from Part-C.

S.No	Description	Part - A Max.Marks (95)	Part - B Max.Marks (50)	Part - C Max.Marks (45)	
1.	Procedure	10	5	5	
2.	Tabulation and Observation	40	25	20	
3.	Calculations	30	10	10	
4.	Sketch / Graph	10	5	5	
5.	Accuracy of result	5	5	5	
	TOTAL	95	50	45	
	VIVA VOCE	5	5		
	GRAND TOTAL	100	100		

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for a batch of 30 students):

S.No.	List of equipments required	Quantity Required
1.	Pycnometer	4 nos.
2.	Liquid limit device with all accessories	2 nos.
3.	Field density of soil apparatus (sand pouring cylinder) with complete set	2 nos.
4.	Proctor compaction mould with all accessories	2 nos.
5.	Direct shear machine with complete accessories	1 no.
6.	Devals attrition testing machine with complete accessories	1 no.
7.	Dorry's abrasion testing machine with complete accessories	1 no.
8.	Aggregate impact testing machine with complete accessories	1 no.
9.	Crushing strength apparatus	1 no.
10.	Jackson Candle Turbidity Meter	1 no.
11.	Imhoff Cone	1 no.

II YEAR N-SCHEME

IV SEMESTER

CONSTRUCTION PRACTICE LABORATORY

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	CONSTRUCTION PRACTICE LABORATORY
Semester	:	IV Semester
Subject Code	: `	4010460
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instr	uctions	Examination			
Subject	Hours / Week	Hours / Semester	Marks			
CONSTRUCTION PRACTICE			Internal Assessment	Board Examination	Total	Duration
LABORATORY	4 Hrs.	64 Hrs.	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Diploma holders in Civil Engineering are supposed to supervise construction of buildings. To perform the above task, it is essential that students should have knowledge of various sub components of buildings like foundations, walls, roofs, stair cases, floors etc., and their constructional details. Therefore, the subject of Construction Practice is very important for Civil Engineering diploma holders.

OBJECTIVES:

On completion of the course, the students will be able to:

- Prepare center line plan and foundation plan for a building.
- Set out foundation in the field for spread footing and column footing for a building.
- Determine the Workability of concrete by Compacting factor, slump cone test and Vee Bee consistometer test.
- Cast Concrete cubes and to test for compressive strength.
- Determine the fineness Modulus of fine and coarse aggregate.
- Perform Shape test on coarse aggregate.
- Determine the bulking characteristics of the given sand.
- Perform Non-Destructive test on hardened concrete

DETAILED SYLLABUS

4010460- CONSTRUCTION PRACTICE LABORATORY

Contents: Practical

List of Experiments

Part A

30 Hrs.

Total:64 Hrs.

- 1. Identify various sizes of available coarse aggregates from sample of 10 kg in laboratory and prepare report (60,40, 20,10 mm)
- 2. Identify the available construction materials in the laboratory on the basis of their sources.
- 3. Identify the grain distribution pattern in given sample of teak wood in the laboratory and draw the various patterns. (along and perpendicular to the grains)
- 4. Identify various layers and types of soil in foundation pit by visiting at least 3 construction sites in different locations of city and prepare report consisting photographs and samples.
- 5. Select first class, second class and third class bricks from the stake of bricks and prepare report on the basis of its properties.
- Measure dimension of 10 bricks and find average dimension and weight. Perform field tests - dropping, striking and scratching by nail and correlate the results obtained.
- 7. Apply the relevant termite chemical on given damaged sample of timber.
- Apply two or more coats of selected paint on the prepared base of a given wall surface for the area of 1m x 1m using suitable brush/ rollers adopting safe practices.
- 9. Prepare mortar using cement and Sand/ Fly ash or Granite/marble polishing waste in the proportion 1:6 or 1:3.

- 10. Prepare and develop a centre line plan, foundation Plan and set out spread footing in the field for the given line sketch of a building.
- 11. Prepare and develop a centre line plan, foundation Plan and set out the layout of columns and footing in the field for the given line sketch of a building (Framed structure).
- 12. Arrangement of bricks using English bond for one brick thick wall and one and half brick thick wall for right angled corner junction.
- 13. Arrangement of bricks using English Bond for one brick thick wall, one and half brick thick wall for Tee junction.
- 14. Arrangement of bricks using English bond for one brick thick,one and half and two brick thick square pillars.
- 15. Straightening, cutting, hooking and bending and arrangement of Steel reinforcement bars.

a. Singly reinforce beam b. Lintel and Sunshade c. Column and footing

SCHEME OF EXAMINATION:

In the examination the students have to be given two experiments one from Part A and another from Part-B.

S No	Description	Part – A	Part – B	
3.140	Description	Max. Marks(35)	Max.Marks (60)	
1.	Procedure	5	5	
2.	Tabulation and Observation	20	25	
3.	Calculations/Field work		20	
4.	Sketch / Graph		5	
5.	Accuracy of result/ Report	10	5	
	Viva Voce	5		
	Total	100		

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for a batch of 30 students):

SI.No.	List of Equipments Required	Quantity Required
1.	Pegs, thread, cranking tools	As required
2.	Consumables like Bricks, aggregate, paints, Fly ash,	As required
	polish, steel rods	

II YEAR

N-SCHEME

IV SEMESTER SURVEYING PRACTICE-II

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING
Subject Code	:	4010470
Semester	:	IV Semester
Subject Title	:	SURVEYING PRACTICE-II

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks			Duration
SURVEYING			Internal Assessment	Board Examination	Total	Duration
PRACTICE-II	4 Hrs.	64 Hrs.	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The important functions of a civil technician include the jobs of detailed surveying, plotting of survey data, preparation of survey maps and setting out works. While framing the curriculum for the subject of surveying, stress has been given to the development of the skill in each type of survey like Theodolite surveying, Tachometric surveying and surveying using Total station that the Civil Engineering diploma holder will normally be called upon to perform.

OBJECTIVE:

At the end of the course, students will have experiences:

- In handling surveying equipments
- To do practical exercises in Theodolite surveying,
- To do Tachometric surveying
- To do surveying using Total station.

DETAILED SYLLABUS

4010470 - SURVEYING PRACTICE- II

Contents: Practical

LIST OF EXPERIMENTS

PART A: THEODOLITE SURVEYING

- 1. Study of a Theodolite Temporary adjustments Reading horizontal angles.
- 2. Measurement of horizontal angle by:
 - i. Reiteration method (not for Exam)
 - ii. Repetition method (not for Exam)
- Determination of distance between two points when their bases are accessible, using Theodolite – Measuring Horizontal angles by repetition method and distances from a Theodolite Station.
- Determination of distance between two points when their bases are inaccessible, using Theodolite – Measuring Horizontal angles by reiteration method from a baseline.
- 5. Measurements of vertical angles to different points.
- 6. Determination of Elevation of an object when the base is accessible.
- 7. Determination of Elevation of an object when the base is inaccessible by :
 - a) Single plane method
 - b) Double plane method.
- 8. Run a closed theodolite traverse for measuring length, included angles and bearing at initial Station and Plot the traverse.

PART B: TACHEOMETRIC SURVEYING

- 8. Determination of constants of a tacheometer.
- 9. Determination of distance and elevation of points by Stadia tacheometry.
- 10. Determination of gradient between two points (with different elevations) by Stadia tacheometry.
- 11. Determination of distance and elevation of points by Tangential tacheometry.

12 Hrs.

20 Hrs.

Total:64 Hrs.

PART C: TOTAL STATION

- 12. Study of Total Station General commands used Instrument preparation and setting Reading distances and angles.
- 13. Measurement of distances and co-ordinates of given points, using Total station.
- 14. Measurement of altitude of given elevated points, using Total Station.
- 15. Run closed traverse using Total Station and plotting the traverse.
- 16. Determination of area of a field / land / College Campus etc. using Total station.

SURVEY CAMP : (Outside/Inside the Campus)

Duration: 4 days

The objective of the survey camp is to enable the students to get practical training in the field work. Groups of not more than six members in a group will carry out each exercise in Survey camp. The camp must involve work on a large area of not less than 10 acres outside/Inside the campus. At the end of the camp, each student shall have mapped and contoured the area. The camp record shall include all original field observations, calculations and plotting. Three working days and one Saturday will be used for the Camp work during the 14th week.

20 marks to be allotted for Survey file in the Board Examination for the works carried out by the students in survey camp:

- i. L.S and C.S for a road / canal alignment
- ii. Radial Tachometric contouring
- iii. Contouring by block levels
- iv. Curve setting by deflection angle
- v. Theodolite / Tacheometric traverse (Balancing the traverse by Bowditch rule)
- vi. Total Station (Closed Traverse) Plotting & Finding the area of the given field.

11 Hrs

4010470 - SURVEYING PRACTICE - II

SCHEME OF EXAMINATION:

In the examination the students have to be given two experiments one from Part A or Part B and another from Part-C.

S.No	Description	Part – A/ B Max. Marks (45)	Part - C Max. Marks (30)	
1.	Procedure	5	5	
2.	Tabulation and Observation	20	10	
3.	Calculations	10	5	
4.	Sketch / Graph	5	5	
5.	Accuracy of result	5 5		
	Total	45	30	
	Survey Camp	20		
	Viva Voce	5		
	GRAND TOTAL	100		

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for a batch of 30 students):

SI.No.	List of Equipments Required	Quantity Required
1.	Vernier Theodolite	6 nos.
2.	Total Station	3 nos.

III YEAR N-SCHEME

V SEMESTER

STRUCTURAL ENGINEERING

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	STRUCTURAL ENGINEERING
Semester	:	V Semester
Subject Code	:	4010510
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instr	uctions		Examination		
Subject	Hours /	Hours /	Marks			
	Week	Semester	Waiks			
STRUCTURAL			Internal	Board	Total	Duration
	6 Hrs.	96 Hrs.	Assessment	Examination	TOLAI	
			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 Marks and converted to 75 Marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Reinforced cement concrete structures	18
п	Design of T-beams and lintels for flexure by LSM	
	Design of Continuous Beams for flexure and shear by LSM	17
	Design of one way Slabs and Stair cases by LSM	20
	Design of two way Slabs by LSM	20
11/	Design of columns by LSM	
IV	Design of Column Footings	16
V	Steel Structures	18
	Test & Model Exam	7
	Total	96

RATIONALE:

This subject is an applied engineering subject. Diploma holders in Civil Engineering will be required to supervise RCC construction. They may also be required to design simple structural elements, make changes in design depending upon the availability of materials (bars of different diameters). This subject thus deals with elementary design principles as per BIS code of practice BIS: 456 – 2000 by limit state method.

OBJECTIVES:

On completion of the course the students should be able to:

- Analyse and design simple RCC elements like singly / doubly reinforced rectangular beams, and singly reinforced T-beams (Cantilevers, Simply supported/ Continuous beams, Lintels etc.) for shear and flexure by limit state method;
- Design One way/ Two way slabs and Staircases by limit state method;
- Design Axially loaded Columns and Footings by limit state method;
- Design simple Steel members like Laterally supported Beams, Tension members, Compression members and Welded connections by limit state method.

DETAILED SYLLABUS 4010510-STRUCTURAL ENGINEERING

Contents: Theory

Unit	Name of the Topics	Hours
I	REINFORCED CEMENT CONCRETE STRUCTURES	
	1.1 INTRODUCTION TO WORKING STRESS AND LIMIT STATE	8
	METHOD	
	Reinforced Cement Concrete- Materials used in R.C.C and their basic	
	requirements – Purpose of providing reinforcement – Different types and	
	grades of cement and steel - Characteristic strength and grades of	
	concrete – Behaviour of R.C members in bending-Modular ratio and	
	Equivalent area of R.C.Sections – Different types of loads on structures	
	as per IS: 875-1987 - Different methods of design.	
	Working Stress Method-Assumptions made in the W.S.M- Singly	
	reinforced rectangular sections - Strain and stress distribution due to	
	bending – Actual and Critical neutral axes – Under / Over reinforced	
	sections- Balanced sections - Lever arm - Moment of resistance of	
	singly reinforced rectangular sections (No problems).	
	Limit State Method - Concept –Advantages- Different limit states-	
	Characteristic strength and design strength of materials – Characteristic	
	loads and design loads - Partial safety factors for loads and material	
	strength - Limit state of collapse in flexure – Assumptions – Stress Strain	
	curves for concrete and steel – Stress block – Maximum strain in	
	concrete – Limiting values of neutral axis of singly reinforced section for	
	different grades of steel -Design stress in tension and compression	
	steel- Moment of resistance of singly and doubly reinforced rectangular	
	sections– Problems.	
	1.2 DESIGN OF RECTANGULAR BEAMS FOR FLEXURE BY L.S.M	
	Design requirements-Effective spans of cantilever and simply supported	

	beams – Breadth and depth requirements of beams – Control of deflection – Minimum depth requirement for stiffness – Minimum concrete cover to reinforcement steel for durability and fire resistance – Minimum and maximum areas/ spacing for main reinforcement and side face reinforcement as per IS 456 -2000 - Development Length-Anchorage values of bends and hooks - Curtailment of reinforcements- Design bending moments – Design of singly and doubly reinforced rectangular beams (Cantilevers and Simply supported beams carrying udl only)- Problems- Practice on using Design Aids, SP16 (Description only).	10
11	2.1 DESIGN OF T-BEAMS AND LINTELS FOR FLEXURE BY L.S.M Cross sections of Tee and L-beams- Effective width of flange- Neutral Axis and M.R of Singly Reinforced T-Sections- Design of singly reinforced T-beams for flexure–Problems on Simply supported T- beams carrying udl only – Loads on Isolated Lintels over openings of masonry walls - Design B.M for isolated lintels carrying rectangular/triangular loads- Design of Lintel- Simple problems	8
	 2.2 DESIGN OF CONTINUOUS BEAMS FOR FLEXURE AND SHEAR BY L.S.M Methods of analysis of continuous beams- Effective Span- Arrangement of Loading for Critical Bending Moments- B.M coefficients specified by IS:456-200-Design of rectangular continuous beams (Singly and Doubly Reinforced) using B.M. coefficients (equal spans & u.d.l only) for sagging and hogging moments. Limit state of collapse in shear – Design shear strength of concrete – Design shear strengths of vertical / inclined stirrups and bent up bars – Principle of shear design – Critical sections for shear- S.F Coefficients specified by IS:456- 2000– Nominal shear stress –Minimum shear reinforcement- Design of vertical stirrups for rectangular beams using limit state method –Simple problems- Practice on use of Design Aids (Description only). 	9

III	3.1 DESIGN OF ONE WAY SLABS AND STAIRCASES BY L.S.M	12
	Classification of Slabs – Effective spans – Loads (DL and IL) on	
	floor/roof slabs and stairs (IS: 875-1987) – Strength and Stiffness	
	requirements –Minimum and maximum permitted size, spacing and area	
	of main and secondary reinforcements as per IS 456 - 2000- Cover	
	requirement to reinforcements in slabs- Design of cantilever/simply	
	supported one way slabs and sunshades by limit state method – Design	
	of continuous slabs using B.M coefficients- Check for shear and stiffness	
	- Curtailment of tension reinforcement -Anchoring of reinforcement-	
	Practice in designing slabs using design aids (Description only).	
	Types of stairs according to structural behaviour- Requirements of	
	Stairs- Planning a staircase – Effective span of stairs – Effective	
	breadth of flight slab- Distribution of loads on flights – Design of	
	cantilever steps – Design of doglegged stairs spanning parallel to the	
	flight - Planning of open well staircase.	
	3.2 DESIGN OF TWO WAY SLABS BY L.S.M	8
	Introduction –Effective spans –Thickness of slab for strength and	Ū
	stiffness requirements - Middle and Edge strips – B.M coefficients as per	
	IS:456 – Design B.Ms for Simply supported, Restrained and Continuous	
	slabs – Tension and Torsion reinforcement requirement– Design of two	
	way slabs using B.M. coefficients - Curtailment of reinforcement -	
	Check for stiffness only.	

IV	4.1 DESIGN OF COLUMNS BY L.S.M	8
	Limit state of collapse in compression – Assumptions - Limiting strength	
	of short axially loaded compression members - Effective length of	
	compression members – Slenderness limits for columns – Classification	
	of columns -Minimum eccentricity for column loads - Longitudinal and	
	Transverse reinforcement requirements as per I S 456-2000 – Cover	
	requirement - Design of axially loaded short columns with lateral ties /	
	helical reinforcement - Practice on use of Design Aids (Description	
	only).	
		8
	4.2 DESIGN OF COLUMN FOOTINGS	
	Basic requirements of Footings-Types of R.C footings –Minimum depth	
	below GL- Footings with uniform thickness and varying thickness	
	(sloped footing) – Critical sections for BM, Transverse/Punching Shears	
	- Minimum reinforcement, Distribution of reinforcement, Development	
	length, Anchorage, Cover, Minimum edge thickness requirements as per	
	IS 456- 2000 – Design of Isolated footing (square and rectangular) with	
	uniform/ varying thickness by limit state method- For Examination :	
	Problem either on (i) Designing Size of Footing and Area of tension steel	
	for flexure only for the given Column load and SBC of soil, or on (ii)	
	Checking the footing for Punching shear and Transverse shear only, for	
	the given sizes and other required details of the footing.	
V	STEEL STRUCTURES	9
	5.1 DESIGN OF TENSION AND COMPRESSION MEMBERS BY L.S.M	
	General- Characteristic Actions, Partial Safety Factors for Loads, Design	
	Actions- Ultimate Strength, Partial Safety Factors for Materials, Design	
	Strengths of Materials - Rolled Steel Sections - Different forms of	
	Tension members – Gross area, Net area and Net Effective sectional	
	area of Tension members- Maximum permitted values of Effective	
	Slenderness Ratio – Design Strength of single angle Tension members	
	against Yielding of Gross section and Rupture of Critical section -	
	Block Shear (Description only) - Design of ties using single	
	angles and channel sections.	

Different forms of Compression members- Classification of Cross
sections- Limiting Width to Thickness Ratio- Effective sectional area-
End Conditions and Effective length of Compression members -
Maximum permitted values of Slenderness ratio - Imperfection factor
and Stress reduction factor- Design Strength of Compression members-
Problems — Design of single angle and double angle Struts – Design of
steel columns using rolled steel sections (Symmetrical sections only)
without cover plates. (Lacing and battens not included).

5.2 DESIGN OF SIMPLE BEAMS AND WELDED CONNECTIONS BY L.S.M

Classification of Steel beams –Effective span- Design principles-Minimum thickness of Web-Design Strength in Bending/ Shear- Limiting deflection of beams - Lateral buckling of beams – Maximum permitted Slenderness Ratio- Plastic Moment of Resistance and Plastic Section Modulus of Sections- Shape Factor — Design of laterally supported Simple beams using single / double rolled steel sections (symmetrical cross sections only) (Built-up beams not included).

Types of welds – Size, Effective area and Effective length of Fillet welds – Requirements of welds-Stresses in Welds –Design strength of fillet/ butt welds – Lap and butt joints for angles only – Simple Problems -Procedure for design of welded connections for Plates and Angles (Theory only).

Test & Model Exam

9

Reference Books:

- 1. S.R.Karve and V.L.Shah," Limit state Theory and Design of Reinforced Concrete",Pune Vidya Griha Prakashan.
- P C Varghese," Limit state Design of Reinforced Concrete", PHI Learning Pvt. Ltd",2011.
- Dr.S.Ramachandra, "Limit State Design of Concrete Structures", Scientific publishers, 2004.
- 4. Mallick and Rangasamy,"Reinforced Cement Concrete" Oxford-IBH.
- N Krishnaraju, "Reinforced Concrete Design" New Age International Publications, 2012
- 6. B C Punmia, "Limit State Design of Reinforced Concrete", Laxmi Publications, 2007
- 7. B C Punmia, "R C C Designs", Laxmi Publications, 2006
- 8. S S Bhavikatti, " Design of R C C and Structural Elements" (RCC Vol I), New Age International Publications, 2011
- 9. IS 456-2000 ; I S 875-1987; I S 800 -2007.
- 10. Explanatory hand book SP24, Design Aid SP 16, Detailing of Reinforcement, SP 34
- 11. M.R.Shiyekar "Limit State Design in Structural Steel", PHI Learning Pvt Ltd, 2011

III YEAR N-SCHEME

V SEMESTER

ENVIRONMENTAL ENGINEERING

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students Admitted from the year 2020-2021 onwards)

Course Name : 1010: DIPLOMA IN CIVIL ENGINEERING

Subject Code : 4010520

Semester : V Semester

SubjectTitle : ENVIRONMENTAL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instru	Instructions		Examination		
Subject	Hours / Week	Hours / Semester	Marks		Duration	
	5 Hrs.	80 Hrs.	Internal Assessment	Board Examination	Total	Duration
ENGINEERING			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Topics	Hrs.
Ι	Water Supply Engineering: Introduction, Quantity of Water, Source of Water, Intakes and conveyance	15
Ш	Quality of Water, Primary treatment of water, Filtration of water, Disinfection of water and water softening.	15
III	Distribution system and preparation of water supply scheme or project.	15
IV	Sanitary Engineering: Collection and conveyance of sewage, Seaware appurtenances.	14
V	Primary Treatment of water, Secondary treatment of water, solid waste disposal, sludge waste disposal and preparation of sanitary scheme or project.	14
	Test & Model Exam	7
	Total	80

RATIONALE:

Diploma holders in Civil Engineering are expected to supervise construction of water supply and waste water treatment works. They are also responsible for waste disposal activities. This subject aims at imparting skills for preparing water supply and waste water engineering drawings to develop competencies for reading the drawings, and their execution in their field.

In addition, Civil Engineering diploma holders must have the knowledge of different types of environmental aspects due to development activities so that they may help in maintaining the ecological balance and control pollution. They should also be aware of the environmental laws for effectively combating environmental pollution.

OBJECTIVES:

On completion of the course, the student will be able to:

- Know the procedure of estimating water requirements for a water supply scheme.
- Select suitable sources of water supply and pipe materials.
- Determine the quality of water, testing procedures and standards for drinking water.
- Understand the methods of purification of water.
- Understand the systems of distribution for a water supply scheme.
- Understand the basic facts of sanitary engineering, the methods of collection and conveyance of sewage.
- Understand the primary and secondary treatment of sewage and disposal.
- Know the methods of disposal of sludge and solid wastes.
- Identify the various types of pollution and their prevention.
- Create awareness about environmental impact assessment.

DETAILED SYLLABUS

4010520-ENVIRONMENTAL ENGINEERING

Contents: Theory

Unit	Name of the Topics	Hours
I	PART I - WATER SUPPLY ENGINEERING	
	1.1 INTRODUCTION	3
	Water Supply - Salient Features of a Water Supply Scheme - Flow	
	Chart of a Water Supply Scheme- Agencies responsible for protected	
	water supply.	
	1.2 QUANTITY OF WATER	4
	Water Supply - Need for Protected Water Supply - Objectives of Public	
	Water Supply System Demand - Types of Demand - Per Capita Demand	
	- Prediction of Population - Problems in Arithmetical Increase Method,	
	Geometrical Increase Method, Incremental Increase Method.	
	1.3 SOURCES OF WATER	3
	Sources of Water – Surface Sources – Underground Water Sources –	
	Selection of Source of Water.	
	1.4 INTAKES AND CONVEYANCE	5
	Intakes - Types of Intakes - Description of Intakes -Infiltration Galleries	
	and Infiltration Wells in River Beds - Pipes for Conveyance of Water -	
	Cast Iron, Steel, G.I., Cement Concrete, R.C.C., Hume and PVC Pipes -	
	Pipe Joints - Laying and Testing of Pipe Lines.	
I	2.1 QUALITY OF WATER	3
	Impurities in Water - Testing of Water - Collection of Water Sample -	
	Physical, Chemical, Bacteriological Tests - Standards of Drinking Water -	
	Water Borne Diseases and their Causes.	
		5
	2.2 PRIMARY TREATMENT OF WATER	
	Cupeci of vvater freatment – Flow Diagram of a freatment Plant –	
	Function of Units – Sedimentation – Purpose of Sedimentation – Types	
	or Sedimentation rank - Coagulation - Coagulants - Flocculation -	
	Coagulation Process.	

	2.3 FILTRATION OF WATER	3
	Theory of Filtration – Classification of Filters – Slow Sand Filter – Rapid	
	Sand Filter – Pressure Filter - Comparison between slow sand filter and	
	rapid sand filter.	
	2.4 DISINFECTION OF WATER AND WATER SOFTENING	4
	Necessity of Disinfection – Methods of Disinfection – Chlorination – Action	
	of Chlorine – Methods of Chlorine – Forms of Chlorination –Water	
	Softening - Necessity of Water Softening - Hardness - Types of	
	Hardness – Effects of Hardness – Removal of Hardness (names only) -	
	Miscellaneous Water treatment (names only) - Mineral water -	
	requirements – Treatment Process – Reverse of Osmosis (RO).	
ш	3.1 DISTRIBUTION SYSTEM	7
	Distribution System - Methods of Distribution Gravity System, Pumping	
	System, Combined System - Systems of Water Supply - Continuous and	
	Intermittent Supply of Water -Layouts of Distribution - Dead	
	End, Grid Iron, Radial and Circular Systems – Service Reservoirs -	
	Types.	
	3.2 PREPARATION OF WATER SUPPLY SCHEME OR PROJECT	8
	Reconnaissance of Survey – Demand of Water – Source of Water –	
	Preparation of Topographical Map – Layout Map of the Scheme – Map	
	and Drawing to be Prepared – Office Work – Project Report.	
IV	PART II – SANITARY ENGINEERING	
	4.1 COLLECTION AND CONVEYANCE OF SEWAGE	7
	Sanitation Purpose Terms - Systems of Sanitation - Quantity of Sewage -	
	Variation in Rate of Flow of Sewage -Estimation of strom water -	
	problems - Minimum Size of Sewer – Shapes of Sewer (names only) -	
	Materials used for Sewer - Joints in Sewer Line - Laying and Testing of	
	Sewer Lines – Ventilation of Sewers - Cleaning of Sewers.	

	4.2 SEWER APPURTENANCES	7
	Sewer Appurtenances Manhole - Lamp Hole - Catch Basin - Street - Inlet	
	- Grease and Oil Trap - Flushing Tanks Drainage Arrangements in	
	Buildings - Sanitary Fittings - Sewage Pumps Necessity - Types of	
	Sewage Pumps (names only).	
V	5.1 PRIMARY TREATMENT OF SEWAGE	2
	Introduction – Flow Diagram of Primary Treatment –Screens – Grit	
	Chamber – Skimming Tank – Primary Sedimentation Tank.	
	5.2 SECONDARY TREATMENT OF SEWAGE	3
	Introduction – Flow Diagram of Secondary Treatment – Function of the	
	Units of Secondary Treatment - Secondary Sedimentation Tank – Filters	
	- Types - Trickling Filters - Activated Sludge Process - Septic Tanks for	
	isolated buildings - Construction and working of septic tanks - Soak	
	Pits – Dispersion Trenches.	
	5.3 ENVIRONMENTAL POLLUTION AND SOLID WASTE DISPOSAL	6
	Environment - definition - water pollution - sources of water pollution -	
	effects of water pollution - control of water pollution - soil pollution -	
	sources of soil pollution - effects of soil pollution - control of soil pollution -	
	noise pollution - sources of noise pollution - effects of noise pollution -	
	control of noise pollution - air pollution - sources of air pollution - effects	
	of air pollution on human beings, plants, animals, materials - air pollution	
	control equipment - control devices for particulate contaminants -	
	environmental degradation - ozone layer depletion . Solid Waste Disposal	
	- Necessity - Method of Solid Waste Disposal - dumping, sanitary	
	landfill, composting - energy from waste.	
	5.4 ENVIRONMENTAL IMPACT ASSESSMENT	
	Environmental impact assessment (EIA) - methodology of EIA -	3
	organising the job - performing the assessment - preparation of	
	environmental impact statement (EIS) - review of EIS - environmental risk	
	assessment - limitation of EIA.	
	Test & Model Exam	7 Hrs.

Reference Books:

- S.K. Garg," Water Supply and Sanitary Engineering", PHI Kanna publishers, New Delhi".
- 2. S.C. Rangwala, Water Supply and Sanitary Engineering, Charotar Publishing House, New Delhi, 2007
- 3. G.S. Birdie and J.S. Birdie, Water Supply and Sanitary Engineering, Dhanpat Rai Publishers, New Delhi, 2010.
- 4. N.N. BASAK, Environmental Engineering, Tata McGraw hill publishing Company Ltd., New Delhi, 2010
- 5. A.Kamala D.I.kanthrao, Environmental Engineering, Tata McGraw hill publishing Company Ltd., New Delhi, 1985
- 6. Gurcharan Singh, Water supply and Sanitary Engineering vol.I & II, Standard publishers & distributors, New Delhi, 2007.
- 7. Dr.Suresh K.Dhameja, Environmental Engineering and Management, S.K.Kataria & Sons, New Delhi. 2005.
- 8. B C Punmia, Environmental Engineering, Laxmi Publications, New Delhi, 2010
- 9. Dr.Suresh, K.Dhamija, Environmental Studies, S.K.Katarial Sons, Delhi, 2010

III YEAR N-SCHEME

V SEMESTER

REMOTE SENSING AND GEOINFORMATICS

(Elective Theory I)

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

- : 1010 : DIPLOMA IN CIVIL ENGINEERING Course Name
- Subject Code : 4010531
- Semester : V Semester
- Subject Title

: REMOTE SENSING AND GEOINFORMATICS (Elective Theory I)

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/	Hours/	ours/ Marks nester			Duration
	week	Semester				
DEMOTE SENSING AND		80 Hrs.	Internal	Board	Total	Duration
GEOINFORMATICS	5 Hrs.		Assessment	Examination	TOLAT	
			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Fundamentals of Remote Sensing	15
II	Photogrammetry	15
	Image Interpretation and Analysis	15
IV	Fundamentals of GIS	14
V	GIS - Data entry, Storage and Analysis	14
	Test & Model Exam	7
	Total	80

RATIONALE:

In civil engineering projects, RS and GIS techniques can become potential and indispensable tools. Various civil engineering application areas include regional planning and site investigation, terrain mapping and analysis, water resources engineering, town planning and urban infrastructure development, transportation network analysis, landslide analysis, etc.

OBJECTIVES:

On completion of the course, the students will be able to:

- Understand the basic concepts of remote sensing
- Know the applications of Geographic information systems in Civil Engineering
- Identify the basic remote sensing concepts and its characteristics
- Implement the photogrammetry concepts and fundamentals of Air photo interpretation
- Use various analysis and interpretation of GIS results
DETAILED SYLLABUS

4010531- REMOTE SENSING AND GEOINFORMATICS

(ELECTIVE THEORY I)

Contents: Theory

Unit	Name of the Topics	Hours
I	FUNDAMENTALS OF REMOTE SENSING	15
	Basics of Remote Sensing: Definitions and its components - Energy	
	Sources and Radiation principles – electromagnetic radiation (EMR) –	
	spectrum – wavelength regions important to remote sensing –	
	Atmospheric scattering, absorption – Atmospheric windows – spectral	
	signature concepts – typical spectral reflective characteristics of water,	
	vegetation and soil. characteristic of real remote sensing system,	
	platforms, orbit types, sensors, resolution concept satellite,-Pay load	
	description of important Indian Earth Resources and Meteorological	
	satellites.	
II	PHOTOGRAMMETRY	15
	Geometric elements of a vertical photograph - Stereoscopic plotting	
	instruments, Ortho photos, Flight planning	
III	IMAGE INTERPRETATION AND ANALYSIS	15
	Fundamentals of Air-photo interpretation - Elements of image-	
	interpretation, concepts of digital image processing image Rectification	
	and Restoration, Image enhancement, Image classification,	
	Application of Remote sensing in Civil Engineering	
IV	FUNDAMENTALS OF GIS	14
	Basic Concepts of GIS – Basic spatial concepts –Coordinate Systems:	
	Definitions - History of development of GIS - Components of	
	GIS: Hardware, Software, Data, People and Methods - Proprietary	
	and open source Software - Types of data - Spatial, Attribute data-	
	types of attributes - scales/ levels of measurements -Data Base	
	Management Systems (DBMS).	

V	GIS - DATA ENTRY, STORAGE AND ANALYSIS	14
	Data models - Vector and raster data – data compression – data input	
	by digitization and scanning, data storage - attribute data analysis -	
	integrated data analysis- mapping concept - development of map	
	overlay, overlay operation - Errors and quality control. Land Information	
	System (LIS)- Various GIS applications in Civil Engineering-Regional	
	Planning and Site investigations, Hydrology and Water Resources	
	Engineering, Transportation network analysis - Highway Alignments.	
	Test & Model Fxam	7 Hrs
		7 11 3.

Reference Books

- Lo & Yeung (2005), Geographic Information Systems, Prentice of India.
- Anji Reddy.M. (1998), Remote Sensing and Geographical information systems.
- Lillesand, T.M. & Kiefer R.W. (1998), Remote Sensing and image interpretation, John Wiley & Sons, Newyork.
- Burrough P.A. (2000), Principle of Geographical Information Systems for land resources assessment, Clarendon Press, Oxford.
- Clarke Parks & Crane (2005), Geographic Information Systems & Environmental Modelling, Prentice-Hall of India.
- Wolf Paul (1998), Elements of Photogrammetry, McGraw Hill, New Delhi.
- Shahab Fazal,"G I S Basics", New Age International Publications, Chennai.

III YEAR N-SCHEME

V SEMESTER CONCRETE TECHNOLOGY

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the student admitted from the year 2020-2021 onwards)

Course Name : 1010: DIPLOMA IN CIVIL ENGINEERI	INEERING
--	----------

- Semester : V SEMESTER
- Subject Code : 4010532
- Subject Title : CONCRETE TECHNOLOGY

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/ week	Hours/ Semester	Marks			
	5 Hrs.	80 Hrs.	Internal Assessment	Board Examination	Total	Duration
			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Concrete: Introduction, Cement, Aggregates and water	15
II	Admixtures, Mix Design for Concrete	15
III	Special Concrete, Pre-stressed Concrete	15
IV	Light Weight Concrete, Formwork	14
V	Cracks in Concrete Structure and their Prevention, Joints, Repairs and Maintenance of Concrete	14
	Test & Model Exam	7
	Total	80

RATIONALE:

Diploma students in Civil Engineering requires to know more about the concrete, which is one of the most important construction materials. This subject aims to improve the knowledge in the mix design and special types of concrete, to have the exposure of cracks in concrete structure and repairing, etc.

OBJECTIVES:

On completion of this course, the students will be able to:

- Materials used
- Admixtures used in concrete
- Mix design method
- Special and prestressed concrete
- Forms works
- Cracks and maintenance of concrete

DETAILED SYLLABUS

4010532 - CONCRETE TECHNOLOGY

Contents: Theory

Unit	Name of the Topics	Hours
I	1.1 CONCRETE Introduction of Concrete Technology and Concrete – Ingredients of Concrete.	15
	Cement: Composition of Cement – Function of Cement Ingredients – Types of Cements (Names Only) – Uses of Cement.	
	Aggregates: Fine Aggregate – Sand – Types of Sand based on the purpose of use – Types of sand based on the Grain size – Properties of good Sand. Coarse Aggregates – Functions – Properties – Requirements – Classification of Aggregates.	
	Water – Functions – Water for Curing of Concrete.	
	Properties of Concrete – Production of Concrete – Types of Concrete and its uses – Test on Concrete (Names only).	
II	 2.1 ADMIXTURES Definition – Functions of Admixtures – Classification of Admixtures: Accelerating admixtures – Retarding admixtures – Grouting admixtures – Air entraining admixtures – Pozzolanic or mineral admixtures – Air detraining admixtures – Plasticizers – Super plasicizers. 	5
	2.2 Mix Design for Concrete Mix design – purpose of Mix design – object of Mix design – Factors influencing the choice of Mix design – variables in proportioning – Mix design methods – Mix design procedure I.S. Code method – Mix proportions for weigh batching and volume batching.	10

	3.1 Special Concrete	7
	Polymer concrete – Fiber reinforced concrete – Light weight concrete	
	 Shot crete or guniting concrete (Applications and Advantages). 	
	3.2 Light Weight Concrete	8
	Classification of light weight concrete – Characteristics of light weight	
	concrete – Applications of light concrete - Advantages of light weight	
	concrete.	
IV	3.1 Pre-stressed concrete	10
	General principle of stressing - advantages of pre stressed -	
	Concrete – Need for High strength steel and concrete- terminology –	
	tendon - anchorage - pre tensioning-post tensioning - bonded pre	
	stressed concrete - non bonded pre stressed concrete - methods of	
	pre stressing – pretension method – post tension method – system of	
	pre stressing – freyssinet system – Magnet blaton system – Lee-mc -	
	call system - application of pre stressing elements - causes for	
	losses in pre stress and remedial measures.	
	4.2 Formwork	4
	Requirements of formwork – materials used for formwork –cleaning	
	and treatments of forms - points to be kept in mind before placing	
	concrete in form work.	
V	5.1 Cracks in Concrete Structure and their Prevention	6
	Cracks in concrete structures – assessment of cracks – types of	
	cracking – preventive measures.	
	5.2 Joints, Repairs and Maintenance of Concrete	
	Types of joints – construction joints – contraction joints – expansion	8
	joints – isolation joints – methods of repairing concrete works	
	Test & Model Exam	7 Hrs.

Reference Books :

- M.S.Shetty Concrete Technology (Theory and Practice) S.Chand & Company Pvt. Ltd. New Delhi.
- 2. M L GAMBHIR Concrete Technology TATA McGraw-Hill Publishing Company Limited, New Delhi
- 3. Vineet Kumar (Edited)- Concrete Technology Khanna Publishers, New Delhi.
- 4. A.R.Santhakumar, Concrete Technology, Oxford University press.
- 5. A.M.Neville, Concrete Technology, Pearson Education.

III YEAR

N-SCHEME

V SEMESTER GEOTECHNICAL ENGINEERING

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the students admitted from the year 2020-2021 onwards)

Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING
Subject Code	:	4010533

Semester : V Semester

Subject Title : GEOTECHNICAL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instru	uctions		Examinatio	ns	
Subject	Hours /	Hours /		Marks		
	Week Sem	Semester	Internal Assessment	Board Examination	Total	Duration
GEOTECHNICAL ENGINEERING	5 Hrs.	80 Hrs.	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

Topics and Allocation of Hours

Unit	Topics	Hours
I	Index properties and Hydraulic Properties of Soil	15
II	Classification and Strength of Soil, Stabilization of Soil and Sub-soil Sampling	15
111	Seepage Analysis and Seepage below Hydraulic Structures, Bearing Capacity and Settlement of foundations	15
IV	Foundations and Foundations in Expansive Soil	14
V	Machine Foundation and Foundations of Transmission Line Towers	14
	Test & Model Exam	7
	Total	80

RATIONALE:

Civil Engineering diploma engineers are required to supervise the construction of roads and pavements, dams, embankments, and other Civil Engineering structures. As such, the knowledge of basic soil engineering is a pre-requisite for these engineers for effective discharge of their duties. This necessitates the introduction of Soil Engineering subject in the curriculum for Diploma Course in Civil Engineering. The subject covers only such topics as will enable the diploma engineers to identify and classify the different types of soils, their selection and proper use in the field for various types of engineering structures. The emphasis will be more on teaching practical aspects rather than theoretical concepts.

OBJECTIVES:

On completion of the course, the students will be able to:

- Learn the Properties of Soil, Classification and Strength of soils
- Describe the Sub-soil Sampling
- Understand the Seepage analysis, Bearing Capacity of soil and Settlement of Foundations
- Learn the types of Foundations, Pile foundations and Pile Groups
- Understand the Foundations on Expansive soil and Machine Foundations
- Know about the Foundations of Transmission Line Towers

DETAILED SYLLABUS 4010533 - GEOTECHNICAL ENGINEERING

Conte	ents:Theory	
Unit	Name of the Topics	Hours
I	GEOTECHNICAL ENGINEERING: 1.1 Soil Mechanics and Index Properties Introduction - Development of Soil Mechanics - Fields of application of Soil	10
	Mechanics - Soil formation - Cohesive and Cohesion less soil - Soil	
	Properties -Three phase system - General, Index and Engineering	
	properties - Detailed description - Atter Berg's limits - Simple problems -	
	Soil map of India.	
	1.2 Hydraulic Properties of Soil :	
	Introduction - Permeability - Co-efficient of permeability - Darcy's law -	5
	Factors affecting permeability - Permeability tests - Simple problems -	
	Quick sand conditions.	
11	CLASSIFICATION AND STRENGTH OF SOIL, STABILIZATION OF SOIL	
	AND SUB-SOIL SAMPLING	
	2.1 Classification and Strength of Soil	8
	Classification of soil - Introduction - Necessity - Systems of soil	Ū
	classification - Field identification of soil - Shear strength of soil -	
	Introduction - Shear strength - Mohr's stress circle - Mohr- Coulomb failure	
	theory - Shear strength test - Unconfined compression test - Mohr's circle	
	for unconfined compression test - Compaction - Consolidation -	
	Consolidometer - Optimum moisture content - Proctor's Compaction test -	
	Methods of compaction - Degree of compaction - Field density of soil -	
	Tests - Compaction and Consolidation - Comparison.	
	2.2 Stabilization of Soil and Sub-Soil Sampling :	7
	Stabilization of soil - Introduction - Objects of stabilization - Methods of	
	stabilization - Soil exploration - Introduction - Objects of soil exploration -	
	Methods of soil exploration - Direct, Semi-direct and Indirect methods -	
	Spacing and depth of test borings - Boring log - Sounding and Penetration	
	tests-Standard Penetration Test (SPT)- Geophysical methods - Sub-soil	
	Sampling - Disturbed and Undisturbed samples - Types of samplers - Split	
	spoon sampler - Thin-walled sampler - Chunk sampling.	

III	SEEPAGE ANALYSIS AND SEEPAGE BELOW HYDRAULIC						
	STRUCTURES, BEARING CAPACITY AND SETTLEMENT OF						
	FOUNDATIONS						
	3.1 Seepage Analysis and Seepage Below Hydraulic Structures :	7					
	Seepage analysis - Introduction - Head , Gradient and Potential - Hydraulic						
	gradient - Seepage pressure - Upward flow (Quick condition or Quick						
	sand) - Types of flow lines - Types of flow (Definition only) - Two						
	dimensional flow (Laplace equation) - Velocity potential -Properties of flow						
	net - Uses of flow net - Seepage below Hydraulic structures - Introduction -						
	Hydraulic gradient - Piping - Exit gradient - Khosla's theory - Seepage flow						
	nets below hydraulic structures.						
	3.2 Bearing Capacity and Settlement of Foundations :	8					
	Bearing capacity - Introduction - Terminology - Factors affecting bearing						
	capacity of soils - Methods of determining bearing capacity - Types of						
	failure in soil - General , Local and Punching shear failure - Analytical						
	methods - Rankine's analysis - Terzaghi's analysis - Assumption and						
	limitations - Effect of water table - Methods of improving bearing capacity of						
	soil –Bearing capacity of different soil as per IS Settlement of foundation -						
	Introduction - Causes and Effect of settlement – settlement values as per						
	BIS provisions Plate load test - Simple problems.						
IV	FOUNDATIONS AND FOUNDATIONS IN EXPANSIVE SOIL						
	4. 1 Foundations :	8					
	Introduction - Definitions - Objectives - Requirements of foundation -						
	Criteria for selection of type of foundation - Types of foundations - Shallow						
	foundation types-isolated, combined ,raft Deep foundations - Types -						
	Foundation at different levels - Foundation on made up grounds - Deep						
	foundation - Introduction - Pile foundation - Uses of piles - Types of piles -						
	Caisson foundation - Types - Selection of piles - Pile Driving - Capacity of						
	piles - Pile load test - Floating foundation - Negative skin friction - Pile						
	groups - Bearing capacity of pile groups - BIS provision for Settlement of						
	pile group – Design of foundation using software (Description only)						

	4.2 Foundations In Expansive Soil :	6
	Introduction - Identification of expansive soil - Free Swell Test - Differential	
	free swell test - Indian expansive soil - Swell potential and Swelling	
	pressure - Traditional Indian practice - Methods of foundation in expansive	
	soils - Replacement of soils and "CNS" concept - Under reamed pile	
	foundation - Remedial measures for cracked buildings.	
V	MACHINE FOUNDATION AND TOWER FOUNDATIONS	
	(TRANSMISSION LINE)	
	5.1 Machine Foundation :	9
	Introduction - Soil dynamics - Free vibration and Forced vibration -	
	Definitions -Natural frequency - Barkan's method Pauw's method - Types of	
	machines and machine foundation - General requirements - Design of	
	machine foundations - Reciprocating type - Centrifugal type - Impact type -	
	design steps- Couzen theory - In-situ dynamic investigation of soil -	
	Methods - IS code of practice - Design criteria - Isolation of foundation -	
	Simple problems.	
	5.2 Foundations of Transmission Line Towers	5
	Introduction - Necessity - Forces on Tower Foundations - General design	
	criteria - Choice and type of foundations - Design procedures - Stability	
	conditions – Description only	
	Test & Model Exam	7 Hrs.
1		1

Reference Books :

- Dr.Punmia.B.C.- Soil Mechanics and Foundations S Laxmi publications(P)Ltd., New Delhi, 2005
- Dr.K.R.Arora, Soil Mechanics and Foundations Engineering, Standard publications, New Delhi, 2011/6th
- Gopal Ranjan & Rao⁻ Basic and applied Soil Mechanics, New Age International, New Delhi, 2000/2nd
- 4. Terzaghi, Soil Mechanics in Engineering Practice, John Wiley and Sons, New Delhi
- 5. WAYNE C.TENG, Foundation Design, Prentice Hall of India (P) Ltd, New Delhi.
- 6. Dr S B SEHGAL, A Text Book of Soil Mechanics, CBS Publishers & Distributors, New Delhi,
- S. Kaur and R.Singh, Soil Mechanics and Foundation Engineering S.K. Kataria & Sons, New Delhi, 2003

III YEAR

N-SCHEME

V SEMESTER

CIVIL ENGINEERING DRAWING AND CAD PRACTICAL - II

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the students admitted from the year 2020-2021 onwards)

		PRACTICAL - II
Subject Title	:	CIVIL ENGINEERING DRAWING AND CAD
Semester	:	V Semester
Subject Code	:	4010540
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instrue	Instructions Examination				
Subject	Hours/ Week	Hours/ Semester	Marks		Duration	
CIVIL ENGINEERING	6 Hro	96 Hrs. –	Internal Assessment	Board Examination	Total	
DRAWING AND CAD PRACTICAL - II	01113.		25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Computers play a very vital role in present day life, more so, in all the professional life of engineering. In order to enable the students to use the computers effectively in drafting, this course offers Computer Aided Drafting of various drawings in Public Health Engineering, Bridge Engineering and Structural Engineering.

OBJECTIVES:

On completion of the course, the students will be able to:

- Prepare Public Health Engineering drawings manually
- Know about RCC and Steel bridge structures and draw manually
- Draw the Structural Engineering drawings using CAD

DETAILED SYLLABUS

4010540 - CIVIL ENGINEERING DRAWING AND CAD PRACTICAL- II

Contents: Practical

Total: 96 Hrs.

LIST OF EXPERIMENTS

PREPARATION OF DRAWINGS MANUALLY (Part I and II) AND USING CAD SOFTWARE (Part III)

I .	PUBLIC HEALTH ENGINEERING	24 Hours
Draw	plan and sectional views of the following:	
1.	Rapid Sand Filter	
2.	Septic Tank with dispersion Trench / Soak pit	
3.	R.C.C square overhead tank supported by four columns	
II	BRIDGE DRAWING	14 Hours
Draw	plan and sectional views of the following:	
4.	Steel Foot over bridge across a highway	
5.	Two span Tee Beam Bridge with square returns	
ш	STRUCTURAL ENGINEERING	58 Hours
Draw	plan, cross section and longitudinal section using CAD	
6.	Continuous one-way slab (with three equal spans)	
7.	Simply supported two-way slab	
8.	Restrained two-way slab	
9.	Singly reinforced rectangular beam	
10.	Doubly reinforced Continuous beam (Rectangular beam with two spans)	
11.	Tee Beams supporting continuous slab	
12.	Lintel and Sunshade	
13.	Dog-legged staircase	
11	RCC Column with square isolated footings	

4010540 - CIVIL ENGINEERING DRAWING AND CAD PRACTICAL - II

PART	Manual Drawing (Plan)	-	20 marks
	Section / Elevation	-	25 marks
PART III Using CAD	Plan/Elevation	-	25 marks
	Plan / Cross section / longitudinal section	-	25 marks
	Viva – voce	-	5 marks
	Total	-	100 marks

DETAILED ALLOCATION OF MARKS

<u>Note:</u>

- 1. For all the drawings, detailed specifications shall be given. Designs are not to be included in the examinations. The drawings must include Layout plans, full plan, sections, etc., as applicable to each topic.
- 2. For all the drawings, detailed specifications shall be given and students should draw in the drawing sheet based on the given specifications. The drawings to be drawn using computer and CAD Software.

LIST OF EQUIPMENTS (for a batch of 30 students):

S.No.	List of the Equipments	Quantity Required
1.	Drawing table with Board	30 Nos.
2.	Computers	30 Nos.
3.	Laser printer	3 Nos.
4.	CAD software	30 Users

III YEAR

N-SCHEME

V SEMESTER

ENVIRONMENTAL ENGINEERING LABORATORY

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	ENVIRONMENTAL ENGINEERING LABORATORY
Semester	:	V Semester
Subject Code	:	4010550
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instr	uctions	s Examination			
Subject	Hours/ Week	Hours/ Semester	Marks			
ENVIRONMENTAL ENGINEERING	3 Hrs.	48 Hrs.	Internal Assessment	Board Examination	Total	Duration
LABORATORY			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

Diploma holders in Civil Engineering are expected to supervise construction of water supply and waste water treatment works. They are also responsible for waste disposal activities. This subject aims at imparting practical skills for testing of raw water, waste water and to study pollution control equipments to develop competencies for execution in their field.

OBJECTIVES:

On completion of the course, the student will be able to:

- Determine the quality of water, testing procedures and standards for drinking water.
- Understand the Cutting, threading and joining of G.I.Pipes / cutting and pasting of PVC pipes using solvents.
- Make suction and delivery pipe connections to a centrifugal pump (making indents, drawing a neat sketch of the connection with details).

DETAILED SYLLABUS 4010550- ENVIRONMENTAL ENGINEERING LABORATORY

Contents: Practical

Total: 48 Hrs.

LIST OF EXPERIMENTS

PART A

24 Hours

- 1. Collection of water samples from sources and "Estimation of Sulphate content" in water sample.
- 2. Determination of pH value by Electrometric method using pH meter/ Calorimetric method and comparison by paper method.
- 3. Determine the optimum dose of coagulant in a given raw water sample by jar test.
- 4. Determine the dissolved oxygen in the given sample of water .
- 5. Determination of suspended solids and dissolved solids present in the given sample of water / waste water.
- 6. Determination of "Temporary and permanent Hardness" present in the given sample of water by EDTA titration method.
- 7. Estimation of chlorides in the given sample of water by silver Nitrate titration method.
- 8. Prepare a report of a field visit to water treatment plant.

PART B

24 Hours

- 1. Study of pipe fitting used in water supply (with actual models displayed on board).
- 2. Study of sanitary wares (with actual models displayed on board).
- 3. Cutting, threading and joining of G.I.Pipes / cutting and pasting of PVC pipes using solvents.
- 4. Making a bathroom connection from an existing water supply main (making indents, drawing a neat sketch of the connection with details).
- 5. Making suction and delivery pipe connections to a centrifugal pump (making indents, drawing a neat sketch of the connection with details).
- 6. Study of air pollution control equipments (Gravity settling chamber, Cyclone filter with models/devices).
- 7. Prepare a report of a field visit to sewage treatment plant.

SCHEME OF EXAMINATION:

In the examination the students have to be given two experiments one from Part A and another from Part-B.

		Part - A	Part - B	
S.No	Description	Max. Marks Max. Ma (50) (45)		
1.	Procedure	5	5	
2.	Tabulation and Observation/ Execution	25	30	
3.	Calculations	10		
4.	Sketch / Graph	5	5	
5.	Accuracy of result/ Finish	5 5		
	Viva Voce	Ę	5	
	Total	100		

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for a batch of 30 students):

S. No	Name of the equipment	Numbers required
1.	pH meter	2 nos
2.	Spectrophotometer	1 no.
3.	Magnetic stirrer	1 no.
4.	Magnetic stirring device	1 set
5.	Turbidimeter	1 no.
6.	Dissolved oxygen meter	1 no.
7.	Drying oven	1 no.
8.	Analytical balance	1 no
9.	Dessicator	1 no.
10.	Dish tongs	1 no.
11.	Evaporating dish	1 no.
12.	Filter membrane	1 no.
13.	Vacuum pump	1 no.
14.	Crucible	1 no.
15.	Whattman filter paper	Required no.
16.	Wash bottle	2 nos.
17.	Pipette, Burette, Funnel, Conical flask, Beaker,	As required
	Bunsen burner, Stand, Wire gauge, Filter paper	

III YEAR

N-SCHEME

V SEMESTER

ADVANCED SURVEYING AND BASIC GIS PRACTICAL

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the students admitted from the year 2020-2021 onwards)

Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING
Subject Code	:	4010561
Semester	:	V Semester
Subject Title	:	ADVANCED SURVEYING AND BASIC GIS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Orthing(Instru	uctions	Examination			
Subject	Hours/ Week	Hours/ Semester	Marks			Duration
ADVANCED SURVEYING AND	2 Hre	48 Hrs.	Internal Assessment	Board Examinations	Total	
BASIC GIS PRACTICAL	51113.		25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

This is an applied subject in Civil Engineering for learning Advanced Surveying and Basic GIS Practical. Diploma holders in Civil Engineering are expected to survey the construction features and this course aims to teach about Surveing using Remote Sensing and GIS applications.

OBJECTIVES:

On the Completion of the course the students will be able to:

• Acquire practical knowledge in the use of Arc GIS and Arc Map.

DETAILED SYLLABUS

4010561- ADVANCED SURVEYING AND BASIC GIS PRACTICAL

Contents: Practical

Total : 48 Hrs.

	Remote Sensing Exercises:	
1.	Introduction to Remote Sensing and GIS and creating a map using tools.	6
2.	Introduction to ARC GIS Desktop.	6
3.	Geo referencing an image using ARC GIS.	6
4.	Creating and editing Shape files in ARC MAP.	6
5.	Editing in ARC MAP.	6
6.	Adding fields to a Shape file.	6
7.	Querying the data.	4
8.	Buffering and Clipping.	4
9.	Case study of creation of campus map using Arc GIS software	4

Reference Books:

- 1. Lillesand T.M., and Kiefer, R.W. Remote Sensing and Image interpretation, VI edition of John Wiley & Sons-2015.
- John R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective,4th Edition, 2015.
- 3. Paul R.Wolf, Elements of Photogrammetry, McGraw-Hill Science, 2013,ISBN0070713464, 9780070713468
- 4. Karl Kraus, Photogrammetry, Fundamentals and standard processes, Dümmler, 2000,ISBN 978 3 110190076
- 5. Mikhail Kasser and Yves Egels, "Digital Photogrammetry", Taylor and Francis, 2003, ISBN0 748 40944 0
- Francis h. Moffitt, Edward M. Mikhail, Photogrammetry, TBS The Book Service Ltd, 1980,ISBN 13: 9780700221370
- Edward M.Mikhail, James S.Bethel, J.Chris McGlone, Introduction on "ModernPhotogrammetry", John Wiley & Sons, Inc., 2012, ISBN 0-471-30924-9
- 8. Wilfried Linder, "Digital Photogrammetry"-Theory and Applications, Springer-Verlag BerlinHeidelberg New York, 3rd Edition, 2014, ISBN 3-540-00810-1
- Digital Photogrammetry A practical course by Wilfried Linder, 3rd edition, Springer, 2009.

4010561- ADVANCED SURVEYING AND BASIC GIS PRACTICAL

SCHEME OF EXAMINATION:

DETAILED ALLOCATION OF MARKS

S.No	Description	Max.Marks (100)
1.	Procedure	10
2.	Tabulation and Observation	40
3.	Calculations	25
4.	Sketch / Graph	10
5.	Accuracy of result	10
	Viva Voce	5
	Total	100

LIST OF EQUIPMENTS (for a batch of 30 students):

S. no	Name of the equipment	Numbers required
1.	Arc GIS software	No of users as per requirement
2.	Arc Map Software	No of users as per requirement

III YEAR N-SCHEME

V SEMESTER

CONCRETE TECHNOLOGY PRACTICAL

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	CONCRETE TECHNOLOGY PRACTICAL
Semester	:	V Semester
Subject Code	:	4010562
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/ Week	Hours/ Semester	Marks			
CONCRETE TECHNOLOGY	3 Hrs. 48 Hrs.	48 Hrs.	Internal Assessment	Board Examination	Total	Duration
PRACTICAL			25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

Diploma holders in Civil Engineering are supposed to supervise the construction of buildings. To perform the above task, it is essential that students should have knowledge of various sub components of buildings like foundations, walls, roofs, stair cases, floors etc., and their constructional details. Therefore, the subject of concrete technology practical is very important for Civil Engineering diploma holders.

OBJECTIVES:

On completion of the course, the student will be able to:

- Find the fineness setting time of cement.
- Know the shape tests and fineness for modulus coarse aggregate.
- Determine the bulking characteristics of sand.
- Determine the workability of concrete using slumpcone, compaction factor and Vee Bee consistometer tests.
- Know the arrangement of steel reinforcement for concrete elements
- Study the workability properties of self compacting concrete.

DETAILED SYLLABUS

4010562 - CONCRETE TECHNOLOGY PRACTICAL

Contents: Practical

Total: 48 Hrs.

LIST OF EXPERIMENTS

PART A

20 Hours

28 Hours

- 1. Determination of the fineness of cement by Blains Permeability Apparatus or by sieve analysis.
- 2. Determination of Initial setting time of cement by using Vicat's Apparatus.
- 3. Determination of final setting time of cement by using Vicat's Apparatus.
- 4. Shape Test for coarse aggregate Flakiness Index test.
- 5. Shape Test for coarse aggregate Elongation Index test.
- 6. Shape Test for coarse aggregate Angularity number test.
- 7. Determine the building characteristics of given sand sample.

PART B

- 8. Determination of workability of concrete by slump cone test.
- 9. Determination of workability of concrete by compaction factor test.
- 10. Casting of concrete cube and compression test on concrete cube.
- 11. Determination of Fineness Modulus of fine aggregate sample and plot a particle size distribution curve and also find the effective size and uniformity co-efficient.
- 12. Determination of Fineness Modulus of coarse aggregate sample by conducting sieve analysis.
- 13. Vee- Bee Consistometer Test on concrete test.
- 14. Study of workability of self compacting concrete.

4010562 - CONCRETE TECHNOLOGY PRACTICAL

SCHEME OF EXAMINATION:

DETAILED ALLOCATION OF MARKS

S.No	Description	PART A (35 MARKS)	PART B (60 MARKS)
1.	Procedure	5	10
2.	Tabulation and Observation	15	25
3.	Calculations	5	15
4.	Sketch / Graph	5	5
5.	Accuracy of result	5	5
	Viva Voce		5
	Total		100

LIST OF EQUIPMENTS (for a batch of 30 students):

S.No	List of the Equipments	Quantity Required
1.	Slump cone apparatus	2 no.
2.	Compaction factor apparatus	1 no.
3.	Concrete cube mould 150*150*150 3sets	3 sets(9 no)
4.	Concrete cube mould 100*100*100 3sets	3 sets (9 no)
5.	Sieve test for fine aggregate made of brace 200mm dia complete set.	2 sets
6.	Sieve test for coarse aggregate made of brass 200mm dia complete set	2 sets
7.	Concrete mixing tray	2 no.
8.	Vee Bee Consistometer	1 no.
9	Weigh balance-digital up to 10kg capacity with 1gm accuracy battery backup with 8 hours	1no.
10.	Apparatus to find Flakiness index, Elongation index and Angularity number for Coarse Aggregate	1 no. each
11	Blaine Permeability apparatus	1 no.
12	Sieve No 9	2 nos.
13	Vicats apparatus	2 sets

III YEAR N-SCHEME

V SEMESTER

GEOTECHNICAL ENGINEERING LABORATORY

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	GEOTECHNICAL ENGINEERING LABORATORY
Semester	:	V Semester
Subject Code	:	4010563
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examinations			
Subject	Hours /	Hours / Hours /		Marks		
,	Week Se	Semester	Internal Assessment	Board Examination	Total	Duration
GEOTECHNICAL ENGINEERING LABORATORY	3 Hrs.	48 Hrs.	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

This subject is introduced to know the practical important of Geotechnical Engineering, the students studying this course will gain the knowledge in practical aspects which is directly linked to the construction of structures on different soil.

OBJECTIVES:

After completion of the course the students will be able to:

- Understand and determine physical and index properties of soil.
- Estimate the permeability and shear strength of soil.
- Compute optimum moisture content values for maximum dry density of soil through various tests.
- Know the procedure for performing CBR test.
- Learn various compaction methods for soil stabilization.
- Study the SPT at construction site.

DETAILED SYLLABUS

4010563- GEOTECHNICAL ENGINEERING LABORATORY

Contents: Practical

Total : 48 Hrs.

LIST OF EXPERIMENTS

- 1. Identification of rocks from the given specimen.
- Determine water content of given soil sample by oven drying method as per IS: 2720 (Part-II).
- 3. Determine Shrinkage limit of given soil sample as per IS 2720 (Part- V).
- 4. Determine grain size distribution of given soil sample by mechanical sieve analysis as per IS 2720 (Part- IV).
- 5. Use different types of soil to identify and classify soil by conducting field tests-Through Visual inspection, Dry strength test, Dilatancy test and Toughness test.
- 6. Determine coefficient of permeability by constant head test as per IS 2720 (Part- XVII).
- 7. Determine coefficient of permeability by falling head test as per IS 2720 (Part- XVII).
- 8. Determine shear strength of soil by triaxial shear test as per IS 2720 (Part- XIII).
- 9. Determine shear strength of soil by vane shear test as per IS 2720 (Part-XXX).
- 10. Determine the consolidation properties of given soil sample.
- 11. Find the unconfined compressive strength of given clay sample.
- 12. Study of CBR value on the field as per IS2720 (Part XVI).
- 13. Study on Standard Penetration Test to find SBC of soil.

4010563 - GEOTECHNICAL ENGINEERING LABORATORY

SCHEME OF EXAMINATION:

DETAILED ALLOCATION OF MARKS

S.No	Description	Max.Marks (100)
1.	Procedure	10
2.	Tabulation and Observation	40
3.	Calculations	25
4.	Sketch / Graph	10
5.	Accuracy of result	10
	Viva Voce	5
	Total	100

LIST OF EQUIPMENTS (for a batch of 30 students):

S.No	Description	Number required
1.	Glass cup, oven, Desiccator, Weighing balance and other accessories	1 set
2.	Hot air oven	1 no.
3.	Shear testing machine	1 no.
4.	Triaxial testing machine	1 no.
5.	Permeameter mould, compacting equipment. Drainage bade, cap, graduated glass jar, stop watch	1 set
6.	Vane shear test apparatus	1 no.
7.	Unconfined compressive strength apparatus	1 no.

III YEAR N-SCHEME

V SEMESTER

ENTREPRENEURSHIP AND STARTUPS

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	ENTREPRENEURSHIP AND STARTUPS
Semester	:	V
Subject Code	:	4010570
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 Weeks

Subject	Instruction		Examination			
	Hours/ Week	Hours/ Semester	Marks			
			Internal Assessment	Board Examinations	Total	Duration
ENTREPRENEURSHIP AND STARTUPS	4 Hrs.	64 Hrs.	25	100*	100	3 Hours

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Entrepreneurship – Introduction and Process	10
II	Business Idea and Banking	10
III	Startups, E-cell and Success Stories	10
IV	Human Resource Management, Industrial Legislation and Micro and Small Enterprises	10
V	Preparation of Project Reports	10
	Field visits and preparation of case study report	14
	64	
RATIONALE:

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socio-economic environments; to ensure equity of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

OBJECTIVES:

At the end of the course the students will be able to:

- Excite the students about entrepreneurship
- Acquire Entrepreneurial spirit and resourcefulness
- Understand the concept and process of entrepreneurship
- Acquire entrepreneurial quality, competency and motivation
- Learn the process and skills of creation and management of entrepreneurial venture
- Familiarize with various uses of human resource for earning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- Survey and analyze the market to understand customer needs
- Understand the importance of generation of ideas and product selection
- Learn the preparation of project feasibility report
- Understand the importance of sales and turnover
- Familiarization of various financial and non financial schemes
- Aware the concept of incubation and starts ups

DETAILED SYLLABUS

4010570 - ENTREPRENEURSHIP AND STARTUPS

Contents : Practical

Unit	Name of the Topics	Hours
I	ENTREPRENEURSHIP – INTRODUCTION AND PROCESS	10
	Concept, Functions and Importance	l
	Myths about ntrepreneurship	l
	 Pros and Cons of Entrepreneurship 	l
	Process of Entrepreneurship	l
	Benefits of Entrepreneur	l
	Competencies and Characteristics	l
	Ethical Entrepreneurship	l
	 Entrepreneurial Values and Attitudes 	l
	Motivation	l
	Creativity	l
	Innovation	l
	Entrepreneurs - as problem solvers	l
	 Mindset of an employee and an entrepreneur 	l
	 Business Failure – causes and remedies 	l
	Role of Networking in entrepreneurship	l
II	BUSINESS IDEA AND BANKING	10
	 Types of Business: Manufacturing, Trading and Services 	l
	 Stakeholders: sellers, vendors and consumers and 	l
	Competitors	l
	E- commerce Business Models	l
	• Types of Resources : Human, Capital and Entrepreneurial	l
	tools	l
	 Goals of Business; Goal Setting 	
	 Patent, copyright and Intellectual property rights 	
	 Negotiations - Importance and methods 	
	 Customer Relations and Vendor Management 	1

	Size and Capital based classification of business enterprises	
	Role of financial institutions	
	Role of Government Policy	
	Entrepreneurial support systems	
	 Incentive schemes for state government 	
	 Incentive schemes for Central governments 	
Ш	STARTUPS, E-cell and SUCCESS STORIES	10
	Concept of Incubation centre's	
	Activities of DIC, financial institutions and other relevance	
	institutions	
	 Success stories of Indian and global business legends 	
	Field Visit to MSME's	
	 Various sources of Information 	
	Learn to earn	
	Startup and its stages	
	 Role of Technology – E-commerce and Social Media 	
	Role of E-Cell	
	E-Cell to Entrepreneurship	
IV	4.1 HUMAN RESOURCE MANAGEMENT	4
	Meaning of Manpower Planning	
	 Recruitment and Selection procedure 	
	 Payment of wages, factors determining the wage 	
	 Methods of payment of wages – Time rate and Piece rate 	
	Labour Turnover – definition, its causes, impact and remedy	
	• THE BOCW ACT- The Building and Other Construction	
	Workers (Regulation of Employment and Condition of	
	Services) Act, 1996. The Building and Other Construction	
	Workers (Regulation of Employment and Condition of	
	Services) Central Rules, 1998	

	4.2 INDUSTRIAL LEGISLATION:	3
	Need of Industrial legislation	
	 Indian Factories Act – 1948 – Definition of Factory, main 	
	provisions regarding health, Safety and Welfare of Workers	
	 Industrial Dispute Act – 1947 – Definition of Industrial 	
	dispute, Machineries for settlement of Industrial dispute in	
	India	
	4.3 MICRO AND SMALL ENTERPRISES	
	 Definition of Micro & Small enterprises 	3
	 Meaning and characteristics of Micro and Small enterprise 	
	 Scope of SSI with reference to self-employment 	
	• Procedure to start SSI – idea generation, SWOT analysis-	
	Selection of site for factories	
V	PREPARATION OF PROJECT REPORTS FOR:	
	5.1 PROJECT IDENTIFICATION AND FORMULATION REPORT:	2
	Introduction - Collection of Data.	
	Compilation of Data.	
	 Analysis and Assimilation of Data. 	
	Product Selection	
	Report Finalisation and Report Writing.	
	5.2 PROJECT PROFILE/PRE-FEASIBILITY REPORT :	5
	Introduction of the product	
	Market.	
	Man Power (Personnel Required).	
	Manufacturing Process- Plant and Machinery.	
	Means of Finance	
	Cost of Production	
	Annual Turnover	
	Profit - Profit on Investment	

	5.3 TECHNO-ECONOMICAL FEASIBILITY REPORT (TEFR).	3
	Introduction on product	
	Market Prospects and Marketing	
	Location	
	Manufacturing Programme and Annual Turnover	
	Manufacturing Process	
	Cost of Project	
	Means of Finance	
	• Requirement of Raw materials, Consumables, Utilities and	
	Working Capital	
	 Organisational Structure, Management and Man Power 	
	Project Implementation Schedule	
	Profitability and Cash Flow.	
	5.4 MARKET SURVEY REPORT FOR CONSTRUCTION	
	PROJECT:	
	Data Collection & Processing through Primary & Secondary	
	Sources	
	 Questionnaire - method, e-mail, by post, by phone - 	
	 Present Status - Growth of the Industry- Import and Export - 	
	Present market Demand	
	 Forecast - Future Prospect/Scope - Market Segmentation. 	
I		

Reference Books:

- Dr. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra - 282002
- Dr. G.K. Varshney, Business Regulatory Framework , Sahitya Bhawan Publications, Agra - 282002
- Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship , McGraw Hill (India) Private Limited, Noida - 201301
- 4. M.Scarborough, R.Cornwell, Essentials of Entrepreneurship and small business management, Pearson Education India, Noida 201301
- 5. Charantimath Poornima M. Entrepreneurship Development and Small Business Enterprises, Pearson Education, Noida - 201301

- Trott, Innovation Management and New Product Development, Pearson Education, Noida - 201301
- M N Arora, A Textbook of Cost and Management Accounting, Vikas Publishing House Pvt. Ltd., New Delhi-110044
- 8. Prasanna Chandra, Financial Management, Tata McGraw Hill education private limited, New Delhi
- 9. V. Trivedi, Renu Jatana, Indian Banking System, RBSA Publishers, Rajasthan
- 10. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai 600018
- 11. Ramani Sarada, The Business Plan Write-Up Simplified A practitioners guide to writing the Business Plan, Notion Press Media Pvt. Ltd., Chennai 600095.

Board Examination – Evaluation Pattern Internal Mark Allocation

Total	-	25
Attendance	-	5
Seminar Presentation	-	10
Assignment (Theory portion)*	-	10

Note:

* Two assignments should be submitted. The same must be evaluated and

Converted to 10 marks.

Each assignment should have five three marks questions and two five marks questions.

Guidelines for assignment:

First assignment	– Unit I
Second assignment	– Unit II

Guidelines for Seminar Presentation – Unit III

BOARD EXAMINATION

Note:

- 1. The students should be taught all units and proper exposure and field visit also arranged. All the portions should be completed before examinations.
- 2. The students should maintain theory assignment and seminar presentation. The assignment and seminar presentation should be submitted during the Board Practical Examinations.

- 3. The question paper consists of theory and practical portions. All students should write the answers for theory questions (45 Marks) and practical portions (55 Marks) should be completed for board examinations.
- 4. All exercises should be given in the question paper and students are allowed to select by lot. If required the dimensions of the exercises may be varied for every batch. No fixed time allotted for each portion and students have liberty to do the examination for 3 Hrs.
- 5. For Written Examination: theory question and answer: 45 Marks
 Ten questions will be asked for 3 marks each. Five questions from each unit 1 & 2. (10 X 3 = 30).

Three questions will be asked for 5 marks each. One question from each unit 1, 2 & 3. (3 X 5 = 15)

 For Practical Examination: The business plan/Feasibility report or Report on Unit 4 & 5 should be submitted during the board practical examinations. The same have to be evaluated for the report submission (40 marks).

S. No	Description	Marks
Part A	Written Examination - Theory Question and answer (10 questions x 3 marks:30 marks & (3 questions x 5 marks: 15 marks)	45
Part B	Practical Examination – Submission on Business Plan/Feasibility Report or Report on Unit 4 & 5	40
Part C	Viva voce	15
	TOTAL	100

DETAILED ALLOCATION OF MARKS

DIPLOMA IN CIVIL ENGINEERING

III YEAR N-SCHEME

VI SEMESTER

CONSTRUCTION MANAGEMENT

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	CONSTRUCTION MANAGEMENT
Semester	:	VI Semester
Subject Code	:	4010610
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/ Week	Hours/ Semester	Marks			Duration
	6 Hrs.	96 Hrs.	Internal Assessment	Board Examination	Total	Duration
		25	100*	100	3 Hrs.	

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Construction sector in India Feasibility study, planning of Civil Engineering Project and Contract Management	18
II	Construction Organisation and their Superintendence, Departmental procedure and Accounting	18
	Scheduling and Time Management Resource Management	18
IV	Quality Management and Safety, Construction Disputes and their Settlement, Construction Labour and Legislation Ethics in Engineering	18
V	Entrepreneurship, Information Management and Computers and Financial Management	17
	Test & Model Exam	7
	Total	96

RATIONALE:

This is an applied engineering subject. The subject aims at imparting basic knowledge about construction planning and management, site organisation, construction labour, control of work progress, inspection and quality control, accidents and safety and heavy construction equipment.

A good percentage of diploma engineers start working as small contractors. They require the knowledge of contractorship, tendering and preparation of specifications for various types of jobs. Also diploma holders adopt valuers as their profession. To promote entrepreneurship amongst these engineers, knowledge and associated skills in the above field becomes essential. Hence this subject is of great importance to diploma engineers.

OBJECTIVES:

On completion of the course, the students will be able to:

- Describe the Role of government and construction agencies in the field of housing
- Describe the organization set up of PWD
- Mention the construction activity and fixing the construction agency.
- Describe the aspects of inspection and quality control methods
- Describe the banking system.
- Carryout the Feasibility study of a project
- Understand the process of Planning for civil engineering projects.
- Explain the significance of CPM and PERT Techniques.
- Understand the types of contract system
- Study the organization chart of a construction company.
- Understand the concepts and requirement of Entrepreneurship
- Perform the Computation of Net present value.

DETAILED SYLLABUS

4010610 - CONSTRUCTION MANAGEMENT

Contents: Theory

Unit	Name of the Topics	Hours
I	1.1 CONSTRUCTION SECTOR IN INDIA	5
	Construction Management – Definition- Need – Scope - Objectives and	
	& functions - Role of government and private construction agencies -	
	Types of construction sectors - Public and Private functions of	
	construction management in national development - Construction	
	practice:- the owner, consultant, and contractor - Duties and	
	responsibilities - Various stages of a construction project.	
	1.2 FEASIBILITY STUDY	4
	Study of necessity of project- Technical feasibility, Financial feasibility,	
	Ecological feasibility, Resource feasibility, Recovery from the project,	
	Economical Analysis –Building Economics – Preliminary studies-	
	Analysis – valuation.	
	1.3 PLANNING OF CIVIL ENGINEERING PROJECT	5
	Objectives of planning – Public Project - Preliminary planning – Design	
	factors – Site utilization- – Reconnaissance survey – Preliminary survey	
	- Analysis and plotting of data - Estimate : preliminary and detailed	
	estimate – Project report – Land acquisition – Administrative approval –	
	Technical sanction – Budget provision- Private project – Advantages	
	of planning to client and engineer - limitations -Stages of planning by	
	owner and contractor.	
	1.4 CONTRACT MANAGEMENT	4
	Types of contracts - Contract documents - Contractual obligations -	
	Specifications - Tender notice – Types - Tender documents - Earnest	
	Money Deposit (EMD) and Security Deposits (SD) - Scrutiny and	
	acceptance of a tender - Contract agreement - Contractual changes	
	and termination of contract – Work order – Execution of agreement –	
	Sub contract - Rights and duties of sub-contractor.	

II	2.1 CONSTRUCTION ORGANISATIONS AND THEIR	10
	SUPERINTENDENCE	
	Forms of business organizations - sole proprietorship - Partnership -	
	Joint stock company,- Co-operative society,- and State enterprises-	
	Advantages and Disadvantages -delegation of responsibility, personnel	
	requirements and division of works - Decentralization - Construction	
	supervision and Superintendence – Requirements and Responsibilities	
	of Executives of the project – Qualities of Efficient construction	
	Manager - Pay rolls and Records - Purchase and delivery of	
	construction materials and equipments – Percentage completion report	
	- Insurance record - Project office requirement - Organisation chart of a	
	small / medium / large construction company (broad outline only).	
	2.2 DEPARTMENTAL PROCEDURE AND ACCOUNTING	0
	Organisation of P.W.D Responsibilities of officers - Accounting	8
	procedure (administrative sanctions, technical sanctions, payment of	
	bills) – Imprest and Temporary accounts – Cash book - Works register -	
	Accounting for consumable materials - Record for tools and plants -	
	Importance of M-book and its entries – Work charged establishment –	
	Nominal Muster Roll (N.M.R) – Daily Labour Reports (D.L.R)	
III	3.1 SCHEDULING AND TIME MANAGEMENT	10
	Scheduling – Definition – Preparation of Schedule – uses and	
	advantages - Classification of Schedules - Methods of scheduling -	
	Bar chart – Job layout – Work breakdown chart(WBC) – Network for	
	projects management – Activity – Event – Dummies – Basic	
	assumptions in creating a network – Rules for developing networks –	
	Fulckerson's rule for numbering the events - Critical Path Method	
	Critical and Subcritical paths - Critical and Non critical activities/	
	events – Significance of critical path – Simple Problems - PERT – Time	
	estimate - EST, EFT, LST, LFT - Earliest expected time - Latest	
	allowable occurrence time -Floats - Slack. Standard deviation -	
	Variance – Simple problems.	

	3.2 RESOURCE MANAGEMENT	8
	Definition – Need for resource management – Optimum	
	utilization of resources- finance, materials, machinery, human	
	resources - Resource planning – Resource levelling and its objectives –	
	Construction planning – Stages – Operations – Schedule – Crashing –	
	Need for crashing an activity – Methods and tips for crashing – Time Vs	
	Cost optimization curve – Cost slope and its significance in crashing –	
	simple problem on resource levelling (Description only)	
IV	4.1 QUALITY MANAGEMENT AND SAFETY	6
	Importance of quality – Elements of quality – Quality assurance	
	techniques (inspection, testing, sampling) Importance of safety -	
	Causes of accidents - Role of various parties (designer / employer /	
	worker) in safety management – Benefits – Approaches to improve	
	safety in construction.	
	4.2 CONSTRUCTION DISPUTES AND THEIR SETTI EMENT	3
	Introduction – Development of disputes – Categories of disputes –	
	Modes of settlements - Arbitration.	
	4.3 CONSTRUCTION LABOUR AND LEGISTATION	4
	Need for legislation - Payment of wages Act - Factories Act – Contract	
	labour(Regulation and abolition) Act – Employees Provident Fund	
	(EPF) Act.	
	4.4 ETHICS IN ENGINEERING	5
	Human values - Definition of Ethics - Engineering ethics - Engineering	
	as a profession - Qualities of professional - Professional institutions -	
	Code of ethics - Major ethical issues - Ethical judgement - Engineering	
	and management decision - Value based ethics.	
V	5.1 ENTREPRENEURSHIP	5
	Definition – Role and Significance – Risks and Rewards – Concepts of	
	Entrepreneurship - Profile and requirement of entrepreneur -	
	Programmes existing in India – SISI, DIC, TANSIDCO – Funding and	
	technical assistance to Entrepreneurship- NIDCO,ICICI,IDBI,IFCI,SFC.	

5.2 INFORMATION MANAGEMENT AND COMPUTERS	6
Introduction – Definition of MIS – Out lines of MIS – Use of computers	
in construction industry – Requirements of MIS – A data base approach	
- Definition - Benefits - A data base approach to contractor's	
account and its advantage – Basic concepts of estimation – Project	
management and operations simulation packages – Construction	
automation and Robotics.	
5.3 FINANCIAL MANAGEMENT	6
Elements of cash flow – Time value of money – Interest rate of capital –	
Present value computation - NPV method - IRR method - simple	
problems - Global banking culture - Types of banks -Activities of	
Banks – Corporate finance – Personal, retail and rural banking –	
Treasury management.	
Tast & Madal Exam	7 Hrs

Reference Books

- 1. Sanga Reddy. S, "Construction Management", Kumaran Publications, Coimbatore.
- 2. Sengupta.B, &H.Guha. "Construction Management and Planning ",Tata McGraw Hill Publishing Company Ltd., New Delhi
- 3. Seetharaman. S, " Construction Engineering & Management ",Umesh Publications, NaiSarak, New Delhi
- 4. Boyd.C. & Paulson Jr, "Computer Applications in Construction ",Tata McGraw Hill Publishing company Ltd., New Delhi.
- 5. Rangwala.S.C.,"Construction of Structures and Management of Works" Charotar Publishing House, Anand 388 001, 2000
- 6. B C Punmia, "Project Planning and control with PERT and CPM", Laxmi Publications.

DIPLOMA IN CIVIL ENGINEERING

III YEAR N-SCHEME

VI SEMESTER

ESTIMATION, COSTING AND VALUATION

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N - SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	ESTIMATION, COSTING AND VALUATION
Semester	:	VI Semester
Subject Code	:	4010620
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/ Week	Hours/ Semester		Marks		Duration
ESTIMATION, COSTING AND	6 Hrs.	96 Hrs.	Internal Assessment	Board Examination	Total	
VALUATION			25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Introduction, Approximate Estimates, Measurements and Material	15
	Requirement and Specifications	
II	Preparation of Data and Rate Analysis	16
===	Detailed Estimate : Taking of quantities by Trade System	20
IV	Detailed Estimate : Taking of quantities by Group System	20
V	Report Writing, Valuation and Rent Calculation	18
	Test & Model Exam	7
	Total	96

RATIONALE:

Diploma holders in Civil Engineering are supposed to prepare material estimates and cost estimates for various Civil Engineering works namely; buildings, irrigation works, public health works and roads etc. In addition, they must have basic knowledge regarding analysis of rates and contracting principles of valuation. Therefore, this subject has great importance for diploma holders in Civil Engineering.

OBJECTIVES:

On completion of the course, the students will be able to:

- Learn the procedure for estimating and costing of Civil Engineering works. To write specifications for various materials and for different items of works.
- Perform rate analysis for various items of works using Standard data and Schedule of Rates.
- Prepare detailed estimate of quantities of various items of works
- Write Technical reports on the proposed projects
- Calculate the value of a building / property; to fix rent for a building adopting suitable method.

DETAILED SYLLABUS

4010620 - ESTIMATION, COSTING AND VALUATION

Contents: Theory

Unit	Name of the Topics	Hours
Ι	1.1 INTRODUCTION:	3
	Estimation – Definition of Estimate – Approximate estimate – Detailed	
	estimate - Main estimate - Revised estimate – Supplementary estimate	
	 Sub estimate – Annual maintenance estimate – Repair estimate – 	
	Complete estimate.	
	1.2 APPROXIMATE ESTIMATES:	3
	Necessity – Types – Plinth area method – Cubical content method –	
	Service unit method – Typical bay method – Simple problems on	
	preliminary estimate of a building project.	
	1.3 MEASUREMENTS & MATERIAL REQUIREMENTS:	4
	Units of measurements for works and materials – Degree of accuracy in	
	measurements - Deduction for openings in masonry, plastering and	
	white washing area – Painting co- efficient – out turn of works - working	
	out of materials requirements - cement, sand, bricks, aggregates etc	
	based on thumb rules for different works.	
	1.4 SPECIFICATIONS:	5
	Specification – Necessity – Types of specifications – Essential	
	requirements of specifications - Specification for various materials like	
	Cement, Sand, Brick, Timber, Reinforcement Steel, Stone Aggregate,	
	Water - Specifications for various items of works - General	
	Specifications for a building - Culvert - Concrete Roads - Detailed	
	specifications for works such as, earthwork excavation, foundation	
	concrete, Reinforcement cement concrete in column, beam and slab -	
	Weathering course - Steps involved in writing standard specifications.	

Π	2.1 PREPARATION OF DATA	4
	Data – Types – Main and sub data – Observed data – lead statement -	
	Schedule of rates - Standard data book - Sundries - Lump sum	
	provision - Preparation of data using standard data and schedule of	
	rates.	
	2.2 RATE ANALYSIS:	12
	Brick and stone masonry - Plain cement concrete in foundation -	
	Cement concrete for flooring works - Weathering course - R.C.C works	
	for slab, sunshade, beam and column – Partition wall – Form works for	
	beams and slabs – Road works, WBM and surface dressing – White	
	washing and painting works – A.C. sheet roofing – Apron and revetment	
	works in canals – Wall plastering – Ceiling plastering – Pointing –	
	Plumbing and sanitary works in buildings.	
III	3.1 TRADE SYSTEM:	
	Introduction - Taking off Quantities: Systems – Trade system – Group	2
	system - Methods - Long wall and Short wall method - Centre line	
	method – Preparation of data – Lump sum provision and contingencies	
	 – Quantity surveyor – Duties – Essential Qualities. 	
	3.2 TAKING OFF QUANTITIES USING TRADE SYSTEM:	18
	Prepare detailed estimate using Trade system and Take off quantities	
	for all items of works in the following types of buildings:	
	i. A small residential building with two rooms with RCC roof.	
	ii. Industrial buildings with AC/GI sheet roof with steel trusses.	
	iii. Community Hall with R C C columns and T- beams	
	iv. Septic tank with dispersion trench / soak pit	
	v. R.C.C slab culvert	
	vi. Water bound Macadam Road	

IV	4.1 GROUP SYSTEM:	10
	Advantages of group system – Taking off and Recording Dimensions –	
	Squaring Dimensions – Abstracting or Working up – Billing –	
	Abbreviations.	
	Dimension paper – Timesing, Dimension, Squaring, Descriptive column	
	- Cancellation of Dimensions - Descriptions - Spacing of Dimensions -	
	Order of taking off - Squaring the Dimensions - Method of Squaring -	
	Checking the Squaring – Casting up the dimensions.	
	Function of the Abstract – Order in the Abstract – Preparing the abstract	
	– Casting and reducing the Abstract – Method of writing Bill – Checking	
	the Bill.	
	4.2 TAKING OFF QUANTITIES USING GROUP SYSTEM:	10
	Prepare detailed estimate using Group system and Take off quantities	
	for all items of works in the following types of buildings:	
	i. A single roomed building using Group system	
	ii. A small residential building with two/three rooms with RCC roof.	
V	5.1 REPORT WRITING:	4
	Report writing – Points to be considered while writing a report – writing	
	typical reports for works such as	
	i. Buildings – Residential / Hospital / School	
	ii. Laying a village road	
	iii. Construction of a bridge	
	iv. Water supply system for a village	-
	5.2 VALUATION	8
	Purpose of valuation - Types - Book value - Market value - Salvage	
	value – Scrap value – Depreciation – Obsolescence – Sinking fund –	
	Land valuation – Mortage & Lease – Problems on valuation – Annuity –	
	Definition & types only.	•
	5.3 RENT CALCULATION	6
	Fixation of rent – Outgoing – Gross & Net income – Years' Purchase –	
	Capital cost – Standard rent – Market rent – Economical rent –	
	Problems on rent calculation.	
	Test & Model Exam	7 Hrs.

Reference Books:

- 1. Rangawala, "Estimating & Costing", Charotor Publishing;
- 2. N.A.Shaw, "Quantity Surveying & Valuation", Khanna Publishers;
- 3. L.N.Dutta, "Estimating & Costing", Dhanpat Rai & Sons
- 4. Bridie, "Estimating & Costing"
- 5. Civil Estimating, Casting and Valuation Kalson Publication, Ludhiana.
- 6. Vazirani & Chandola," Estimating and Costing" 2001.
- 7. IS:1200 Methods of Measurement of Building and Civil Engineering works.

DIPLOMA IN CIVIL ENGINEERING

III YEAR N-SCHEME

VI SEMESTER

SUSTAINABLE AND GREEN BUILDING TECHNOLOGY

(Elective Theory-II)

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	SUSTAINABLE AND GREEN BUILDING TECHNOLOGY
Semester	:	VI Semester
Subject Code	:	4010631
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions			Examination			
Subject	Hours/ Week	Hours/ Semester	Marks		Duration		
SUSTAINABLE AND GREEN	5 Hrs.	5 Hrs.	80 Hrs.	Internal Assessment	Board Examination	Total	Duration
BUILDING TECHNOLOGY			25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Introduction to Green Building and Design Features	15
II	Energy Audit and Environmental Impact Assessment (EIA)	15
	Energy and Energy conservation	15
IV	Principles and planning of Green building	14
V	Rating System	14
	Test & Model Exam	7
	Total	80

RATIONALE:

On learning Sustainable and Green Building Materials, the students will be able to Identify various requirements for green building, use different steps in environmental impact assessment, relate the construction of green building with prevailing energy conservation policy and regulations, supervise the construction of green building construction using green materials and focus on criteria related to particular rating system for assessment of particular Green building.

OBJECTIVES:

After the completion of this course, the students will be able to:

- Know various aspects of green buildings
- Use different steps involved in measuring environmental impact assessment.
- Relate the construction of green building with prevailing energy conservation policy and regulations.
- Know and identify different green building construction materials.
- Learn different rating systems and their criteria

DETAILED SYLLABUS

4010631 - SUSTAINABLE AND GREEN BUILDING TECHNOLOGY

Contents: Theory

Unit	Name of the Topics	Hours
I	INTRODUCTION TO GREEN BUILDING AND DESIGN FEATURES	15
	Definition of Green Building, Benefits of Green Building, Components/	
	features of Green Building, Site selection, Energy Efficiency, Water	
	efficiency, Material Efficiency, Indoor Air Quality.	
	Site selection strategies, Landscaping, building form, orientation,	
	building envelope and fenestration, material and construction	
	techniques, roofs, walls, fenestration and shaded finishes, advanced	
	passive heating and cooling techniques, waste reduction during	
	construction.	
II	ENERGY AUDIT AND ENVIRONMENTAL IMPACT ASSESSMENT	
	(EIA) 2.1 ENERGY AUDIT:	7
	Meaning, Necessity, Procedures, Types, Energy Management	1
	Programs.	
	2.2 ENVIRONMENTAL IMPACT ASSESSMENT (EIA):	8
	Introduction, EIA regulations, Steps in environmental impact	Ū
	assessment process, Benefits of EIA, Limitations of EIA, Environmental	
	clearance for civil engineering projects.	
111	ENERGY AND ENERGY CONSERVATION	
	3.1 ENERGY:	8
	Renewable Energy Resources: Solar Energy, Wind Energy, Ocean	
	Energy, Hydro Energy, Biomass Energy.	
	Non-renewable Energy Resources: Coal, Petroleum, Natural Gas,	
	Nuclear Energy, Chemical Sources of Energy, Fuel Cells, Hydrogen,	
	Biofuels.	
	3.2 ENERGY CONSERVATION	7
	Introduction, Specific objectives, present scenario, Need of energy	
	conservation, LEED India Rating System and Energy Efficiency.	

	Energy-saving houses, Green House, Passive house, Passive house	
	construction, Low-energy house, Zero-energy house, Energy consulting,	
	Energy efficiency:	
IV	PRINCIPLES AND PLANNING OF GREEN BUILDING	14
	Features: Salient features of Green Building, Environmental design (ED)	
	strategies for building construction.	
	Process: Improvement in environmental quality in civil structure	
	Materials: Green building materials and products- Bamboo, Rice husk	
	ash concrete, plastic bricks, Bagasse particle board, Insulated concrete	
	forms. reuse of waste material-Plastic, rubber, Newspaper wood,	
	Nontoxic paint, Green roofing.	
	Housing modernization and management (building and construction	
	safety, energy efficiency in housing, Property Refurbishment / Upgrade /	
	Modernization / Renovation - Modular kitchens, bathrooms,	
V	RATING SYSTEM	14
	Introduction to (LEED) criteria, Indian Green Building council (IGBC)	
	Green rating, Green Rating for Integrated Habitat Assessment. (GRIHA)	
	criteria Heating Ventilation Air Conditioning (HVAC) unit in green	
	Building Functions of Government organization working for Energy	
	conservation and Audit(ECA) - National Productivity council(NPC)	
	Ministry of New and Renewable Energy (MNRE) Bureau of Energy	
	efficiency (BEE) - BER (Building Energy Rating) - Certificates -	
	Plumbing and Electrical to heating efficiency	
	Test & Model Exam	7 Hrs.
1		

Reference Books

- 1. Kibert, C.J., Sustainable construction: Green Building design and Delivery, John Wiley Hobouken, New Jersey.
- 2. Chauhan, D S Sreevasthava, S K., Non-conventional Energy Resources, New Age International Publishers, New Delhi.
- 3. O.P. Gupta, Energy Technology, Khanna Publishing House, New Delhi
- 4. Jagadeesh, K S, Reddy Venkatta Rama & Nanjunda Rao, K S., Alternative Building Materials and Technologies, New Age International Publishers, Delhi.
- 5. Sam Kubba., Handbook of Green Building Design and Construction, Butterworth-Heinemann.
- 6. Means R S, Green Building Project Planning and Cost Estimating, John Wiley & Sons
- 7. Sharma K V, Venkataseshaiah P., Energy Management and Conservation, IK International.

DIPLOMA IN CIVIL ENGINEERING

III YEAR N-SCHEME

VI SEMESTER

URBAN PLANNING AND DEVELOPMENT

(Elective Theory-II)

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Course Name: 1010: DIPLOMA IN CIVIL ENGINEERING

Subject Code : 4010632

Semester : VI Semester

Subject Title : URBAN PLANNING AND DEVELOPMENT

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/ Week	Hours/ Semester	Marks			Duration
URBAN PLANNING	5 Hrs.	80 Hrs.	Internal Assessment	Board Examination	Total	
AND DEVELOPMENT			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 Marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Town planning Principles, Surveys and Zoning	15
II	Housing and Slums	15
	Public Buildings, Parks, Play Grounds, Master Plan and Re-planning Existing Towns	15
IV	Urban Roads and Traffic Management	14
V	Building Bye-Laws and Miscellaneous Topics	14
	Test & Model Exam	7
	Total	80

RATIONALE:

Considerable employment opportunities are available in urban sector. This subject aims at imparting knowledge and skill in the Town Planning and surveys, urban roads and Traffic management, Master plan and Building bye laws which can be promoted for upgrading standards of life in urban areas.

OBJECTIVES:

On completion of the course, the students will be able to:

- Understand the principle of Town Planning and surveys.
- Know the requirements of housing and slum clearance.
- Learn the requirement of Public buildings, parks and play grounds.
- Understand the requirements and types of Urban roads and Traffic management
- Know the Importance of housing and slum clearance programmes
- Prepare Master plan and for Re-planning of existing Towns.
- Learn the Building bye laws and other miscellaneous topics.

DETAILED SYLLABUS

4010632 - URBAN PLANNING AND DEVELOPMENT

Contents: Theory

Unit	Name of the Topics	Hours
Ι	1.1 TOWN PLANNING PRINCIPLES	7
	General - Evolution of planning - Objects of town planning -	
	Economic justification for town planning - Principles of Town	
	planning - Necessity of town planning - Origin of towns - Growth	
	of towns – Stages in town development - Personality of town -	
	Distribution of land - Forms of planning - Site for an ideal	
	town - Requirements of new towns - Planning of a modern	
	town - Powers required for enforcement of Town planning scheme	
	- Cost of Town planning - Present position of Town Planning in	
	India.	
	1.2 SURVEYS	3
	General – Necessity - Collection of Data - Types of surveys for	
	planning a new town - Uses of surveys.	
		_
	Noning of the term - Uses of land objects and Principles of	5
	Zoning - Advantages of Zoning - Importance of Zoning - Aspects	
	of Zoning – Transition Zone – Economy of Zoning – Special	
	Economic Zone (SEZ) - Zoning powers - Maps for Zoning	
II	2.1 HOUSING	7
	General - Importance of housing - Demand for houses - Building	
	site - Requirements of residential buildings -Classification of	
	residential buildings - Design of residential areas - Rural Housing -	
	Agencies for housing -investment in housing - HUDCO - CIDCO -	
	2.2 SLUMS	Q
	General - Causes of slums - Characteristics of slums - Effects of	O

	slums - Slum clearance - Problems in removing slums -	
	Improvement Works - Open plot scheme - Slum clearance and	
	rehousing - Prevention of slum formation - Resources for slum	
	clearance programmes - The Indian slums.	
III	3.1 PUBLIC BUILDINGS	3
	General – Suitable Location of Public Buildings – Classification of	
	Public Buildings - Principles of design of public buildings - Town	
	centres - Grouping of public buildings – Requirements of Public	
	buildings – Green House– Civic aesthetics.	
	3.2 PARKS AND PLAY GROUNDS	4
	General - Types of recreation - Necessity of open spaces -	
	Location of urban green spaces - Classification of parks - Park	
	systems - Park design – Finance for parks – Parkways –	
	Playgrounds - Space standards - Landscape architecture.	
	3.3 MASTER PLAN	4
	General – Objects – Necessity - Factors to be considered - Data	-
	to be collected - Drawings to be prepared - Features of master plan	
	- Planning standards – Report – Stages of preparation – Method of	
	Execution - Conclusion.	
	3.4 RE-PLANNING EXISTING TOWNS	4
	General - Objects of re-planning – Analyzing the defects of existing	
	towns - Data to be collected –difficulties in Master Planning existing	
	towns / cities - Urban renewal projects- merging of suburban areas	
	- Decentralization - Satellite Towns - Smart cities- definition and	
	features- Surface drains – Refuses of Towns – Refuse disposal	
	methods.	
IV	4.1 URBAN ROADS	6
	General - Objects - Requirements of good city road – Factors to	
	be considered - Classification of urban roads - Types of street	
	systems - Through and By-pass roads - Outer and inner ring	
	roads - Expressways – Freeways – Precincts - Road aesthetics.	

	4.2 TRAFFIC MANAGEMENT	8
	General - Object - Traffic survey - Traffic congestion - Traffic	
	control - Traffic diversion - Road junction –Parking - Traffic capacity	
	of road - One way traffic - Road traffic problems - Use of islands	
	and flyovers at crossings - causes of road accidents - Traffic	
	signal – Advantages and disadvantages of Automatic Light	
	signals – Road sign – Road marking - Name boards of streets -	
	Direction boards - Street lighting in a town - Traffic problem of	
	existing towns – Peculiarities of traffic.	
V	5.1 BUILDING BYE -LAWS	8
	General - Objects of bye-laws - Importance of bye-laws - Function	
	of local authority - Responsibility of owner - Applicability of bye-	
	laws - Set-backs to buildings – Necessity of setbacks - Light plane	
	- Plot coverage - Floor space index- Maximum Height of buildings -	
	Off-street parking - Fire protection - Minimum width of streets and	
	plot sizes - Some other terms - Principles underlying in framing	
	building bye- laws - Building bye-laws for residential area of a	
	typical town planning scheme – Building bye-laws for other types of	
	buildings -Development control rules - General rules of	
	metropolitan Area - CMDA rules.	
	5.2 MISCELLANEOUS TOPICS	6
	Airports – Location - size - Noise control - Parts of an airports	
	- Betterment and compensation – City blocks –Conurbations - Cul-	
	de-sac streets - Focal point - Green belt - Public utility services -	
	Rapid transit –Remote sensing application – Urban planning using	
	remote sensing – Site suitability analysis Location of Bus	
	Terminus, Whole sale markets, Exhibition Centres etc., - Location	
	for water/sewage treatment plants, location for waste disposal	
	etc.,- Transportation planning.	
	Test & Model Exam	7 Hrs.
<u> </u>	I	

Reference Books

- 1. Town Planning S.C. Rangwala,: Charotar Publisher (2011), Publisher
- 2. K.S.Rangwala and P.S.Rangwala,. "Town Planning ",Charotar Publishing House,15th Edition,1999.
- 3. Michael Hord, R. Remote sensing methods and application, John Wiley and Sons, NewYork, 1986.
- 4. National Building Code of India- Part-III.(2005).
- 5. Municipal and Panchayat bye-laws, CMDA Rules and Corporation bye-laws.
- 6. KA. Ramegowda, Urban and regional planning, University of Mysore
- 7. Principles and practice of town and country planning Lewis B. Keeble, Estates Gazette, University of Michigan, 2010

DIPLOMA IN CIVIL ENGINEERING

III YEAR N-SCHEME

VI SEMESTER

WATER RESOURCES ENGINEERING

(Elective Theory-II)

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU
STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS

N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	WATER RESOURCES ENGINEERING
Semester	:	VI Semester
Subject Code	:	4010633
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours /	s / Marks ster Du			
	Week	Semester			Duration	
WATER			Internal	Board	Total	
RESOURCES	5 Hrs.	80 Hrs.	Assessment	Examination	Total	
MANAGEMENT			25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 Marks.

Topics and Allocation of Hours

Unit	Topics	Hours
Ι	Introduction and Hydrology	15
II	Ground Water and Management of Ground Water	15
	Rivers and River Training Works, Storage Works	15
IV	Distribution Works and Management of Canal Irrigation	14
V	Water Shed Management and Water Harvesting and Recycling	14
	Test & Model Exam	7
	Total	80

RATIONALE:

Diploma holders in civil engineering have to supervise the construction, repair and maintenance of canals, head works, river training works, cross drainage works, regulatory and other works. Some of the diploma holders are also engaged for preventing water logging and irrigation by tubewells. This subject imparts knowledge regarding hydrology, flow irrigation – storage and distribution system, constructional features of head works, river training works, cross drainage works, causes and prevention of water logging and construction of tube wells.

OBJECTIVES:

On completion of the course, the students will be able to:

- Understand water resource potential in India and need for water resource management.
- Understand the components of hydrological cycle and hydrograph.
- Understand the occurrence of ground water and ground water explorationmethods.
- Understand the ground water basin management concept.
- Learn the classification of rivers and river training works.
- Know the different types of storage works and dam structures.
- Understand the distribution system of canals and management of canalirrigation.
- Understand the concept of water shed management including GISapproach.
- Learn the types of detention basins and reclamation of water logged lands.

DETAILED SYLLABUS

4010633 - WATER RESOURCES ENGINEERING

Contents: Theory

Unit	Name of the Topics	Hours
I	1.1 INTRODUCTION	7
	Water resources - world water inventory - Importance of water	
	resources - Necessity for conservation and development of water	
	resources - water resources of India - water resources	
	management - purpose - factors involved in water resources	
	management.	
		o
	Introduction Definition - Application of Hydrology in orginaaring	0
	Hydrological cycle - Precipitation - forms of Precipitation -	
	measurements of rain fall - Rain gauge - types of rain gauges - rain	
	gauge network – mean rainfall over a drainage basin – methods -	
	Radar and Satellite Measurements of rainfall - runoff - Estimation of	
	runoff - losses – Hydrograph – Unit Hydrograph - uses	
II	2.1 GROUND WATER	8
	Ground water resources- zones of Ground water-Aquifer - types-terms	
	used -porosity, permeability, yield, specific yield, specific retention,	
	coefficient of storage, specific capacity - Darcy's law- measurement of	
	yield of well -pumping test- recuperation test- ground water exploration	
	-geo physical methods -Electrical resistivity method - seismic	
	resistivity method- logs.	
	2.2 MANAGEMENT OF GROUND WATER	7
	Concept of basin management - Ground water basin investigations -	
	data collection and field work -mining vield - perennial vield - salt	
	balance - basin management by conjunctive use - artificial recharge of	
	Ground water - recharge methods.	
	 resistivity method- logs. 2.2 MANAGEMENT OF GROUND WATER Concept of basin management - Ground water basin investigations - data collection and field work -mining yield - perennial yield - salt balance - basin management by conjunctive use - artificial recharge of Ground water - recharge methods. 	7

Ш	3.1 RIVERS AND RIVER TRAINING WORKS	7
	Classification of river - Major rivers in India and Tamil Nadu -Inter	
	linking of rivers in India and its importance - flood - flood forecasting -	
	flood control in India. River training - objectives of river training -	
	classification of river training - methods of river training - levees -	
	guide banks - spurs - types - artificial cut-offs - launching apron -	
	pitching of banks - pitched islands - miscellaneous methods.	
	3.2 STORAGE WORKS	8
	Surface storage - purpose of surface storage - tanks - types - tank	
	weirs - tank outlet - reservoirs - types - storage capacity of reservoir -	
	methods of determination of storage capacity of reservoir - reservoir	
	losses – dams - classification of dams - selection of dam site - Earth	
	dams - types - methods of construction- causes of failure of earth	
	dam - remedial measures - spillway - types - spillway crest gates-	
	types – sluiceway - types.	
IV	4.1 DISTRIBUTION WORKS	7
	Irrigation Canal - Typical cross section of canal - components of canal	
	section - classification of canal -alignment of canal - canal head works	
	- types - components of diversion head works - cross drainage works	
	- types - canal losses - lining of canal - necessity - types of lining.	
	4.2 MANAGEMENT OF CANAL IRRIGATION	7
	 4.2 MANAGEMENT OF CANAL IRRIGATION Canal irrigation system - Need for canal irrigation management - 	7
	4.2 MANAGEMENT OF CANAL IRRIGATION Canal irrigation system - Need for canal irrigation management - objectives of canal irrigation management - methods of improving canal	7
	4.2 MANAGEMENT OF CANAL IRRIGATION Canal irrigation system - Need for canal irrigation management - objectives of canal irrigation management - methods of improving canal irrigation management - cropping pattern - need for crop rotation - crop	7
	4.2 MANAGEMENT OF CANAL IRRIGATION Canal irrigation system - Need for canal irrigation management - objectives of canal irrigation management - methods of improving canal irrigation management - cropping pattern - need for crop rotation - crop water requirement - water delivery system - irrigation scheduling -	7
	4.2 MANAGEMENT OF CANAL IRRIGATION Canal irrigation system - Need for canal irrigation management - objectives of canal irrigation management - methods of improvingcanal irrigation management - cropping pattern - need for crop rotation - crop water requirement - water delivery system - irrigation scheduling - frequency of irrigation - optimum use of irrigation water - irrigation	7
	4.2 MANAGEMENT OF CANAL IRRIGATION Canal irrigation system - Need for canal irrigation management - objectives of canal irrigation management - methods of improvingcanal irrigation management - cropping pattern - need for crop rotation - crop water requirement - water delivery system - irrigation scheduling - frequency of irrigation - optimum use of irrigation water - irrigation efficiencies - conservation of water on the field - farmer's participation	7

Water shed - classification of water sheds - integrated approach for water shed management - role of remote sensing and GIS in water shed management - soil and water conservation – Necessity - soil erosion – causes - effects – remedial measures against erosion - contour bunding - strip cropping - bench terracing – check dams - vegetated water way – afforestation - crop residue - land drainage - surface drains - sub surface drains.	
water shed management - role of remote sensing and GIS in water shed management - soil and water conservation – Necessity - soil erosion – causes - effects – remedial measures against erosion - contour bunding - strip cropping - bench terracing – check dams - vegetated water way – afforestation - crop residue - land drainage - surface drains - sub surface drains.	
shed management - soil and water conservation – Necessity - soil erosion – causes - effects – remedial measures against erosion - contour bunding - strip cropping - bench terracing – check dams - vegetated water way – afforestation - crop residue - land drainage - surface drains - sub surface drains.	
erosion – causes - effects – remedial measures against erosion - contour bunding - strip cropping - bench terracing – check dams - vegetated water way – afforestation - crop residue - land drainage - surface drains - sub surface drains.	
contour bunding - strip cropping - bench terracing – check dams - vegetated water way – afforestation - crop residue - land drainage - surface drains - sub surface drains.	
vegetated water way – afforestation - crop residue - land drainage - surface drains - sub surface drains.	
surface drains - sub surface drains.	
5.2 WATER HARVESTING AND RECYCLING	6
water harvesting - runoff collection - onsite detention basin - ponds -	
types - Seepage control – methods -evaporation control - Recycling of	
harvested water - waste water recharge for reuse - methods -water	
logging-remedial measures-soil reclamation.	
Test & Model exam 7	

Reference Books :

- Santhosh Kumar Garg, Hydrology and Water Resources Engineering, Khanna Publishers, Delhi.
- G.L.Asawa, Irrigation and Water Resources Engineering, New ageinternational(p) Ltd., Publishers, New Delhi.
- 3. David Keith Todd., Ground water Hydrology, John wiley &sons, Singapore.
- 4. Dilip Kumar Majumdar, Irrigation Water Management Principles and Practice, PHI Pvt.Ltd. NewDelhi-1.
- 5. Madan Mohan Das & Mimi Das Saikia, Irrigation and water power Engineering,PHI learning pvt. Ltd., NewDelhi-1
- 6. K.Subramanya, Engineering hydrology, Tata McGraw-Hill publishing company ltd., New Delhi.

DIPLOMA IN CIVIL ENGINEERING

III YEAR

N-SCHEME

VI SEMESTER

COMPUTER APPLICATIONS IN CIVIL ENGINEERING PRACTICE

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

		PRACTICE
Subject Title	:	COMPUTER APPLICATIONS IN CIVIL ENGINEERING
Semester	:	VI Semester
Subject Code	:	4010640
Course Name	:	1010 : DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hour / Week	Hours / Semester	Marks		Duration	
COMPUTER APPLICATIONS			Internal Assessment	Board Examination	Total	Duration
IN CIVIL ENGINEERING PRACTICE	5 Hrs.	80 Hrs.	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

Computers play a very vital role in present day life, more so, in all the professional life of engineering. In order to enable the students use the computers effectively in problem solving, this course offers various engineering applications of computers in civil engineering.

OBJECTIVES:

After completing this course, students will be able to:

- Prepare the estimate and abstract estimate using Electronics Spread sheet software.
- Know the RCC detailihng using software.
- Analyse the simple frame structure using software.
- Use the Construction Project Management Software to develop the CPM/PERT network.
- Practice the Aerial Map using GIS software.

DETAILED SYLLABUS

4010640 - COMPUTER APPLICATIONS IN CIVIL ENGINEERING PRACTICE

Contents: Practical

Total: 80 Hrs.

20 Hours

PART - A

LIST OF EXPERIMENTS

I ELECTRONIC SPREAD SHEET USING SOFTWARE

Solving problems involving estimation, analysis and design using any one of the available packages mentioned below or any other suitable packages for the following exercises.

- 1. Prepare the Estimate sheet with given data (provide all the measurement details) and calculate the quantity using formula bar.
- 2. Prepare the Abstract sheet for the given data and calculate Amount and Total Amount using Formula bar (Use separate column for rates and units)
- 3. Design and Analysis problems
- 4. Calculate Area and Elongation using Formula bar
- Calculate Effective depth'd' and Area of Steel 'Ast 'using Formula Bar for given singly reinforced section.
- For given dimension of Masonry/R.C.C Dam ie. top width, bottom width, height of Dam, height of water, Specific weight of masonry/R.C.C., Sp.wt of Water etc,. Find the base pressure and check the stability of the dam.
- 7. Finding centre of gravity; I_{xx} and I_{YY} of I, L, T and channel sections.

Note : In addition to the above, similar exercises may be given for practice

Commercial Software	Similar Open source	Download Link	
	Open office	http://download.openoffice.org/	
Microsoft Office	LibreOffice	http://www.libreoffice.org/	

PART B

II RCC DETAILING USING SOFTWARE

Generation of detailed drawings for the given specification and Preparation of Bar Bending schedule using any one of the software packages for the following exercises.

Cross section and longitudinal section of:

- 1. Continuous one way slab (with three equal spans)
- 2. Simply supported two-way slab
- 3. Restrained two way slab
- 4. Singly reinforced rectangular beam
- 5. Doubly reinforced continuous rectangular beam with two equal span
- 6. Dog-legged staircase
- 7. R.C.C Column with square Isolated footing

III RCC STRUCTURES - ANALYSIS USING SOFTWARE 20 Hours

1. Carry out the analysis and design of simple RCC structures using any one of the available packages like STAADPRO, ETAB, CADS3D or any other suitable packages.

IV. CONSTRUCTION PROJECT MANAGEMENT USING SOFTWARE 12 Hours

1. Develop the CPM / PERT Network for the proposed simple building project using any one of the available packages mentioned below or any other suitable packages.

Commercial Software	Similar Open source	Download Link
Microsoft Project	GANTT PROJECT	http://www.ganttproject.biz/

V. DRAWING MAPS USING GIS SOFTWARE

(Demonstration and Practice only)

1. Develop Aerial map of given area using **any one** of the available packages mentioned below or any other suitable packages.

Commercial Software	Similar Open source	Download Link
	QGIS	http://www.qgis.org/en/site/
ARCOIS	GRASS GIS	http://grass.osgeo.org/

20 Hours

8 Hours

SCHEME OF EXAMINATION:

In the examination the students have to be given two experiments one from Part A and another from Part-B.

S.No	Description	Part - A Max.Marks (40)	Part - B Max.Marks (55)
1.	Procedure	5	5
2	Tabulation and Observation	15	25
3	Calculations	10	15
4	Sketch / Graph	5	5
5	Accuracy of result	5	5
	Viva Voce	Ę	5
	Total	10	00

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for a batch of 30 students):

S No	List of the Equipments	Quantity
0.110.		Required
1.	Computers	30 Nos.
2.	Suitable Software for Electronic Spread Sheet	30 Users
3.	Suitable RCC Detailing Software	30 Users
4.	Suitable Structural Analysis Software	30 Users
5.	Suitable Project Management Software	30 Users
6.	Suitable GIS Software	30 Users

DIPLOMA IN CIVIL ENGINEERING

III YEAR N-SCHEME

VI SEMESTER

ESTIMATION AND COSTING LABORATORY

(Elective Practical -II)

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	ESTIMATION AND COSTING LABORATORY
Semester	:	VI Semester
Subject Code	:	4010651
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION:

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks		Duration	
ESTIMATION AND	∕l Hrs	64 Hrs	Internal Assessment	Board Examination	Total	Duration
COSTING LABORATORY	т III 5 .	UT 113.	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

Estimation and Costing Lab deals with the procedure for estimating and costing of Civil Engineering works and to perform rate analysis for different items associated with construction projects.

OBJECTIVES:

After completing this course, students will be able to:

- Select modes of measurements for different items of works.
- Prepare detailed estimate of a civil engineering works.
- Use relevant software for estimating the quantities and cost of items of works.
- Justify rate for given items of work using rate analysis techniques

DETAILED SYLLABUS

4010651 - ESTIMATION AND COSTING LABORATORY

Contents: Practical

Total: 64 Hrs.

List of Experiments

- 1. Prepare the list of items to be executed with units for detailed estimate of a given structure from the given drawing.
- Prepare a report on market rates for given material, labour wages, hire charges of tools & equipments required to construct the given structure as mentioned in at Serial number 1 above.
- 3. Recording in Measurement Book (MB) for any four items
- 4. Prepare bill of quantities of given item from actual measurements. (any four items).
- 5. Prepare approximate estimate for the given engineering works.
- Calculate the quantity of items of work from the given set of drawings using standard measurement sheet for load bearing residential structure using description of item from (1BHK Building with staircase).
- Prepare detailed estimate from the given set of drawings using "standard measurement and abstract format" for RCC framed structure using description of item (G+1 Building)
- 8. Calculate the reinforcement quantities from the given set of drawings for a room size of 3 m x 4m with bar bending schedule.
- 9. Prepare detailed estimate of bitumen road of one kilometre length from the given drawing.
- 10. Prepare detailed estimate of small Septic tank from the given set of drawings.
- 11. Prepare bar bending schedule for the given singly reinforced and doubly reinforced beams
- 12. Prepare bar bending schedule for the given continuous beam
- 13. Prepare bar bending schedule for the given one way slab
- 14. Prepare bar bending schedule for the given two way slab
- 15. Prepare bar bending schedule for the given square column and square footing

Reference Books:

- 1. Datta, B.N., Estimating and Costing in Civil engineering, UBS Publishers Distributors
- 2. Rangwala, S.C., Estimating and Costing, Charotar Publishing House, Anand.
- 3. Birdie, G.S., Estimating and Costing, Dhanpat Rai Publishing Company(P) Ltd. Delhi.
- 4. Patil,B.S., Civil Engineering Contracts and Estimates, Orient Longman, Mumbai.. Monojit Chakraborti, Kolkata.
- 5. PWD Schedule of Rates.

4010651 - ESTIMATION AND COSTING LABORATORY

S.No	Description	Marks
1.	Tabulation and Observation	50
2.	Calculations	35
3.	Accuracy of result	10
4.	Viva-Voce	5
	Total	100

DETAILED ALLOCATION OF MARKS

DIPLOMA IN CIVIL ENGINEERING

III YEAR

N-SCHEME

VI SEMESTER

HIGHWAY ENGINEERING LABORATORY

(Elective Practical -II)

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	HIGHWAY ENGINEERING LABORATORY
Semester	:	VI Semester
Subject Code	:	4010652
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hour/ Week	Hours / Semester	Marks		Duration	
HIGHWAY			Internal Assessment	Board Examination	Total	Duration
LABORATORY	4 Hrs.	64 Hrs.	25	100 *	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

In this course, the students learn about testing of aggregates, bitumen and preparing a report about roadworks.

OBJECTIVES:

After the completion of this course, the students will be able to:

- Identify the types of roads as per IRC recommendations.
- Understand the geometrical design features of different highways.
- Perform different tests on road materials.

DETAILED SYLLABUS

4010652 - HIGHWAY ENGINEERING LABORATORY

Contents: Practical

Total:64 Hours

LIST OF EXPERIMENTS

Exercises:

- Draw the sketches showing standard cross sections of Expressways, Freeways, NH/SH, MDR/ODR
- 2. Flakiness and Elongation Index of aggregates.
- 3. Angularity Number of aggregates.
- 4. Los Angeles Abrasion test
- 5. Softening point test of bitumen.
- 6. Penetration test of bitumen.
- 7. Ductility test of Bitumen.
- 8. Study of dense Bituminous macadam design
- 9. Visit the constructed road for visual inspection to identify defects and suggest remedial measures.
- 10. Prepare the photographic report containing details for exercise No.9
- 11. Visit the hill road constructed site to understand its components.
- 12. Prepare the photographic report containing details for exercise No.11
- 13. Visit the road of any one type (flexible or rigid) to know the drainage condition.

Reference Books:

- L.R. Kadiyali, Transportation Engineering, Khanna Book Publishing Co., New Delhi (ISBN:978-93-82609-858) Edition 2018
- 2. Khanna S.K., Justo, C E G and Veeraragavan, A., Highway Engineering, Nem Chand and Brothers, Roorkee.
- 3. Arora, N. L., Transportation Engineering, Khanna Publishers, Delhi.
- 4. Saxena S C and Arora S P, A Textbook of Railway Engineering, Dhanpat Rai Publication.
- 5. Birdi, Ahuja, Road, Railways, Bridge and Tunnel Engg, Standard Book House, Delhi.
- 6. Sharma, S.K., Principles, Practice and Design of Highway Engineering,, S. Chand
- 7. Duggal, Ajay K. and Puri, V. P., Laboratory Manual in Highway Engineering, New Age International (P) Limited, Publishers, New Delhi.
- 8. Subramanian, K.P., Highway, Railway, Airport and Harbour Engineering, Scitech Publications, Hyderabad.

4010652 - HIGHWAY ENGINEERING LABORATORY

DETAILED ALLOCATION OF MARKS

S.No	Description	Marks
1.	Procedure	15
2.	Tabulation and Observation	40
3.	Calculations	30
4.	Accuracy of result	10
5.	Viva-Voce	5
	Total	100

LIST OF EQUIPMENTS (for a batch of 30 students):

S. NO.	LIST OF EQUIPMENTS	QUANTITY REQUIRED
1.	Sieve test for coarse aggregate made of brace 200mm dia complete set	2 sets
2.	Length gauge and Thickness gauge	2 Nos.
3.	Los Angeles Abrasion testing equipment	1 no.
4.	Viscometer	1 no.
5.	Ductility testing machine, briquette mould, water bath	1 No.
6.	Flash and Fire point apparatus	1 set
7.	Bitumen Penetro meter	1 No.
8.	Weigh balance-digital upto 10kg capacity with 1gm accuracy battery backup	1No

DIPLOMA IN CIVIL ENGINEERING

III YEAR

N-SCHEME

VI SEMESTER

WATER RESOURCES ENGINEERING LABORATORY

(Elective Practical -II)

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	WATER RESOURCES ENGINEERING LABORATORY
Semester	:	VI Semester
Subject Code	:	4010653
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hour/ Week	Hours / Semester	Marks		Duration	
WATER		s. 64 Hrs.	Internal Assessment	Board Examination	Total	Duration
ENGINEERING LABORATORY	4 Hrs.		25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

Diploma holders in civil engineering have to supervise the construction, repair and maintenance of canals, head works, river training works, cross drainage works, regulatory and other works. Some of the diploma holders are also engaged for preventing water logging and irrigation by tubewells. This subject imparts knowledge regarding hydrology, flow irrigation – storage and distribution system, constructional features of head works, river training works, cross drainage works, causes and prevention of water logging and construction of tube wells.

OBJECTIVES:

The following are the objectives of this course:

- To learn estimation of hydrological parameters.
- To understand water demand of crops and provisions to meet the same.
- To know planning of reservoirs and dams.
- To design irrigation projects, canals and other diversion works.

DETAILED SYLLABUS

4010653 - WATER RESOURCES ENGINEERING LABORATORY

Contents: Practical

Total : 64 Hrs.

LIST OF EXPERIMENTS

EXERCISES

- 1. Calculate average rainfall for the given area using arithmetic mean method.
- 2. Calculate average rainfall for the given area using isohyetal, Theissen polygon method.
- 3. Delineation of contributory area for the given outlet from the given topo-sheet.
- 4. Estimate crop water requirement for the given data.
- 5. Estimate capacity of the canal for the given data.
- 6. Calculate reservoir capacity from the given data.
- 7. Calculate control levels for the given data for a given reservoir.
- 8. Draw a labeled sketch of the given masonry/earthen dam section.
- 9. Draw the theoretical and practical profile of the given gravity dam section.
- 10. Prepare a presentation on the technical details of any one micro or minor irrigation scheme.
- 11. Prepare a model of any irrigation structure using suitable material.
- 12. Prepare a maintenance report for any major/minor irrigation project site in the vicinity of your area, based on field visit.
- 13. Prepare summary of the technical details of any existing water resource project in the vicinity of your area.
- 14. Draw a labeled sketch of the given diversion head works and Cross Drainage works.
- 15. Design a canal section for the given conditions with estimation of the quantity of material required for lining.

Reference Books

- 1. Punmia, B.C., Pande, B, Lal, Irrigation and water power engineering, Laxmi Publications
- 2. Subramanayan, Engineering Hydrology, McGraw Hill.
- 3. Mutreja K N, Applied Hydrology, McGraw Hill
- 4. Sharma, R.K. and Sharma, T.K., Irrigation Engineering, S.Chand and Company
- 5. Basak, N.N., Irrigation Engineering, McGraw Hill Education India Pvt. Ltd.
- 6. Asawa, G.L., Irrigation and water resource Engineering, New Age International(P)
- 7. Dahigaonkar, J.G., Irrigation Engineering, Asian Book Pvt. Ltd., New Delhi.
- 8. Garg, S K, Irrigation and Hydraulic structures, Khanna Publishers, Delhi.
- 9. Priyani V.B., Irrigation Engineering, Charotar Book Stall, Anand.

S.No	Description	Marks
1.	Tabulation and Observation/	35
	Procedure	
2.	Calculations	45
3.	Accuracy of result	15
4.	Viva-Voce	5
	Total	100

DETAILED ALLOCATION OF MARKS

DIPLOMA IN CIVIL ENGINEERING

III YEAR

N-SCHEME

VI SEMESTER

PROJECT WORK AND INTERNSHIP

IMPLEMENTED FROM 2020 -2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI - 600 025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN CIVIL ENGINEERING SYLLABUS N-SCHEME

(To be implemented to the students admitted from the year 2020-2021 onwards)

Subject Title	:	PROJECT WORK AND INTERNSHIP
Semester	:	VI Semester
Subject Code	:	4010660
Course Name	:	1010: DIPLOMA IN CIVIL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks			
PROJECT WORK AND	6 Hrs.	96 Hrs.	Internal Assessment	Board Examination	Total	Bulation
INTERNSHIP			25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks. Minimum marks for Pass is 50 out of which minimum 50 marks should be obtained out of 100 marks in the Board Examination alone.

RATIONALE:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise.

As far as possible, the students should be given live project problems with a view to:

- Develop understanding regarding the size and scale of operations and nature of field work in which students are going to play their role after completing the courses of study.
- ii) Develop understanding of subject based knowledge given in the classroom in the context of its application at work places.

- iii) Develop first and experience and confidence amongst the students to enable them to use and apply polytechnic/institute based knowledge and skills to solve practical problems of the world of work.
- iv) Develop special skills and abilities like interpersonal skills, communication skills, attitudes and values

OBJECTIVES:

The objective of the project work is to enable the students to work in convenient groups of not more than six members in a group on a project involving theoretical and experimental studies related to Civil Engineering. Every Project Work shall have a Guide who is a member of the faculty of Civil Engineering of the college. The hours allotted for this course shall be utilized by the students to receive directions from the Guide, on library reading, laboratory work, computer analysis or field work and also to present in periodical seminars the progress made in the project. Each student shall finally produce a comprehensive report covering background information, literature Survey, problem statement, Project work details and conclusions.

This experience of project work shall help the student in expanding his / her knowledge base and also provide opportunity to utilise the creative ability and inference capability.

- Implement the theoretical and practical knowledge gained through the curriculum into an application suitable for a real practical working environment preferably in an industrial environment
- Get exposure on industrial environment and its work ethics.
- Understand what entrepreneurship is and how to become an entrepreneur.
- Learn and understand the gap between the technological knowledge acquired through curriculum and the actual industrial need and to compensate it by acquiring additional knowledge as required.
- Carry out cooperative learning through synchronous guided discussions within the class in key dates, asynchronous document sharing and discussions, as well as to prepare collaborative edition of the final project report.

WORKS INVOLVED IN PROJECT WORK:

Collection of Data from various Journals and Civil Engineering Magazines about the list of Projects given below- Select a suitable project based on the data collected and available resources in your locality -Surveyed Site Plan – Site particulars – Preparation of Architectural Drawings – soil type in the location – Specification for materials & construction procedure - Structural design – Preparation of Detailed Estimate, Data as per Current schedule of Rates - Abstract Estimate – Structural Drawings – Preparation of Report about the project.

S.No	Activity	Reference
1.	Preparation of Architectural Drawings	1. Building Regulations of Locality
		2. National Building Code of India, etc
2.	Structural design, Concrete	1. Relevant IS code for Masonry,
	Reinforcement, Steel etc.	Structures
		2. IS 456 for Reinforced Cement Concrete
		3. Hand book on Concrete Reinforcement
		and Detailing (SP-34)
3.	Specification of material and work	1. Construction procedure by
	procedure as per State Govt.	organization, viz. PWD
	Highways, Central Govt. Railways, etc	2. Construction procedure by organization
		viz. CPWD
		3. Specification by Architect etc.,

IMPORTANT DOCUMENTS TO BE REFERRED FOR THE ABOVE ACTIVITIES:

The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) INTERNAL ASSESSMENT:

The internal assessment should be calculated based on the review of the progress of the work done by the student peridocially as follows:

Details of assessment	Period of assessment	Max.Marks	
First Review	6 th Week	10	
Second Review	12 th week	10	
Attendance	Entire semester	5	
	25		

Details of Mark allocation	Max. Marks
Demostration/Presentation	25
Report	25
Viva Voce	30
Internship report	20
Total	100*

b) Allocation of Marks for Project Work and Intership in Board Examinations:

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Board examination.

LIST OF SUGGESTED PROJECTS

• COMPARATIVE STUDY

Conventional and Composite concrete mixtures Light weight construction materials Prefabricated and R.C.C. Structures

Cost and construction procedures for steel and R.C.C. Structures

Cost and Construction procedures for Prestressed and R.C.C. Structures

• ADMIXTURES

Economy of using flyash in concete

• MIX DESIGN

Comparative study of mix design by different methods

• STUDY OF SPECIAL TYPES OF CONCRETE IN CONSTRUCTION BY EXPERIMENTS

- Bamboo as a reinforcing material
- Baggase ash concrete
- Flyash concrete
- Concrete with Natural vegetative materials
- o Concrete using Plastic waste
- Concrete using Steel slag
- o Concrete using factory wastes
- o Self Compacting concrete, Fibre reinforced concrete, Ferro cement products,

• PAPER PROJECTS

- o Residential Houses, Primary Health center, School Buildings, Guest House
- o Panchayat Union Office Building, Bank Building
- Post Office Building, College Building, Hospital Building, Hotel Building, Hostel
 Building, Factory Building, Auditorium, Shopping Centre, Community Hall, Theatre
- o Market Building, Multistoried Car park, Rural Bus Stand, Stadium
- Swimming Pool
- o Over head tank for a village, New village road with culvert, Small Bridge
- o Plate girder bridge
- Septic Tank for a Colony
- o Other Civil Engineering related structures

ENVIRONMENTAL MANAGEMENT PROJECTS

- Treatment of Wastewater and recirculation for a Colony.
- Solid waste management in a Colony.
- Hydrological data Collection for a river basin/water shed Industrial effluent Collection and analysis .

• MISCELLANEOUS

- Rain water Harvesting system for buildings
- o Rain water Harvesting system for a small colony
- Low cost Housing techniques
- Rehabilitation of structures

FORMAT FOR PREPARATION OF PROJECT REPORT

1. ARRANGEMENT OF CONTENTS:

The sequence in which the project report material should be arranged and bound should be as follows:

- 1. Cover Page & Title Page
- 2. Bonafide Certificate
- 3. Abstract
- 4. Table of Contents
- 5. List of Tables
- 6. List of Figures
- 7. List of Symbols, Abbreviations and Nomenclature
- 8. Chapters
- 9. Appendices
- 10. References

The table and figures shall be introduced in the appropriate places.

2. PAGE DIMENSION AND BINDING SPECIFICATIONS:

The dimension of the project report should be in A4 size. The project report should be bound using flexible cover of the thick white art paper. The cover should be **printed in black letters** and the text for printing should be identical.

3. PREPARATION OF FORMAT:

- **3.1 Cover Page & Title Page** A specimen copy of the Cover page & Title page of the project report are given in **Appendix 1.**
- **3.2** Bonafide Certificate The Bonafide Certificate shall be in double line spacing using Font Style Times New Roman and Font Size 14, as per the format in Appendix 2.

The certificate shall carry the guide"s signature and shall be followed by the guide"s name, academic designation (not any other responsibilities of administrative nature), department and full address of the institution where the supervisor has guided the student. The term 'GUIDE' must be typed in capital letters between the guide"s name and academic designation.

- **3.3 Abstract** Abstract should be one page synopsis of the project report typed double line spacing, Font Style Times New Roman and Font Size 14.
- **3.4 Table of Contents –** The table of contents should list all material following it as well as any material which precedes it. The title page and Bonafide

Certificate will not find a place among the items listed in the Table of Contents but the page numbers of which are in lower case Roman letters. One and a half spacing should be adopted for typing the matter under this head. A specimen copy of the Table of Contents of the project report is given in **Appendix 3**.

- **3.5** List of Tables The list should use exactly the same captions as they appear above the tables in the text. One and a half spacing should be adopted for typing the matter under this head.
- **3.6** List of Figures The list should use exactly the same captions as they appear below the figures in the text. One and a half spacing should be adopted for typing the matter under this head.
- **3.7** List of Symbols, Abbreviations and Nomenclature One and a half spacing should be adopted or typing the matter under this head. Standard symbols, abbreviations etc. should be used.

3.8 Chapters – The chapters may be broadly divided into 3 parts

- (i) Introductory chapter,
- (ii) Chapters developing the main theme of the project work such as
 - 1. Objectives
 - 2. Collection of data and required survey work
 - 3. Management and construction procedure
 - 4. Resources scheduling and networking
 - 5. Design details
 - 6. Required drawing set
 - 7. Utility to society if any and Conclusion

The main text will be divided into several chapters and each chapter may be further divided into several divisions and sub-divisions.

- Each chapter should be given an appropriate title.
- Tables and figures in a chapter should be placed in the immediate vicinity of the reference where they are cited.
- Footnotes should be used sparingly. They should be typed single space and placed directly underneath in the very same page, which refers to the material they annotate.
- **3.9 Appendices** Appendices are provided to give supplementary information, which is included in the main text may serve as a distraction and cloud the central theme.
 - Appendices should be numbered using Arabic numerals, e.g. Appendix 1, Appendix 2, etc.
 - Appendices, Tables and References appearing in appendices should be numbered and referred to at appropriate places just as in the case of chapters.
 - Appendices shall carry the title of the work reported and the same title shall be made in the contents page also.
- **3.10** List of References –The listing of references should be typed 4 spaces below the heading "REFERENCES" in alphabetical order in single spacing left justified. The reference material should be listed in the alphabetical order of the first author. The name of the author/authors should be immediately followed by the year and other details.

A typical illustrative list given below relates to the citation example quoted above.

Reference:

- 1. Code of practice for plain and reinforced concrete (fourth edition), IS456:2000, Bureau of India Standard, New Delhi
- 2. Neville, A. M., Concrete Technology, Fourth edition, Pearson Education, New Delhi.
- Handbook on concrete mixes (based on Indian Standards), SP: 23- 1988, Bureau of Indian Standards, New Delhi, India
- **3.10.1 Table and figures -** By the word Table, is meant tabulated numerical data in the body of the project report as well as in the appendices. All other non- verbal materials used in the body of the project work and appendices such as charts, graphs, maps, photographs and diagrams may be designated as figures.

4.0 Typing Instructions:

The impression on the typed copies should be black in colour.

One and a half spacing should be used for typing the general text. The general text shall be typed in the Font style 'Times New Roman' and Font size 12.

APPENDIX 1

(A typical Specimen of Cover Page & Title Page)

TITLE OF PROJECT REPORT

<1.5 line spacing>

A PROJECT REPORT

Submitted by <Italic>

NAME OF THE CANDIDATE(S)

Submitted for partial fulfillment of requirement for the award of the diploma

in

<1.5 line spacing><Italic>

BRANCH OF STUDY

NAME OF THE POLYTECHNIC COLLEGE

DIRECTORATE OF TECHNICAL EDUCATION

CHENNAI 600 025

<1.5 line spacing>

MONTH & YEAR

SPECIMEN

PLANNING ANALYSIS AND DESIGNING OF MULTI- LEVEL CAR PARKING

A PROJECT REPORT

Submitted by

SANDHYA. A10200382GAYATHRI. R10293990MUTHUSAMY. G10293991RAJA. D10289898

in partial fulfillment of requirement for the award of the diploma

in

CIVIL ENGINEERING

XXXXX POLYTECHNIC COLLEGE
DIRECTORATE OF TECHNICAL EDUCATION

CHENNAI 600 025

APRIL 20....

APPENDIX 2 (A typical specimen of Bonafide Certificate) DIRECTORATE OF TECHNICAL EDUCATION **CHENNAI 600 025**

BONAFIDE CERTIFICATE

Certified that this project report entitled ".....TITLE OF THE

PROJECT......"is the bonafide work done by ".....NAME

OF THE CANDIDATE(S)....." with his/her batch-mates, in partial

fulfillment of the requirement for the award of Diploma in Civil Engineering

under my guidance.

Signature of the Head of the Department>> **SIGNATURE**

<<Signature of the Guide>> **SIGNATURE**

<<Name>> **HEAD OF THE DEPARTMENT**

<<Department>> <<Full address of the Dept & College >> the Dept & College >>

Submitted for Board Examination held onXXXXX... Polytechnic College.

INTERNAL EXAMINER

<<Name>> GUIDE

<<Academic Designation>> <<Department>> <<Full address of

at

EXTERNAL EXAMINER

APPENDIX 3

(A typical specimen of table of contents)

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO.

ABSTRACT	iii
LIST OF TABLE	xvi
LIST OF FIGURES	xviii
LIST OF SYMBOLS	xxvii

1.	INTE	RODUCTION	1
	1.1	GENERAL	1
	1.2		2
		1.2.1 General	5
		1.2.2	12
		1.2.2.1 General	19
		1.2.2.2	25
		1.2.2.3	29
		1.2.3	30
	1.3		45
	1.4		58
2.	CAH	PTER I	69
	2.1	GENERAL	75
		2.2	99
		2.2	100

SANDWICH DIPLOMA COURSE-INDUSTRIAL TRAINING

4010491 - Industrial Training I (Report writing & Viva Voce)

4010492 - Industrial Training II (Report writing & Viva Voce)

1.Introduction

The main objective of the sandwich Diploma course is to mould a well rounded technician acclimated with industrial environment while being a student in the institution.

The Sandwich Diploma Course study is pursued by students, in 7 Semesters of 3 ½ years duration, the subjects of 3 years-Full Time Diploma Course being regrouped for academic convenience.

While in the 4th semester students under Industrial Training for 6 months(December through May). They also do course work in the institution for one day in a week, While in the 7th semester they undergo another spell of 6 months (June through November) Industrial training.

The Apprenticeship (Amendment) Act 1973 is followed in regulating the Industrial training procedure for Sandwich Course.

I SEM II SEM III SEM IV SEM V SEM VI SEM VII SEM
--

2. Attendance Certification

Every month students have to get their attendance certified by industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution supervisor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.

3. Training Reports

The students have to prepare two types of reports:

- Weekly report in the form of diary to be submitted to the concerned staff in- charge of the institution. This will be reviewed while awarding Internal Assessment marks.
- Comprehensive report at the end of each spell which will be used for Board Examination.

3.1 Industrial Training Diary

Students are required to maintain the record of day-to-day work done. Such record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc). The concern Industrial supervisor is to check periodically these progress reports.

3.2 Comprehensive Training Report

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should be incorporating study of plant/product/process/construction along with intensive in-depth study on any one of the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training. Any data, drawings etc should be incorporated with the consent of the Organisation.

Scheme of Evaluation:

1.1 Internal Assessment Marks

First Review (during Third	:	10 marks
Second Review (during Fifth month)	:	10 marks
Attendance *	:	05 marks (Awarded same as in Theory)
Total	:	25 marks

* For awarding marks to attendance, the Industrial Training attendance has to be considered.

1.2 Board Examination :

S.No	Description	Marks
1.	Presentation about Industrial Training	30
2.	Comprehensive Training Report	40
3.	Viva-voce	30
	Total	100*

DETAILED ALLOCATION OF MARKS

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

DIPLOMA IN ENGINEERING AND TECHNOLOGY

1020 - 2020 - 3020 DEPARTMENT OF MECHANICAL ENGINEERING (FULL TIME – PART TIME – SANDWICH) SEMESTER PATTERN

N – SCHEME

IMPLEMENTED FROM 2020 - 2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI-600 025, TAMIL NADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(To be implemented for the students admitted from the 2020 -2021 onwards)

Chairperson

TMT. G.LAXMI PRIYA, I.A.S Director Directorate of Technical Education, Guindy, Chennai.

<u>Co-ordinator</u>

Thiru R.Kanagaraj Principal Government Polytechnic College, Purasawalkam, Chennai.

1020 - 2020 - 3020 DIPLOMA IN MECHANICAL ENGINEERING (FULL TIME – PART TIME – SANDWICH)

Convener

Thiru R.Kanagaraj M.E., Principal Government Polytechnic College, Purasawalkam, Chennai.

<u>Members</u>

Thiru M.Sugumaran, M.E., Principal I/c Ramakrishna Mission Polytechnic College Mylapore, Chennai – 4.

Dr. V.Prabhu Raja, M.E., Ph. D., Professor (CAS) Department of Mechanical Engineering PSG College of Technology, Peelamedu Thiru T.E.Kuppuswamy Asst.General Manager- Tool Room Mudhra Fine Blanc(p) Ltd. Chennai Thiru M.Saravanan B.Tech Manager HR training Delphi TVS Technologies Ltd. Uragadam, Chennai

Thiru R.Karthikeyan M.E., HOD Mechanical Engineering PACR Polytechnic College Rajapalayam. Dr. N.Thangavelu, M.E., Ph. D., HOD- Mechanical Engineering Sakthi Polytechnic College Sakthinagar,

Thiru K.Subaramani, M.E., HOD – Mechanical Engineering NPA Centenary Polytechnic College Kotagiri

Dr. V.V.Senthil Kumar M.E., Ph.D., Principal TVS Polytechnic College Chennai. Dr. N.Rajamanickam M.E., Ph.D., Programmer CDC Directorate of technical Education Chennai

DIPLOMA COURSES IN ENGINEERING/TECHNOLOGY (SEMESTER SYSTEM) (Implemented from 2020 - 2021) N – SCHEME <u>R E G U L A T I O N S</u>*

*Applicable to the Diploma Courses other than Diploma in Hotel Management & Catering Technology.

1. Description of the Course:

a. Full Time (3 years)

The Course for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 semesters* and the First Year is common to all Engineering Branches.

b. Sandwich (3¹/₂ years)

The Course for the Sandwich Diploma in Engineering shall extend over a period of three and half academic years, consisting of 7 semesters* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience.

During 4th and/or during 7thsemester the students undergo industrial training for six months/ one year. Industrial training examination will be conducted after completion of every 6 months of industrial training.

c. Part Time (4 years)

The course for the Part Time Diploma in Engineering shall extend over a period of 4 academic years containing of 8 semesters*, the subjects of 3 year full time diploma courses being regrouped for academic convenience.

* Each Semester will have 16 weeks duration of study with 35 hrs. / Week for Regular Diploma Course and 18 hrs. / Week for Part-Time Diploma Course.

The Curriculum for all the 6 Semesters of Diploma courses (Engineering & Special Diploma Courses viz. Textile Technology, Leather Technology, Printing Technology, Chemical Technology etc.) have been revised and revised curriculum is applicable for the candidates admitted from 2020 – 2021 academic year onwards.

2. Condition for Admission:

Condition for admission to the Diploma courses shall be required to have passed in The S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.(Or) The Anglo Indian High School Examination with eligibility for Higher Secondary Course in Tamil Nadu.(Or)

The Matriculation Examination of Tamil Nadu.(Or)

Any other Examinations recognized as equivalent to the above by the Board of Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

3. Admission to Second year (Lateral Entry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for university Courses of study or equivalent examination &Should have studied the following subjects.

	H.Sc Academic		H.Sc Vocational		Industrial
SI.	Courses		Subjects	Studied	Training
No	Courses	Subjects Studied	Deleted aubiente	Vocational	Institutes
			Related Subjects	subjects	Courses
1.	All the	Physics and Chemistry	Maths / Physics /	Related	2 years
	Regular and	as compulsory along	Chemistry	Vocational	course to be
	Sandwich	with Mathematics /		Subjects	passed with
	Diploma	Biology		Theory&	appropriate
	Courses			Practical	Trade
2.	Diploma	English & Accountancy	English &	Accountancy &	
	Course in		Accountancy,	Auditing,	
	Commercial	English &		Bonking	
	Practice	Elements of	English &	Darikiriy,	
		Economics	Elements of	Business	
			Economics,	Management,	
		English &			
		Elements of	English &	Co-operative	
		Commerce	Management	Management,	
		Principles		International	
			& Techniques,	Trade.	
				,	
			English &	Marketing &	
			Typewriting	Salesmanship,	
				Insurance &	
				Material	
				Management	
				Office	
				Secretaryship	

A pass in 2 Years ITI with appropriate Trade or Equivalent examination.

- For the Diploma Courses related with Engineering/Technology, the related / equivalent subjects prescribed along with Practicals may also be taken for arriving the eligibility.
- Branch will be allotted according to merit through counseling by the respective Principal as per communal reservation.
- For admission to the Textile Technology, Leather Technology, Printing Technology, Chemical Technology and Commercial Practice Diploma courses the candidates studied the related subjects will be given first preference.
- Candidates who have studied Commerce Subjects are not eligible for Engineering Diploma Courses.
- 4. Age Limit: No Age limit.

5. Medium of Instruction: English

6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3 academic years in any institution affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and two years if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Courses are as given below:

Diploma Course	Minimum Period	Maximum Period
Full Time	3 Years	6 Years
Full Time	2 Years	5 Years
(Lateral Entry)		
Sandwich	3 ¹ / ₂ Years	61/2 Years
Part Time	4 Years	7 Years

This will come into effect from N Scheme onwards i.e. from the academic year 2020-2021.

7. Subjects of Study and Curriculum outline:

The subjects of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical subjects.

The curriculum outline is given in Annexure – I.

8. Examinations:

Board Examinations in all subjects of all the semesters under the scheme of examinations will be conducted at the end of each semester.

The internal assessment marks for all the subjects will be awarded on the basis of continuous internal assessment earned during the semester concerned. For each subject 25 marks are allotted for internal assessment. Board Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks.

9. Continuous Internal Assessment:

A. For Theory Subjects:

The Internal Assessment marks for a total of 25 marks, which are to be distributed as follows:

i) Subject Attendance

5 Marks

(Award of marks for subject attendance to each subject Theory/Practical will be as per the range given below)

80%	-	83%	1 Mark
84%	-	87%	2 Marks
88%	-	91%	3 Marks
92%	-	95%	4 Marks
96%	-	100%	5 Marks

ii) Test

10 Marks

2 Tests each of 2 hours duration for a total of 50 marks are to be conducted. Average of the these two test marks will be taken and the marks to be reduced to: The Test – III is to be the Model Examination covering all the five units and the marks obtained will be reduced to: 05 Marks

TEST	UNITS	WHEN TO CONDUCT	MARKS	DURATION
Test I	Unit – I & II	End of 6 th week	50	2 Hrs
Test II	Unit – III & IV	End of 12 th week	50	2 Hrs
Test III	Model Examination: Covering all the 5 Units. (Board Examinations- question paper- pattern).	End of 16 th week	100	3 Hrs

From the Academic Year 2020 – 2021 onwards.

Question Paper Pattern for the Test - I and Test - II is as follows. The tests should be conducted by proper schedule. Retest marks should not be considered for internal assessment.

Without Choice:

	Total	50 marks
Part C Type questions:	2 Questions × 15 marks	30 marks
Part B Type questions:	7 Questions × 2 marks	14 marks
Part A Type questions:	6 Questions × 1 mark	06 marks

iii) Assignment

5 Marks

5 Marks

For each subject Three Assignments are to be given each for 20 marks and the average marks scored should be reduced for 5 marks.

iv) Seminar Presentation

The students have to select the topics either from their subjects or general subjects which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation. For the Third Year, the students should present the seminar individually.) The seminar presentation is mandatory for all theory subjects and carries 5 marks for each theory subject. The respective subject faculty may suggest topics to the students and will evaluate the submitted materials and seminar presentation. (2 $\frac{1}{2}$ marks for the material submitted in writing and 2 $\frac{1}{2}$ marks for the seminar presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 5 marks.

All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for one semester after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection/verification.

B. For Practical Subjects:

The Internal Assessment mark for a total of 25 marks which are to be distributed as follows:-

a) Attendance	: 5 Marks	
(A	ward of marks same as theory subjects)	
b) Procedure/ observation and	tabulation/	
Other Practical related Work	: 10 Marks	
c) Record writing	: 10 Marks	
TOTAL	: 25 Marks	

- All the Experiments/Exercises indicated in the syllabus should be completed and the same to be given for final Board examinations.
- The observation note book / manual should be maintained for 10 marks. The observation note book / manual with sketches, circuits, programme, reading and calculation written by the students manually depends upon the practical subject during practical classes should be evaluated properly during the practical class hours with date.
- The Record work for every completed exercise should be submitted in the subsequent practical classes and marks should be awarded for 10 marks for each exercise as per the above allocation.
- At the end of the Semester, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks

awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)

• Only regular students, appearing first time have to submit the duly signed bonafide record note book/file during the Practical Board Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Log Book of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Log Book of the staff, who is handling the practical subject.

10. Communication Skill Practical, Computer Application Practical and Physical Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase the Communication skill and ICT skill of students.

As per the recommendation of MHRD and under Fit India scheme, the Physical education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

11. Project Work and Internship:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work & Internship:

Total	 25 marks
	theory subject pattern)
Attendance	 05 marks (Award of marks same as
Project Review II	 10 marks
Project Review I	 10 marks

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work & Internship in Board Examinations:

Total	100* marks
Internship Report	20 marks
Viva Voce	30 marks
Report	25 marks
Demonstration/Presentation	25 marks

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Board examination.

12. Scheme of Examinations:

The Scheme of examinations for subjects is given in Annexure - II.

13.Criteria for Pass:

- No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
- 2. A candidate shall be declared to have passed the examination in a subject if he/she secures not less than 40% in theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Board Examinations marks put together, subject to the condition that he/she secures at least a minimum of 40 marks out of 100 marks in the Board Practical Examinations.

14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2023 onwards (Joined first year in 2020 -2021) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the subjects and passes all the semesters in the first appearance itself and passes all subjects within the stipulated period of study $2 / 3 / 3\frac{1}{2} / 4$ years [Full Time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate marks in all the semesters put together and passes all the semesters except the I and II semester in the first appearance itself and passes all subjects within the stipulated period of study 2 / 3 / 3½ / 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class:

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all the semesters put together and passes all the subjects within the stipulated period of study $2 / 3 / 3\frac{1}{2} / 4$ years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

Second Class:

All other successful candidates will be declared to have passed in Second Class.

The above classifications are also applicable for the Sandwich / Part-Time students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 -2021)

15. Duration of a period in the Class Time Table:

The duration of each period of instruction is 1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

ANNEXURE – I

CURRICULUM OUTLINE

1020 DIPLOMA IN MECHANICAL ENGINEERING (FULL TIME)

III Semester

Subject					
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4020310	Strength of Materials	5	-	-	5
4020320	Manufacturing Technology - I	5	-	-	5
4020330	Measurements and Metrology	5	-	-	5
4020340	Thermal Engineering – I	5	-	-	5
4020350	Machine Drawing and CAD Practical	-	2	2	4
4020360	Manufacturing Technology – I Practical	-	-	4	4
4020370	Measurements and Metrology Practical	-	-	4	4
		20	2	10	32
Extra / Co-	Curricular activities				
Library					1
Physical Education					
TOTAL					

IV Semester

Subject	Subject HOURS PER WEEK				
Codo	SUBJECT	Theory	Drawing	Practical	Total
Code		hours	hours	hours	hours
4020410	Fluid Mechanics and Fluid Power	5	-	-	5
4020420	Manufacturing Technology II	5	-	-	5
4020430	Electrical Drives and Controls	5	-	-	5
4020440	Production and Quality Management	5	-	-	5
4020450	Strength of Materials and Fluid Mechanics Practical	-	-	4	4
4020460	Manufacturing Technology II Practical	-	-	4	4
4020470	Electrical Drives and Control Practical	-	-	4	4
		20		12	32
Extra / Co-	Curricular activities				
Library		-	-	-	1
Physical Education					
TOTAL					

V Semester

Subject					
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4020510	Design of Machine Elements	6	-	-	6
4020520	Thermal Engineering – II	5	-	-	5
Elective I	Theory				
4020531	Computer Integrated Manufacturing	5	-	-	
4020532	Green Energy and Energy Conservation	5	-	-	5
4020533	Mechatronics	5	-	-	
4020540	Process Automation Practical	-	-	4	4
4020550	Thermal Engineering Practical			4	4
Elective I	Practical			·	
4020561	Computer Integrated Manufacturing Practical	-	-	4	
4020562	Green Energy and Energy Conservation Practical	-	-	4	4
4020563	Mechatronics Practical	-	-	4	
4020570	Entrepreneurship& Startup			4	4
		16	-	16	32
Extra / Co-	Curricular activities				
Library		-	-	-	1
Physical E	ducation	-	-	-	2
	TOTAL				35

VI Semester

Subject		HOURS PER WEEK				
Code	SUBJECT	Theory	Drawing	Practical	Total	
	Industrial Engineering and	nours	nours	nours	nours	
4020610	Management	6	-	-	6	
4020620	E Vehicle Technology & Policy	4	-	-	4	
	Elective II The	ory				
4020631	Industrial Robotics and 3D Printing	5	-	-		
4020632	Refrigeration and Air Conditioning	5	-	-	5	
4020633	Automobile Technology	5	-	-		
4020640	Solid Modelling Practical	-	-	6	6	
	Elective II Prac	tical				
4020651	Industrial Robotics and 3D Printing Practical	-	-	5		
4020652	Refrigeration and Air Conditioning Practical	-	-	5	5	
4020653	Automobile Technology Practical	-	-	5		
4020660	Project Work and Internship	-	-	6	6	
		15	-	17	32	
Extra / Co-	Curricular activities					
Library		-	-	-	1	
Physical E	ducation	-	-	-	2	
	TOTAL		L	L	35	

ANNEXURE-II

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

SCHEME OF EXAMINATION

1020 DIPLOMA IN MECHANICAL ENGINEERING (FULL TIME)

III Semester

			Marks		rks	<u>т</u> (0
Subject Code	SUBJECT	Internal Assessment	* Board Examination	Total	Minimum mai for pass	Duration of ExamHours
4020310	Strength of Materials	25	100	100	40	3
4020320	Manufacturing Technology - I	25	100	100	40	3
4020330	Measurements and Metrology	25	100	100	40	3
4020340	Thermal Engineering – I	25	100	100	40	3
4020350	Machine Drawing and CAD Practical	25	100	100	50	3
4020360	Manufacturing Technology – I Practical	25	100	100	50	3
4020370	Measurements and Metrology Practical	25	100	100	50	3

* Examinations will be conducted for 100 Marks and will be converted 75 Marks.

IV Semester

		Marks			Irks	f s
Subject Code	SUBJECT	Internal Assessment	* Board Examination	Total	Minimum ma for pass	Duration o ExamHour
4020410	Fluid Mechanics and Fluid Power	25	100	100	40	3
4020420	Manufacturing Technology II	25	100	100	40	3
4020430	Electrical Drives and Controls	25	100	100	40	3
4020440	Production and Quality Management	25	100	100	40	3
4020450	Strength of Materials and Fluid Mechanics Practical	25	100	100	50	3
4020460	Manufacturing Technology II Practical	25	100	100	50	3
4020470	Electrical Drives and Control Practical	25	100	100	50	3

* Examinations will be conducted for 100 Marks and will be converted 75 Marks.

V Semester

			Marks		rks	t s
Subject Code	SUBJECT	Internal Assessment	* Board Examination	Total	Minimum ma for pass	Duration or ExamHour
4020510	Design of Machine Elements	25	100	100	40	3
4020520	Thermal Engineering – II	25	100	100	40	3
ELECTIVE	– I THEORY					
4020531	Computer Integrated Manufacturing	25	100	100		
4020532	Green Energy and Energy Conservation	25	100	100	40	3
4020533	Mechatronics	25	100	100		
4020540	Process Automation Practical	25	100	100	50	3
4020550	Thermal Engineering Practical	25	100	100	50	3
ELECTIVE	– I PRACTICAL					
4020561	Computer Integrated Manufacturing Practical	25	100	100		
4020562	Green Energy and Energy Conservation Practical	25	100	100	50	3
4020563	Mechatronics Practical	25	100	100		
4020570	Entrepreneurship & Startup #	25	100	100	50	3

* Examinations will be conducted for 100 Marks and will be converted 75 Marks.

VI Semester

			Marks		rks	f s
Subject Code	SUBJECT	Internal Assessment	* Board Examination	Total	Minimum ma for pass	Duration o ExamHour
4020610	Industrial Engineering and Management	25	100	100	40	3
4020620	E Vehicle Technology & Policy #	25	100	100	40	3
ELECTIVE	– II THEORY					
4020631	Industrial Robotics and 3D Printing	25	100	100		
4020632	Refrigeration and Air Conditioning	25	100	100	40	3
4020633	Automobile Technology	25	100	100		
4020640	Solid Modelling Practical	25	100	100	50	3
ELECTIVE	– II PRACTICAL					
4020651	Industrial Robotics and 3D Printing Practical	25	100	100		
4020652	Refrigeration and Air Conditioning Practical	25	100	100	50	3
4020653	Automobile Technology Practical	25	100	100		
4020660	Project Work and Internship	25	100	100	50	3

* Examinations will be conducted for 100 Marks and will be converted 75 Marks.

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

ANNEXURE – I

CURRICULUM OUTLINE

3020: DIPLOMAIN MECHANICAL ENGINEERING (PART TIME)

THIRD SEMESTER

Subject		HOURS PER WEEK				
Code	Subject	Theory	Tutorial/ Drawing	Practical	Total	
4020310	Strength of Materials	4	-	-	4	
4020330	Measurements and Metrology	4	-	-	4	
40015	Engineering Graphics - I	-	4	-	4	
40001	Communication Skill Practical	-	-	3	3	
4020370	Measurements and Metrology Practical	-	-	3	3	
	8	4	6	18		

FOURTH SEMESTER

Subject		HOURS PER WEEK				
Code	Subject	Theory	Tutorial / Drawing	Practical	Total	
4020320	Manufacturing Technology - I	4	-	-	4	
4020340	Thermal Engineering - I	4	-	-	4	
40025	Engineering Graphics - II	-	4	-	4	
4020360	Manufacturing Technology – I Practical	-	-	3	3	
40002	Computer Application Practical	-	-	3	3	
TOTAL		8	4	6	18	
FIFTH SEMESTER

	HOURS PER WEEK				
Subject	Subject		Tutorial/		
Code		Theory	Drawing	Practical	Total
4020410	Fluid Mechanics and Fluid Power	4	-	-	4
4020510	Design of Machine Elements	4	-	-	4
4020620	E Vehicle Technology & Policy	3	-	-	3
4020350	Machine Drawing and CAD Practical	-	2	2	4
4020450	Strength of Materials and Fluid Mechanics Practical	-	-	3	3
TOTAL		11	2	5	18

SIXTH SEMESTER

Subject			HOURS F	ERWEEK	
Code	Subject	Theory	Tutorial / Drawing	Practical	Total
4020420	Manufacturing Technology II	4	-	-	4
4020430	Electrical Drives and Controls	4	-	-	4
4020610	Industrial Engineering and Management	4	-	-	4
4020460	Manufacturing Technology II Practical	-	-	3	3
4020470	Electrical Drives and Control Practical	-	-	3	3
TOTAL		12	-	6	18

SEVENTH SEMESTER

Subject		HOURS PER WEEK			
Code	Subject	Theory	Tutorial/ Drawing	Practical	Total
4020520	Thermal Engineering - II	4	-	-	4
Elective-I Th	neory				
4020531	Computer Integrated Manufacturing				
4020532	Green Energy and Energy Conservation	3	-	-	3
4020533	Mechatronics				
4020540	Process Automation Practical	-	-	3	3
4020550	Thermal Engineering Practical	-	-	3	3
Elective-I Pr	ractical				
4020561	Computer Integrated Manufacturing Practical				
4020562	Green Energy and Energy Conservation Practical	-	-	3	3
4020563	Mechatronics Practical				
4020570	Entrepreneurship & Startups	-	-	2	2
	TOTAL	7	-	11	18

EIGHTH SEMESTER

Outlinet		HOURS PER WEEK			
Code	Subject	Theory	Tutorial / Drawing	Practical	Total
4020440	Production and Quality Management	4	-	-	4
Elective-II	Theory				
4020631	Industrial Robotics and 3D Printing	4	-		-
4020632	Refrigeration and Air Conditioning				
4020633	Automobile Technology				
4020640	Solid Modelling Practical	-	-	4	4
	Elective-II Practical				
4020651	Industrial Robotics and 3D Printing Practical			- 3	0
4020652	Refrigeration and Air Conditioning Practical	-	-		3
4020653	Automobile Technology Practical				
4020660	Project Work and Internship	-	-	3	3
TOTAL		8	-	10	18

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

ANNEXURE – I

CURRICULUM OUTLINE

2020 DIPLOMA IN MECHANICAL ENGINEERING (SANDWICH)

III Semester

Subject			HOURS PI	ER WEEK	
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4020310	Strength of Materials	5	-	-	5
4020320	Manufacturing Technology - I	5	-	-	5
4020330	Measurements and Metrology	5	-	-	5
4020340	Thermal Engineering – I	5	-	-	5
4020350	Machine Drawing and CAD Practical	-	2	2	4
4020360	Manufacturing Technology – I Practical	-	-	4	4
4020370	Measurements and Metrology Practical	-	-	4	4
		20	2	10	32
	Extra / Co-Curric	ular activiti	ies		
	Library	-	-	-	1
	Physical Education	-	-	-	2
TOTAL					35

IV Semester

Subject		HOURS PER WEEK				
Code	SUBJECT	Theory hours	Drawing hours	Practical hours	Total hours	
4020420	Manufacturing Technology II	4	-	-	4	
4020460	Manufacturing Technology II Practical	-	-	3	3	
4020480	Industrial Training I	-	-	-	-	
		4	-	3	7	
Extra / Co	Curricular activities					
Library		-	-	-	-	
Physical Education		-	-	-	-	
TOTAL						

V Semester

Subject		HOURS PER WEEK				
Code	SUBJECT	Theory	Drawing	Practical	Total	
4020410	Fluid Mechanics and Fluid Power	5	-	-	5	
4020430	Electrical Drives and Controls	5	-	-	5	
4020520	Thermal Engineering – II	5	-	-	5	
Elective I	Theory					
4020531	Computer Integrated Manufacturing	5	-	-		
4020532	Green Energy and Energy Conservation	5	-	-	5	
4020533	Mechatronics	5	-	-		
4020450	Strength of Materials and Fluid Mechanics Practical	-	-	3	3	
4020470	Electrical Drives and Control Practical	-	-	3	3	
4020550	Thermal Engineering Practical	-	-	3	3	
Elective I	Practical					
4020561	Computer Integrated Manufacturing Practical	-	-	3		
4020562	Green Energy and Energy Conservation Practical	-	-	3	3	
4020563	Mechatronics Practical	-	-	3		
		20	-	12	32	
Extra / Co	-Curricular activities	-				
Library		-	-	-	1	
Physical E	ducation	-	-	-	2	
	TOTAL		·	·	35	

VI Semester

Subject		HOURS PER WEEK		R WEEK	
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4020620	E Vehicle Technology & Policy #	4	-	-	4
4020440	Production and Quality Management	5			5
4020510	Design of Machine Elements	6	-	-	6
4020610	Industrial Engineering and Management	4	-	-	4
Elective II	Theory				
4020631	Industrial Robotics and 3D Printing	4	-	-	
4020632	Refrigeration and Air Conditioning	4	-	-	4
4020633	Automobile Technology	4	-	-	
4020540	Process Automation Practical	-	-	3	3
4020640	Solid Modelling Practical	-	-	3	3
Elective II	Practical				
4020651	Industrial Robotics and 3D Printing Practical	-	-	3	
4020652	Refrigeration and Air Conditioning Practical	-	-	3	3
4020653	Automobile Technology Practical	-	-	3	
		23	-	9	32
Extra / Co-	Curricular activities				
Library		-	-	-	1
Physical E	ducation	-	-	-	2
TOTAL					35

VII Semester

Subject		HOURS PER WEEK			
Code	SUBJECT	Theory	Drawing	Practical	Total
Coue		hours	hours	hours	hours
4020570	Entrepreneurship & Startups	-	-	3	3
4020710	Project Work	-	-	4	4
4020720	Industrial Training II	-	-	-	-
		-	-	-	-
Extra / Co-	Curricular activities				
Library				-	-
Physical Education				-	-
TOTAL					-

1020 Diploma in MechanicalEngineering

List of Equivalent Subjects for M- Scheme to N- Scheme

THIRD SEMESTER

	M-SCHEME		N-SCHEME
Subject code	Name ofthe Subject	Subject code	Name ofSubject
32031	Strength of Materials	4020310	Strength of Materials
32032	Manufacturing Processes	4020320	Manufacturing Technology – I
32033	Machine Drawing		No Equivalent
32034	Computer Applications and CAD Practical		No Equivalent
32035	Foundry and Welding Practical		No Equivalent
32036	Lathe and Drilling Practical		No Equivalent
32037	Metrology and Metallography Practical		No Equivalent

FOURTH SEMESTER

M-SCHEME		N-SCHEME		
Subject code	Name of the Subject	Subject code	Name of Subject	
32041	Heat Power Engineering	4020340	Thermal Engineering – I	
32042	Special Machines	4020420	Manufacturing Technology II	
32043	Fluid Mechanics and Fluid Power	4020410	Fluid Mechanics and Fluid Power	
32044	Electrical Drives & Control	4020430	Electrical Drives and Controls	
32045	Strength of Materials and Fluid Mechanics Practical	4020450	Strength of Materials and Fluid Mechanics Practical	
32046	Special Machines Practice	4020460	Manufacturing Technology II Practical	
32047	Electrical Drives & Control Practical	4020470	Electrical Drives and Control Practical	

FIFTH SEMESTER

N	M-SCHEME		N-SCHEME
Subject code	Name of the Subject	Subject code	Name ofSubject
32051	Design of Machine Elements	4020510	Design of Machine Elements
32052	Thermal and Automobile Engineering		No Equivalent
32053	Process Planning and Cost Estimation		No Equivalent
Elective-	I Theory		
32071	Total Quality Management		No Equivalent
32072	Press Tools		No Equivalent
32073	Renewable Energy Sources and Energy Conservation	4020532	Green Energy and Energy Conservation
32055	Process Automation Practical	4020540	Process Automation Practical
32056	Thermaland Automobile Engineering Practical		No Equivalent
30002	Life and Employability Skills Practical		40001 Communication Skill Practical

SIXTH SEMESTER

	M-SCHEME		N-SCHEME		
Subject code	Name ofthe Subject	Subject code	Name ofSubject		
32061	Industrial Engineering and Management	4020610	Industrial Engineering and Management		
32062	Computer Aided Design and Manufacturing	4020531	Computer Integrated Manufacturing		
Elective-II	Theory				
32081	Mechanical Instrumentation		No Equivalent		
32082	Robotics		No Equivalent		
32083	Refrigeration and Air-conditioning	4020632	Refrigeration and Air Conditioning		
32064	Computer Aided Design and Manufacturing Practical	4020561	Computer Integrated Manufacturing Practical		
32065	Machine Tool Testing and Maintenance Practical		No Equivalent		
Elective- I	Practical				
32084	Mechanical Instrumentation Practical		No Equivalent		
32085	Robotics Practical		No Equivalent		
32086	Refrigeration and Air-conditioning Practical	4020652	Refrigeration and Air Conditioning Practical		
32067	Project Work		No Equivalent		

Blank page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020310
- Semester : III
- Subject Title : Strength of Materials

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		ions Examination			
4020310	Hours /	Hours /		Marks		
1020010			Internal	Board		Duration
Strength of	Week	Semester	Assessment	Examinations	Total	
Materials	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Engineering Materials	15
II	Deformation of Metals	15
	Geometrical Properties of Sections and Thin Shells	15
IV	Theory of Torsion and Springs	14
V	V SF and BM Diagrams of Beams and Theory of Bending	
Test and Model Exam		
Total		

RATIONALE:

Day by day, engineering and technology experience tremendous growth. Design plays a major role in developing engineering and technology. Strength of material is backbone for design. The strength of material deals generally with the behaviour of objects, when they are subject to actions of forces. Evaluations derived from these basic fields provide the tools for investigation of mechanical structure.

OBJECTIVES

- Acquire knowledge about materials properties.
- Calculate the deformation of materials, which are subjected to axial load and shear.
- Determine the moment of Inertia of various sections used in industries.
- Estimate the stresses induced in thin shells.
- Draw the shear force and bending moment diagram of the beam for different load.

4020310 STRENGTH OF MATERIALS DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	ENGINEERING MATERIALS	
	Chapter: 1.1: Engineering materials: Classification - definition of	7
	Mechanical properties - ferrous metals - cast iron - uses - advantages -	
	types of cast iron - properties and applications - effect of impurities on	
	cast iron. steel - classification - alloying elements - purpose of alloying -	
	effect of alloying elements on steel - uses of steels - properties of mild	
	steel - defects in steel - applications - properties of hard steel - market	
	forms of steels – nonferrous metals - properties and uses.	
	Chapter: 1.2: Mechanical testing of materials:	
	Compression test - bend test - hardness test - Brinell hardness test,	6
	Vickers hardness test, Rockwell hardness test - impact test - fatigue test	
	- creep test. Tensile test of mild steel in UTM - stress strain diagram -	

	limit of proportionality - elastic limit - yield stress - breaking stress -	
	ultimate stress - percentage of an elongation and percentage reduction in	
	area - problems.	
	Chapter: 1.3: Friction	
	Introduction - definition - force of friction - limiting friction - static friction -	2
	dynamic friction - angle of friction - coefficient of friction - laws of static	
	and dynamic friction. Description only.	
II	DEFORMATION OF METALS	
	Chapter: 2.1: Simple stresses and strains	4
	Definition - load, stress and strain - classification of force systems:	
	tensile, compressive and shear force systems. Hooke's law - definition	
	Young's modulus - working stress, factor of safety, load factor, shear	
	stress and shear strain - modulus of rigidity. Linear strain - deformation	
	due to tension and compressive forces - simple problems in tension,	
	compression and shear forces.	
	Chapter: 2.2: Elastic constants	7
	Definition - lateral strain – poison's ratio - volumetric strain - bulk	
	modulus - volumetric strain of rectangular and circular bars - problems	
	connecting linear, lateral and volumetric deformations - elastic constants	
	and their relationship - problems on elastic constants. Composite bar -	
	definition - problems in composite bars subjected to tension and	
	compression. Temperature stresses and strains - simple problems.	
	Chapter: 2.3 Strain Energy	4
	Definition – proof resilience – modulus of resilience – the expression for	
	strain energy stored in a bar due to axial load - instatntaneous stresses	
	due to gradual, sudden, impact and shock loads - problems computing	
	instantaneous stress and deformation in gradual, sudden, impact and	
	shock loadings.	
	GEOMETRICAL PROPERTIES OF SECTIONS AND THIN SHELLS	
	Chapter: 3.1: Properties of sections	8
	Definition - center of gravity and centroid - position of centroids of plane	
	geometrical figures such as rectangle, triangle, circle and trapezium-	
	problems to determine the centroid of angle, channel, T and I sections	

	only – Definition - centroidal axis - Axis of symmetry. Moment of Inertia –	
	parallel axis theorem and perpendicular axis theorem (statement only).	
	Moment of Inertia of lamina of rectangle, circle, triangle, I and channel	
	sections – Definition - Polar moment of Inertia - radius of gyration –	
	Problems computing moment of inertia and radius of gyration for angle,	
	T, Channel and I sections.	
	Chapter: 3.2: Thin Shells	7
	Definition – Thin and thick cylindrical shell – Failure of thin cylindrical	
	shell subjected to internal pressure – Derivation of Hoop and longitudinal	
	stress causes in a thin cylindrical shell subjected to internal pressure -	
	simple problems – change in dimensions of a thin cylindrical shell	
	subjected to internal pressure – problems – Derivation of tensile stress	
	induced in a thin spherical shell subjected to internal pressure - simple	
	problems – change in diameter and volume of a thin spherical shell due	
	to internal pressure – problems.	
IV	THEORY OF TORSION AND SPRINGS	
	Chapter: 4.1: Theory of Torsion	7
	Chapter: 4.1: Theory of Torsion $\frac{T}{T} = \frac{f_s}{T} = \frac{C\theta}{T}$	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus –	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus – Torsional rigidity – strength and stiffness of shafts – comparison of	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus – Torsional rigidity – strength and stiffness of shafts – comparison of hollow and solid shafts in weight and strength considerations –	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus – Torsional rigidity – strength and stiffness of shafts – comparison of hollow and solid shafts in weight and strength considerations – Advantages of hollow shafts over solid shafts – Problems.	7
	Chapter: 4.1: Theory of Torsion $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andAssumptions – torsion equation $\frac{T}{J} = \frac{F_s}{R} = \frac{C\theta}{l}$ - Strength of solid andhollow shafts – power transmitted – Definition – Polar modulus –Torsional rigidity – strength and stiffness of shafts – comparison ofhollow and solid shafts in weight and strength considerations –Advantages of hollow shafts over solid shafts – Problems.Chapter: 4.2: Springs	7
	Chapter: 4.1: Theory of Torsion $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andAssumptions – torsion equation $\frac{T}{J} = \frac{F_s}{R} = \frac{C\theta}{l}$ - Strength of solid andhollow shafts – power transmitted – Definition – Polar modulus –Torsional rigidity – strength and stiffness of shafts – comparison ofhollow and solid shafts in weight and strength considerations –Advantages of hollow shafts over solid shafts – Problems.Chapter: 4.2: SpringsTypes of springs – Laminated and coiled springs and applications —	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus – Torsional rigidity – strength and stiffness of shafts – comparison of hollow and solid shafts in weight and strength considerations – Advantages of hollow shafts over solid shafts – Problems. Chapter: 4.2: Springs Types of springs – Laminated and coiled springs and applications — Difference between open and closely coiled helical springs – closely	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus – Torsional rigidity – strength and stiffness of shafts – comparison of hollow and solid shafts in weight and strength considerations – Advantages of hollow shafts over solid shafts – Problems. Chapter: 4.2: Springs Types of springs – Laminated and coiled springs and applications — Difference between open and closely coiled helical springs – closely coiled helical spring subjected to an axial load – problems to determine	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus – Torsional rigidity – strength and stiffness of shafts – comparison of hollow and solid shafts in weight and strength considerations – Advantages of hollow shafts over solid shafts – Problems. Chapter: 4.2: Springs Types of springs – Laminated and coiled springs and applications — Difference between open and closely coiled helical springs – closely coiled helical spring subjected to an axial load – problems to determine shear stress, deflection, stiffness and resilience of closed coiled helical	7
	Chapter: 4.1: Theory of Torsion Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and hollow shafts – power transmitted – Definition – Polar modulus – Torsional rigidity – strength and stiffness of shafts – comparison of hollow and solid shafts in weight and strength considerations – Advantages of hollow shafts over solid shafts – Problems. Chapter: 4.2: Springs Types of springs – Laminated and coiled springs and applications — Difference between open and closely coiled helical springs – closely coiled helical spring subjected to an axial load – problems to determine shear stress, deflection, stiffness and resilience of closed coiled helical springs.	7
V	Chapter: 4.1: Theory of Torsion $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andAssumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andhollow shafts – power transmitted – Definition – Polar modulus –Torsional rigidity – strength and stiffness of shafts – comparison ofhollow and solid shafts in weight and strength considerations –Advantages of hollow shafts over solid shafts – Problems.Chapter: 4.2: SpringsTypes of springs – Laminated and coiled springs and applications —Difference between open and closely coiled helical springs – closelycoiled helical spring subjected to an axial load – problems to determineshear stress, deflection, stiffness and resilience of closed coiled helicalsprings.SF AND BM DIAGRAMS OF BEAMS AND THEORY OF BENDING	7
V	Chapter: 4.1: Theory of Torsion $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andAssumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andhollow shafts – power transmitted – Definition – Polar modulus –Torsional rigidity – strength and stiffness of shafts – comparison ofhollow and solid shafts in weight and strength considerations –Advantages of hollow shafts over solid shafts – Problems.Chapter: 4.2: SpringsTypes of springs – Laminated and coiled springs and applications —Difference between open and closely coiled helical springs – closelycoiled helical spring subjected to an axial load – problems to determineshear stress, deflection, stiffness and resilience of closed coiled helicalsprings.SF AND BM DIAGRAMS OF BEAMS AND THEORY OF BENDINGChapter: 5.1: SF and BM diagrams	7 7 7
V	Chapter: 4.1: Theory of Torsion $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andAssumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid andhollow shafts – power transmitted – Definition – Polar modulus –Torsional rigidity – strength and stiffness of shafts – comparison ofhollow and solid shafts in weight and strength considerations –Advantages of hollow shafts over solid shafts – Problems.Chapter: 4.2: SpringsTypes of springs – Laminated and coiled springs and applications –Difference between open and closely coiled helical springs – closelycoiled helical spring subjected to an axial load – problems to determineshear stress, deflection, stiffness and resilience of closed coiled helicalsprings.SF AND BM DIAGRAMS OF BEAMS AND THEORY OF BENDINGChapter: 5.1: SF and BM diagramsClassification of beams – Definition – shear force and Bending moment –	7 7 7

loadings – Relationship between load, force and bending moment at a section – shear force diagram and bending moment diagram of cantilever and simply supported beam subjected to point load and uniformly distributed load (UDL) – Determination of Maximum bending moment in cantilever beam and simply supported beam when they are subjected to point load and uniformly distributed load.

Chapter: 5.2: Theory of bending

7

Theory of simple bending – Assumptions – Neutral axis – bending stress distribution – moment of resistance – bending equation – M/I=f/y=E/R – Definition – section modulus - rectangular and circular sections – strength of beam – simple problems involving flexural formula for cantilever and simply supported beam.

Reference Books:

- 1. Strength of Materials, R. S. Khurmi, S.Chand & Co., Ram Nagar, New Delhi.
- Strength of Materials, S. Ramamrutham, 15th Edition 2004, DhanpatRai Pub. Co., New Delhi.
- Strength of Materials, R.K. Bansal, Laxmi Publications Pvt. Ltd., New Delhi, 3rd Edition, 2010.
- 4. Strength of materials, S.S.Rattan, Tata Mcgraw hill, New Delhi,2008, ISBN 9780070668959,
- 5. Strength of Materials, B K Sarkar, I Edition, 2003Tata Mcgraw hill, New Delhi.
- Engineering mechanics, R.K. Bansal, Laxmi Publications Pvt. Ltd., New Delhi, 2nd Edition, 2007.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020320
- Semester : III
- Subject Title : Manufacturing Technology I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Subject Instructions		Examination			
4020320	Hours	Hours /		Marks		
1020020		nouis/	Internal	Board		Duration
Manufacturing	/ Week	Semester	Assessment	Examinations	Total	
Technology - I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours	
I	Casting Processes	15	
I	Joinng Processes	15	
=	Bulk Deformation Processes and Heat Treatment	15	
IV	Manufacturing of Plastic Componenets and Powder	15	
10	Metalurgy		
V	Centre Lathe and Special Purpose Lathe	13	
Test and Model Exam			
Total			

RATIONALE:

Manufacturing, the major and the most important aspect in industries needs utmost care and attention. Knowledge about various processes and allied areas will be of great use to the personnel involved in production. This will provide the students an opportunity to skill themselves for the industrial scenario.

OBJECTIVES:

- Acquire Knowledge about types of pattern, casting, and moulding.
- Describe the various casting processes.
- Knowledge about various welding process and its working principle.
- Appreciate the safety practices used in welding.
- Acquire knowledge about various forming technologies.
- Knowledge about the lathe and its working parts.
- Describe the functioning of semi-automatic lathes.

4020320 MANUFACTURING TECHNOLOGY - I DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	CASTING PROCESSES	
	Chapter: 1.1: Patterns	3
	Definition - pattern materials - factors for selecting pattern materials -	
	Types of Pattern - solid piece, split patterns, loose piece, match plate,	
	sweep, skeleton, segmental, shell – pattern allowances – core prints.	
	Chapter: 1.2: Moulding	6
	Definition – moulding boxes, moulding sand – ingredients – silica – clay	
	- moisture and miscellaneous materials - properties of moulding sand -	
	sand additives - moulding sand preparation - moulding tools - mixing -	
	tempering and conditioning - types of moulding - green sand - dry sand	
	- machine moulding -Top and bottom squeezer machines - Jolting	
	machines – sand slinger- core – CO2 core making – types of core – core	
	boxes.	

r			
		Chanter: 1.3. Casting	6
		Definition – sand casting using green sand and dry sand – gravity die	0
		conting processing dia costing bot and cold chamber processes	
		casting – pressure die casting – not and cold chamber processes –	
		centinugal casting - continuous casting - chilled casting - maleable	
		casting – melting of cast iron – cupola furnace – melting of nonferrous	
		metals – crucible furnace melting of steel - arc furnaces – induction	
		furnaces – instrument for measuring temperature – optical pyrometer –	
		thermo electric pyrometer - cleaning of casting - tumbling, trimming,	
		sand and shot blasting - defects in casting - causes and remedies -	
		safety practices in foundry.	
Ì	II	JOINING PROCESSES	
		Chapter: 2.1: Arc Welding	5
		Definition - arc welding equipment - arc welding methods - carbon arc,	
		metal arc, Metal Inert gas (MIG), Tungsten inert gas (TIG), Atomic	
		hydrogen, Plasma arc, Submerged arc and Electro slag welding.	
		Chapter: 2.2: Gas welding	10
		Definition Gas Welding Equipment- Oxy and acetylene welding - Three	
		types of flame- resistance welding - classification of resistance welding	
		 butt – spot – seam – projection welding – welding related processes – 	
		oxy and acetylene cutting - arc cutting - hard facing bronze welding -	
		soldering and brazing special welding processes - cast iron welding -	
		thermit welding – solid slate welding, ultrasonic, diffusion and explosive	
		welding – explosive cladding – modern welding, electron beam and laser	
		beam welding – types of welded joints – merits and demerits of welded	
		joints – inspection and testing of welded joints – destructive and	
		nondestructive types of tests – magnetic particle test – radiographic and	
		ultrasonic test defects in welding – causes and remedies – safety	
		practices in welding	
		BUILK DEFORMATION PROCESSES AND HEAT TREATMENT	
		Chapter: 3.1: Forming	7
		Hot working cold working - advantages of bot working and cold	,
		working bot working operations rolling foreing amith foreing drap	
		working- not working operations - rolling, lorging, smith lorging, drop	

	Centre lathe: specifications - simple sketch with principal parts. Head	
	Chapter: 5.1: Centre Lathe	5
V	CENTRE LATHE AND SPECIAL PURPOSE LATHES	
	rules for the power metallurgy process.	
	mechanical properties of parts made by powder metalluray – design	
	electrolysis deposition – compacting – sintering – sizing – infiltration –	
	Methods of manufacturing metal powders – atomization, reduction and	Ŭ
	Chapter: 4.3: Powder Metallurgy	6
	Design consideration for plastic components	
	moulding of thermosetting materials calendaring and rotational moulding	
	injection mould - sandwich moulding - das injection moulding - injection	
	Reciprocating screw injection - details of injection mould - structural form	
	extruders and types-Injection moulding types. Plunger type-	
	Extrusion-deneral features of single screw extrusion - twin screw	U
	Chapter: 4 2: Processing of Plastics	6
	structural foam elastomers - nolymer allove and liquid crystal polymore	
	Types of plastics-Engineering plastics – thermosets – composite –	5
	Chanter: 4 1: Plastic Components	3
IV	METALLIDAY	
1\7		
	hardening – pack carbunzing – cyaniding – nitriding – induction	
	- quenching measure – unerent types and their relative ments – case	
	annealing – isothermal annealing – normalizing – nardening – tempering	
	iuii annealing – process annealing stress relier annealing - spherodising	
	various neat treatment processes – Iron – carbon equilibrium diagram –	
	Heat treatment processes – purpose – procedures – applications of	
	Chapter: 3.2: Heat treatment	8
	blanking, piercing, trimming – notching – lancing.	
	bending – chemical bending – curling – drawing – shearing operations –	
	accessories - press working operations - bending operations - angle	
	of presses - Mechanical and Hydraulic presses - press tool and	
	forging, upset forging, press forging – roll forging Press working : Types	

stock: back geared type - all geared type - description only. Working	
principale of tumbler gear mechanism, quick change gear box, apron	
mechanism, carriage cross slide. Feed mechanism: automatic feed,	
longitudinal feed and cross feed. Construction and working of tail stock.	
work holding device: face plate - three jaw chuck - four jaw chuck -	
catch plate and carrier - center. Operations: straight turning - step	
turning - taper turning – knurling-Thread cutting - Facing – Boring –	
chamfering. Cutting speed – feed - depth of cut.	
Chapter: 5.2: Semi-Automatic Lathes	4
Types of semi-automatic lathes - capstan and turret lathes - difference	
between turret and capstan.	
Chapter: 5.3: Automatic Lathes	4
Automatic lathe - Construction and working principle of single spindle	
automatic lathe – automatic screw cutting machines – multi spindle	
automatic lathes.	

Reference Books:

- Elements of workshop Technology Volume I & II Hajra Chowdry & Bhattacharaya - IIth Edition - Media Promoters & Publishers Pvt. Ltd., Seewai Building `B', 20-G, Noshir Bharucha Marg, Mumbai 400 007 – 2007.
- Introduction of basic manufacturing processes and workshop technology Rajendersingh – New age International (P) Ltd. Publishers, 4835/24, Ansari Road, Daryaganj, New Delhi – 110002.
- Manufacturing process Begeman 5th Edition -McGraw Hill, New Delhi 1981.
- Workshop Technology- WAJ Chapman Volume I, II, & III Vima Books Pvt. Ltd., 4262/3, Ansari Road, Daryaganj, New Delhi 110 002.
- 5. Workshop Technology Raghuwanshi Khanna Publishers. Jain & Gupta,
- Production Technology, Edn. XII, Khanna Publishers, 2-B, North Market, NAI Sarak, New Delhi 110 006 - 2006
- Production Technology P. C. SHARMA Edn. X S.Chand & Co. Ltd., Ram Nagar, New Delhi 110 055 - 2006
- Production Technology HMT Edn. 18 published by Tata McGraw Hill publishing Co. Ltd., 7 West Patel nagar, New Delhi 110 008. – 2001.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020330
- Semester : III
- Subject Title : Measurements and Metrology

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020330	Hours Hours / / Week Semester	Marks				
1020000		Semester	Internal	Board		Duration
Measurements and Metrology			Assessment	Examinations	Total	
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Basic Concepts of Measurements	15
I	Linear and Angular Measurements	15
III	Form Measurement	15
IV	Advances in Metrology	14
V	Measurement of Mechanical Parameters	14
Test and Model Exam		
Total		
RATIONALE:

Measurements and metrology are the basic and prominent tools in all the industries in the present scenario. The students should be trained not only in manufacturing also they should have knowledge about the various measuring instruments which is used in industries. This will provide the students an opportunity to skill themselves for how to handle the various metrological equipment available to measure the dimensions of the components.

OBJECTIVES

- Study about the basic concepts of measurements.
- Acquire knowledge about precision and accuracy.
- Describe about the various linear and angular measurements.
- Acquire knowledge about the measurement of screw threads and gears.
- Study about the laser metrology and computer in metrology.
- Describe the measurement of mechanical parameters force, power and flow.

4020330 MEASUREMENTS AND METROLOGY DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	BASIC CONCEPTS OF MEASUREMENTS	
	Chapter: 1.1: Introduction	7
	Basic units - system concepts used in measuring technology -	
	measuring instruments - length, angles and surface - scope of	
	Metrology - standardization - international standardization, the	
	bureau of Indian standards - legal Metrology - definition -	
	applications - important elements of measurements - methods of	
	measurements - needs for inspection - need for measurement -	
	important terminology.	
	Chapter: 1.2: Precision and accuracy	8
	Precision - definition - accuracy - definition - difference between	
	precision and accuracy - factors affecting the accuracy of the	
	measuring system - general rules for accurate measurements -	

precautions for use of instruments so as to avoid in accuracy in measurements - reliability - definition - error - definition - sources of errors - classification of error - compare systematic error and random error - selection of measuring instruments - symbols for metallurgical terms (ASME and ISO). II LINEAR AND ANGULAR MEASUREMENTS Chapter: 2.1: Linear measurements 7 Classification of linear measurement instrument - construction and 7 the principles only - Steel rule - callipers - outside calliper, inside 7 calliper, Jenny caliper - combination set - feeler gauge - pitch screw 9 gauge - Vernier caliper - digital caliper - Vernier height gauge- 7 micrometer - light wave micrometer - possible sources of errors in 7 micrometer - slip gauges - requirements 8 Introduction - vernier bevel protractor - universal bevel protractor - 9 optical bevel protractor. Sine bar - types - uses and limitations - 8 Introduction - vernier bevel protractor - universal bevel protractor - 9 optical bevel protractor. Sine bar - types - uses and limitations - 9 working principle of clinometer, autocollimator, angle dekkor. 2 Comparator - principles - advantages and disadvantages - 2			
measurements - reliability - definition - error - definition - sources of errors - classification of error - compare systematic error and random error - selection of measuring instruments - symbols for metallurgical terms (ASME and ISO). II LINEAR AND ANGULAR MEASUREMENTS Chapter: 2.1: Linear measurements 7 Classification of linear measurement instrument - construction and 7 classification of linear measurement instrument - construction and 7 classification of linear measurement instrument - construction and 7 classification of linear measurement instrument - construction and 7 diper, Jenny caliper - combination set - feeler gauge - pitch screw 7 gauge - Vernier caliper - digital caliper - Vernier height gauge- 7 micrometer - lingt wave micrometer - possible sources of errors in 7 micrometer - slip gauges - requirements 8 Introduction - vernier bevel protractor - universal bevel protractor - 7 optical bevel protractor. Sine bar - types - uses and limitations - 8 Norking principle of clinometer, autocollimator, angle dekkor. 7 Comparator - principles - advantages and disadvantages - 7 comparator or principles - advantages and disadvantages - 7		precautions for use of instruments so as to avoid in accuracy in	
errors - classification of error - compare systematic error and random error - selection of measuring instruments - symbols for metallurgical terms (ASME and ISO). II LINEAR AND ANGULAR MEASUREMENTS Chapter: 2.1: Linear measurements 7 Classification of linear measurement instrument - construction and 7 the principles only - Steel rule - callipers - outside calliper, inside 7 calliper, Jenny caliper - combination set - feeler gauge - pitch screw 9 gauge - Vernier caliper - digital caliper - Vernier height gauge- 7 micrometer - light wave micrometer - possible sources of errors in 7 micrometer - slip gauges - requirements 8 Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. 8 Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare electrical and mechanical comparators. 5 III FORM MEASUREMENT 5 Chapter: 3.1: Measurement of screw threads 5 Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges,		measurements - reliability - definition - error - definition - sources of	
random error - selection of measuring instruments - symbols for metallurgical terms (ASME and ISO). II LINEAR AND ANGULAR MEASUREMENTS Chapter: 2.1: Linear measurements 7 Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge - pitch screw gauge - Vernier caliper - digital caliper - Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - optical micrometers - slip gauges - requirements - Indian standard - care and use. Chapter: 2.2: Angular measurements 8 Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. 8 Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare electrical and mechanical comparators. 5 III FORM MEASUREMENT 5 Chapter: 3.1: Measurement of screw threads 5 Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of		errors - classification of error - compare systematic error and	
metallurgical terms (ASME and ISO). II LINEAR AND ANGULAR MEASUREMENTS Chapter: 2.1: Linear measurements 7 Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge - pitch screw gauge - Vernier caliper - digital caliper - Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use. 8 Chapter: 2.2: Angular measurements 8 Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. 8 Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators. 5 III FORM MEASUREMENT 5 Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer. 10 Chapter: 3.2: Measurement of gears 10 Introduction - types of gear		random error - selection of measuring instruments - symbols for	
II LINEAR AND ANGULAR MEASUREMENTS 7 Chapter: 2.1: Linear measurements 7 Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge - pitch screw gauge - Vernier caliper - digital caliper - Vernier height gauge-micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use. 8 Chapter: 2.2: Angular measurements 8 Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, preumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators. 5 III FORM MEASUREMENT 5 Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer. 10 Introduction - types of gear - gear terminology - gear errors - spur 10		metallurgical terms (ASME and ISO).	
Chapter: 2.1: Linear measurements 7 Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge - pitch screw gauge - Vernier caliper - digital caliper - Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use. 8 Chapter: 2.2: Angular measurements 8 Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators. 5 III FORM MEASUREMENT 5 Chapter: 3.1: Measurement of screw threads ulements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer. 10 Introduction - types of gear - gear terminology - gear errors - spur 10	II	LINEAR AND ANGULAR MEASUREMENTS	
Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge - pitch screw gauge - Vernier caliper - digital caliper - Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use.8Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator optical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer. Chapter: 3.2: Measurement of gears10		Chapter: 2.1: Linear measurements	7
the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge - pitch screw gauge - Vernier caliper - digital caliper - Vernier height gauge- micrometer - linside micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use.Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauge - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		Classification of linear measurement instrument - construction and	
calliper, Jenny caliper - combination set - feeler gauge - pitch screw gauge - Vernier caliper - digital caliper - Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use.8Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		the principles only - Steel rule - callipers - outside calliper, inside	
gauge - Vernier caliper - digital caliper - Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use.Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		calliper, Jenny caliper - combination set - feeler gauge - pitch screw	
micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use.8Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		gauge - Vernier caliper - digital caliper - Vernier height gauge-	
micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use.8Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		micrometer - inside micrometer - thread micrometer - optical	
micrometers - slip gauges - requirements - Indian standard - care and use.8Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		micrometer - light wave micrometer - possible sources of errors in	
and use.8Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		micrometers - slip gauges - requirements - Indian standard - care	
Chapter: 2.2: Angular measurements8Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		and use.	
Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.5IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		Chapter: 2.2: Angular measurements	8
optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor. Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		Introduction - vernier bevel protractor - universal bevel protractor -	
working principle of clinometer, autocollimator, angle dekkor.Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		optical bevel protractor. Sine bar - types - uses and limitations -	
Comparators - uses - application - classification of comparator - mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		working principle of clinometer, autocollimator, angle dekkor.	
mechanical comparator, optical comparator, electrical comparator, pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		Comparators - uses - application - classification of comparator -	
pneumatic comparator - principles - advantages and disadvantages - compare comparator with measuring instruments - compare electrical and mechanical comparators.IIIFORM MEASUREMENT Chapter: 3.1: Measurement of screw threads Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Introduction - types of gear - gear terminology - gear errors - spur10		mechanical comparator, optical comparator, electrical comparator,	
compare comparator with measuring instruments - compare electrical and mechanical comparators.IIIFORM MEASUREMENTChapter: 3.1: Measurement of screw threads5Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Chapter: 3.2: Measurement of gears Introduction - types of gear - gear terminology - gear errors - spur10		pneumatic comparator - principles - advantages and disadvantages -	
electrical and mechanical comparators.IIIFORM MEASUREMENTChapter: 3.1: Measurement of screw threads5Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.10Chapter: 3.2: Measurement of gears Introduction - types of gear - gear terminology - gear errors - spur10		compare comparator with measuring instruments - compare	
III FORM MEASUREMENT 5 Chapter: 3.1: Measurement of screw threads 5 Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer. 10 Introduction - types of gear - gear terminology - gear errors - spur 10		electrical and mechanical comparators.	
Chapter: 3.1: Measurement of screw threads5Screw thread terminology - error in thread - measurement of various elements of thread (description only) - thread gauges - classification - plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges - floating carriage micrometer.5Chapter: 3.2: Measurement of gears10Introduction - types of gear - gear terminology - gear errors - spur10		FORM MEASUREMENT	
Screw thread terminology - error in thread - measurement of variouselements of thread (description only) - thread gauges - classification- plug screw gauges, ring screw gauges, caliper gauges - adjustablethread gauge - gauging of taps - function of various types of gauges- floating carriage micrometer.Chapter: 3.2: Measurement of gears10Introduction - types of gear - gear terminology - gear errors - spur		Chapter: 3.1: Measurement of screw threads	5
elements of thread (description only) - thread gauges - classification- plug screw gauges, ring screw gauges, caliper gauges - adjustablethread gauge - gauging of taps - function of various types of gauges- floating carriage micrometer.Chapter: 3.2: Measurement of gears10Introduction - types of gear - gear terminology - gear errors - spur		Screw thread terminology - error in thread - measurement of various	
 plug screw gauges, ring screw gauges, caliper gauges - adjustable thread gauge - gauging of taps - function of various types of gauges floating carriage micrometer. Chapter: 3.2: Measurement of gears Introduction - types of gear - gear terminology - gear errors - spur 		elements of thread (description only) - thread gauges - classification	
thread gauge - gauging of taps - function of various types of gauges- floating carriage micrometer.Chapter: 3.2: Measurement of gears10Introduction - types of gear - gear terminology - gear errors - spur		- plug screw gauges, ring screw gauges, caliper gauges - adjustable	
 floating carriage micrometer. Chapter: 3.2: Measurement of gears Introduction - types of gear - gear terminology - gear errors - spur 		thread gauge - gauging of taps - function of various types of gauges	
Chapter: 3.2: Measurement of gears10Introduction - types of gear - gear terminology - gear errors - spur		- floating carriage micrometer.	
Introduction - types of gear - gear terminology - gear errors - spur		Chapter: 3.2: Measurement of gears	10
		Introduction - types of gear - gear terminology - gear errors - spur	

gear measurement - run out, tooth measurement, profile measurement, lead checking , backlash checking, tooth thickness measurement - vernier gear tooth caliper - David brown tangent comparator - constant chord method - measurement of concentricity, alignment checking - Parkinson gear tester - Rolling gear testing machine - radius measurement - radius of circle - surface finish measurement - classification of geometrical irregularities - elements of surface texture - methods of measuring surface finish measuring surface roughness - tracer type profilogram - double microscope.

IV ADVANCES IN METROLOGY

Chapter: 4.1: Laser Metrology

Basic concepts of lasers - types of lasers - uses, advantages and applications - laser telemetric system - laser and LED based distance measuring instruments - scanning laser gauge - photodiode array imaging - diffraction pattern technique - laser triangulation sensors - two frequency laser interferometer - gauging wire diameter from the diffraction pattern formed in laser - interferometry - use of laser in interferometry - interferometer - standard interferometer, single beam interferometer, AC interferometer, Michelson interferometer, dual frequency laser interferometer - Twyman green interferometer - applications.

Chapter: 4.2: Computer in Metrology

Coordinating measuring machine - introduction - types of measuring machines - types of CMM - futures of CMM - causes of errors in CMM - 3 co-ordinate measuring machine - performance of CMM - applications - advantages disadvantages - computer controlled coordinating measuring machine - mechanical system of computer controlled CMMs - trigger type probe system, measuring type prop system, features of CNC and CMM - features of CMM software - factors affecting CMM - digital devices - Computer based inspection - Computer aided inspection using robots.

7

7

V	MEASUREMENT OF MECHANICAL PARAMETERS	
	Chapter: 5.1: Force	6
	Measurement of force - Direct methods - equal arm balance,	
	unequal arm balance, multiple lever system, pendulum scale -	
	indirect methods - electromagnetic balance - load cells - hydraulic	
	load cell, pneumatic load cell, strain gauge load cell, shear type load	
	cell, electronic weighing system. Torque measurement - torque	
	measurement using strain gauge - laser optical torque measurement	
	- stroboscope for torque measurement.	
	Chapter: 5.2: Measurement of power	4
	Mechanical dynamometer - DC dynamometer - inductor	
	dynamometer - hydraulic dynamometer - diaphragm pressure	
	sensor - deform cage with LVDT - diaphragm gauge with strain	
	gauges - piezoelectric sensors.	
	Chapter: 5.3: Measurement of flow	4
	Types of flow metres - rotameter, electromagnetic flow metre, hot	
	wire anemometer, ultrasonic flow metre, laser Doppler anemometer	
	(LDA) - reference beam mode, interference French mode.	

Reference Books:

- 1. Mechanical Measurements and Instrumentation, Rajput R K, S.K.Kataria and Sons.
- 2. Mechanical Measurement and Control, Jalgaonkar R.V, Everest Publishing House.
- 3. Mechanical and Industrial Measurements, Jain R K, Khanna Publications.
- 4. Instrumentation Devices and Systems, Narang C S, Tata McGraw Hill Publications.
- 5. Instrumentation, Measurement and Analysis, Nakra B.C, Chaudhary K.K, Tata McGraw Hill Publications.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020340
- Semester : III
- Subject Title : Thermal Engineering I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions	Examination			
4020340	Hours	Hours /		Marks		
1020010	nours	1100137	Internal	Board		Duration
Thermal	/ Week	Semester	Assessment	Examinations	Total	
Engineering - I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics				
I	Basics of Thermodynamics and Thermodynamic processes of Perfect Gases	15			
II	Thermodynamic Air Cycles and Heat Transfer	15			
	Internal Combustion Engines	15			
IV	Fuels & Combustion of Fuels and Performance of IC Engines	15			
V	Refrigeration and Air Conditioning	13			
Test and Model Exam					
Total					

RATIONALE:

The growth of industries in the areas of Automobile and thermal power generation is the contemporary need of the present day. For these industries Knowledge on the concept of Thermodynamics, Thermodynamic Processes, Steady flow energy equation and study of fuels, IC Engines and performance of IC Engines are vital.

OBJECTIVES:

- Explain the basics of systems and laws of thermodynamic and
- Thermodynamic processes.
- Explain different type of fuels and their combustion phenomenon.
- Explain the types, functions and the performance tests of IC engines.
- Explain vapour compression refrigeration system.
- Explain vapour absorption refrigeration system.
- Compare the properties and applications of various refrigerants.
- Describe the equipment used for air conditioning.

4020340 THERMAL ENGINEERING - I

DETAILED SYLLABUS

Contents: Theory

Unit	Name Of The Topic	Hours							
I	BASICS OF THERMODYNAMICS AND THERMODYNAMIC	5							
	PROCESSES OF PERFECT GASES								
	Introduction – definitions and units of mass, weight, volume, density,								
	workpower- energy - types- specific weight, specific gravity and								
	specific volume - pressure - units of pressure -temperature -								
	absolute temperature - S.T.P and N.T.P conditions - heat -specific								
	heat capacity at constant volume and at constant pressure - law of								
	conservation of energy – thermodynamic system– types –								
	thermodynamic equilibrium - properties of systems - intensive and								
	extensive properties -State of System- process - cycle - point and								
	path functions - zeroth, first and second laws of thermodynamics.								
	Description of basic concepts only.								

	Perfect gases - laws of perfect gases - Boyle's, Charles', Joule's,	5
	Regnault's and Avogadro's laws –General Gas Equation-	
	characteristic gas equation - relation between specific heats and gas	
	constant – universal gas constant –Thermodynamic Processes-	
	Change in Internal Energy- enthalpy –change in enthalpy – entropy –	
	change in entropy – general equations for change in entropy.	
	Description only.	
	Constant volume, constant pressure, isothermal, isentropic (reversible	5
	adiabatic) - Description and problems. Polytropic (derivation only),	
	hyperbolic (derivation only) - P-V and T-S diagrams, work done,	
	change in internal energy, heat transfer, change in enthalpy, change	
	in entropy for various processes - Free expansion and throttling	
	processes.	
II	THERMODYNAMIC AIR CYCLES AND HEAT TRANSFER	
	Air cycles – air standard efficiency – reversible and irreversible	5
	processes –assumptions in deriving air standard efficiency – Carnot	
	cycle - Otto cycle -Joule cycle - Diesel cycle - comparison of Otto	
	cycle and Diesel cycle -Comparison of ideal and actual p-V diagrams	
	of Otto and Diesel cycles –problems .	
	Modes of heat transfer – heat transfer by conduction – Fourier's Law-	5
	- heat transfer by convection -heat exchanger - Parallel flow and	
	Counter flow- heat transfer by radiation - Description only.	
	Steady flow system - control volume - steady flow energy equation -	5
	assumptions -Engineering applications of steady flow energy	
	equation – non flow energy equation. Description only.	
	INTERNAL COMBUSTION ENGINES	
	Internal compustion engines. Classifications of LC Engines –	10
	components of I.C. Engines and functions material and method of	
	manufacturing - four stroke cycle petrol and diesel engines - two	
	stroke cycle petrol and diesel engines - comparison of four stroke and	
	two stroke engines – Comparison of petrol and diesel engines - valve	
	timing diagram for four stroke petrol and diesel engines - port timing	
	diagram for two stroke petrol and diesel engines. Lavout of fuel	
1		

	supply system in petrol engines - A.C. mechanical fuel pump – simple	
	carburetor - layout of fuel supply system in diesel engine- single	
	acting fuel feed pump - CAV fuel injection pump - fuel injectors -	
	types of nozzles -fuel filters. Ignition systems - battery coil ignition	
	systems – magneto ignition system - MPFI and CRDI System.	
	Governing of I.C. engines - quantity and quality governing - cooling	5
	systems – air cooling – water cooling. Lubrication system – properties	
	of lubricantstypes of lubrication systems high pressure Lubrication	
	system - oil pump (Gear & Rotor Pumps) and oil filters.	
IV	FUELS & COMBUSTION OF FUELS AND PERFORMANCE OF I.C	15
	ENGINES	
	Classifications of fuels - merits and demerits – requirements of a good	
	fuel –combustion equations – stoichiometric air required for complete	
	combustion of fuels – excess air – products of combustion – analysis	
	of exhaust gases - Exhaust gas analyser - calorific value of fuels -	
	higher and lower calorific values - Dulong's formula - determination	
	of calorific value – Bomb and Junker's calorimeter. Description only.	
	Testing - thermodynamic and commercial tests - indicated power -	
	brake power – friction power – efficiencies of I.C. engines – indicated	
	thermal ,brake thermal, mechanical and relative efficiencies – Specific	
	fuel consumption - problems - Morse test - heat balance sheet -	
	procedure and problems.	
V	REFRIGERATION AND AIR CONDITIONING	10
	Refrigeration – refrigerators and heat pumps – types and applications	
	of refrigeration Systems – refrigerating effect – unit of Refrigeration –	
	C.O.P. – actual C.O.P. Air Refrigeration System – reversed Carnot	
	cycle - C.O.P of refrigerator, heat pump & Heat Engines. Bell-	
	coleman cycle – Vapour compression refrigeration system - vapour	
	absorption system – Comparision - refrigerants – properties.	
	Description only.	
	Psychrometry - psychometric properties - dry air - moist air - water	5
	vapour – saturated air – dry bulb temperature – wet bulb temperature	
	- wet bulbdepression - dew point temperature - dew point	

depression – humidity – specific and relative humidity – psychrometric
 chart – psychrometric processes – sensible heating and cooling - By pass Factor - humidification – dehumidification –Mixing of Air Stream.
 Air conditioning – classification and applications of air conditioning
 system – room air conditioning – central air conditioning – comparison
 – comfort and industrial air conditioning – factors to be considered in
 air conditioning – loads encountered in air conditioning systems.
 Description only.

Reference Books:

- 1. Thermal Engg, R.K.Rajput, 8th Edition, Laxmi publications Pvt Ltd , New Delhi.
- Applied Thermodynamics, P.K. Nag, 2nd Edition, TATA Mcgraw Hill Publishing Company, New Delhi.
- Thermal Engineering, R.S. Khurmi and J.K. Gupta, 18th Edition, S. Chand & Co, New Delhi.
- 4. Thermal Engineering, P.L Ballaney , 24th Edition Khanna Publishers, New Delhi.
- 5. Thermal Engineering, B.K. Sarkar, 3rd Edition, Dhanpat Rai & Sons New Delhi.
- Applied Thermodynamics, Domkundwar and C.P Kothandaraman, 2ndEdition Khanna publishers, New Delhi.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020350
- Semester : III

Subject Title : Machine Drawing and CAD Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020350 Hours Hours /		Marks				
Machine Drawing and	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
CAD Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

Mechanical Engineering Diploma Engineer is expected to possess a thorough understanding of drawing, which includes clear visualization and proficiency in reading and interpreting a wide variety of production drawing. Manufacturing of various parts start from the basic drawing of components. The assembly of components is also carried out from the drawing. So drawing is an important subject to be studied by the students to carry and complete the production and assembly process successfully.

OBJECTIVES:

- To learn the parts and assembly of the machine components.
- To appreciate the need for sectional view and types of sections.
- To draw sectional views.
- To practice manual drawing

- To use Computer Aided Drafting.
- To prepare geometrical model of various machine elements.
- To draw the different views of machine elements.
- To interpret the drawing in engineering field and illustrate three dimensional objects.

4020350 MACHINE DRAWING AND CAD PRACTICAL DETAILED SYLLABUS

Contents: Practical

PART-A: MANUAL DRAWING PRACTICE

Sectioning - sectional views – representation of sectional plane – hatching – inclination – spacing – hatching large areas – hatching adjacent parts - full section – half section – types of half sections – conventional representation of materials in section – Dimensioning.

Detailed drawings of the machine parts are given to students to assemble and draw any two views of the machine elements in the Drawing Sheet with dimensions. Front View /Full Section / Half SectionFront Viewand Top View / Left Side View / Right Side View.

PART-B: COMPUTER AIDED DRAFTING (CAD)

CAD applications – Hardware requirement – Software requirement – CAD screen interface – menus – Toolbars – types of co-ordinate system – Creating 2D objects – Using draw commands – Creating text – Drawing with precision – Osnap options – drafting settings – drawing aids – Fill, Snap, Grid, Ortho lines – Function keys – Editing and modify commands – Object selection methods – Erasing object – Oops – Cancelling and undoing a command – Copy – Move – Array – Offset – Scale – Rotate – Mirror – Break – Trim – Extend – Explode. Divide – Measure – stretch – Lengthen – Changing properties – Color – line types – LTscale – Matching properties – Editing with grips – Pedit – Ddedit – Mledit - Basic dimensioning – Editing dimensions – Dimension styles – Dimension system variables. Machine drawing with CAD. Creation of blocks – Wblock – inserting a block – Block attributes – Hatching – Pattern types – Boundary hatch – working with layers – Controlling the drawing display – Blipmode – View group commands – Zoom, redraw, regen,

regenauto, pan, viewers – Realtime zoom. Inquiry groups – calculating area – Distance – Time – Status ofdrawing – Using calculator. Plot

Detailed drawings of the machine parts are given to students to assemble and create two views of the machine elements in the CAD package with dimensions. Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View.

EXERCISE:

Draw the Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View for the following given part drawing of the components after assemble in the drawing sheet and CAD package.

- 1. Sleeve & Cotter joint
- 2. Screw jack
- 3. Plummer Block
- 4. Simple Eccentric
- 5. Machine Vice
- 6. Protected type flanged coupling

Reference Books:

- 1. A Textbook of Machine Drawing, Pritam Singh Gill, S.K.Kataria & Sons.
- 2. Machine Drawing, N.D.Bhatt, V.M.Panchal, Charoter Publishing House.
- Introducing Autocad 2010 and Autocad LT 2010, George Omura, Wiley India Pvt. Ltd.
- 4. A Textbook of Engineering Drawing, R.B.Gupta, Satya Prakasan, Technical India Publications.
- 5. Engineering Drawing, D.N. Ghose, Dhanpat Rai & Sons, Delhi

Internal Mark Allocation

Note:

All the students should maintain the observation cum record note book / manual as per the regulation. The printout of the actual CAD output created by the student during practice should be pasted for every exercise in the observation cum record note work.

For every exercise, manual drawing sheet (Two views) should be submitted and evaluated for 50 Marks. (Front view – 30 Marks and Top view/Side view – 20 Marks). The average of the six exercises should be converted to 10 Marks.

Total	-	25 Marks
Attendance	-	05 Marks
Observation and Record work	-	10 Mark
Drawing Sheet (Six Exercise Average)	-	10 Mark

BOARD EXAMINATION

Note: All the exercises should be completed by Manual and CAD. All the exercise should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Observation cum Record note book should be submitted during examination along with the drawing file. Part A and Part B should be completed for the examination.

PART A: Manual Drawing in the Drawing sheet

Draw the assemble Front View / Sectional Front View (Full Section / Half Section) for the given part drawing of the components in the drawing sheet.

PART B: Computer Aided Drafting in the CAD package

Create the assemble Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View for the given part drawing of the components in any one of the CAD package.

DETAILLED ALLOCATION OF MARKS

Manual Drawing in Drawing	: 30 marks	
Assemble Front view	30	
Computer Aided Drafting		: 60 marks
Drafting	20	
Assembly	20	
Dimensioning	20	
Viva-voce	: 10 marks	
Total		: 100 marks

LISTOF EQUIPMENT (For 30 students)

- 1. Personal computer 30 Nos.
- 2. Printer 1 No.
- 3. Required Software's: CAD Package Sufficient to the strength.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020360
- Semester : III
- Subject Title : Manufacturing Technology I Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020360	Hours	Hours /	Marks			
Manufacturing Technology - I	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify the parts of a center lathe
- Identify the work holding devices
- Set the tools for various operations
- Operate the lathe and Machine a component using lathe
- Identify the tools used in foundry.
- Identify the tools and equipments used in welding
- Prepare sand moulds for different patterns.
- Perform welding operation to make different types of joints.
- Identify the different welding defects.
- Appropriate the safety practices used in welding

4020360 MANUFACTURING TECHNOLOGY - I PRACTICAL DETAILED SYLLABUS

Contents: Practical

Lathe: Study of Lathe parts and its fuctions – Operations - Plain Turning, Step Turning, Taper turning, Knurling, Thread cutting, Bushing, Ecentric Turning Foundry: Study of foundry - green sand – properties – patterns – Types - Solid Pattern - Stepped pulley, Bearing top, Gear wheel. Split Pattern - T Pipe, Bent Pipes, Dumbles - Loose Piece pattern – Dovetail – Core – Cores sand - Cylindrical core making

Welding Exercises

Arc welding principles and components - Arc Welding - Lap Joint - Butt Joint, T Joint, Corner joint. Gas welding equipments – components - Gas welding - Lap Joint, Butt Joint, T Joint, Corner Joint. Gas cutting - Spot Welding

Exercises

PART A – Lathe Exercises

Note: All Dimensions are in mm. All linear dimensions in \pm 0.5mm tolerance. All cylindrical dimensions in \pm 0.2mm tolerance.Estimate the cost of the job for following exercises for M.S. round rod with suitable raw material for the final size. Final job of the raw material should be retained for verification. (student wise or batch wise).

1. Prepare the specimen and make the Step turning & Taper turning as shown in figure using the Lathe.

2. Prepare the specimen and make the Step turning & Knurling as shown in figure using the Lathe.

3. Prepare the specimen and make the Step turning &BSW Thread cutting as shown in figure using the Lathe.

4. Prepare the specimen and make the Shaft and Bush as shown in figure using the Lathe.

5. Prepare the specimen and make the Step turning & BSW and Metric Thread cutting as shown in figure using the Lathe.

6. Prepare the specimen and make the Eccentric turning as shown in figure using the Lathe.

PART B – Exercises

- 1. Prepare the green sand moulding using any one Solid Pattern in the foundry.
- 2. Prepare the green sand moulding using any one Split Pattern in the foundry.
- 3. Prepare the green sand moulding using any one Loose Piece pattern in the foundry.
- Prepare the specimen and make the Lab joint by the Arc Welding (Both side welded). (Raw material 25mm X 6mm MS flat)
- 5. Prepare the specimen and make the corner joint by the Gas Welding. (Raw material 25mm X 3mm MS sheet)
- Prepare the specimen and make the Butt joint by the Spot welding. (Raw material 25mm X 3mm GI sheet)

BOARD EXAMINATION

Note:

- All the exercises in both sections have to be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Part - A	:	55 marks
Procedure / Preparation	10	
Machining / Dimensions	35	
Finishing	10	
Part - B	:	40 marks
Procedure / Preparation	10	
Machining / Dimensions	25	
Finishing	5	
Viva voce	:	05 marks
Total	:	100Marks

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENT (For 30 students)

1. Center Lathe 4 ½ ' Bed length	– 10 No's
2. 4 Jaw / 3 Jaw Chucks	- required Numbers
3. Chuck key (10 mm x 10 mm size)	– 10 No's
4. Box spanner	– 1 No's
5. Cutting Tool H.S.S ¼ " X ¼ " X 4 " long	– 10 No's
6. Pitch gauge	– 5 Nos
7. Vernier Caliper (0-25 and 25-50)	– 5 Nos each
8. Micrometer, Inside and Outside(0-25 and 25-50)	- 5 each
9. Vernier Height Gauge(300mm)	- 1 no
10. Snap gauge	– 1 set
11. Gear tooth Vernier	- 1 No
12. Parallel Block	- 2 Nos
13. Steel Rule (0-150)	– 10 Nos.
14. Outside and Inside Calipers	- 10 Nos. each
15. Thread gauge	– 5 Nos.
16. Bevel Protractor	– 1 No
17. Jenny Caliper	– 5 Nos.
18. Dial Gauge with Magnetic Stand	– 5 Nos.
19. Marking Gauge	– 10 Nos.
20. Safety Glass	– 10 Nos.
21. Arc welding booth	– 2 No's
with oil /air cooledwelding transformer withacc	essories
22. Gas welding unit (Oxygen and acetylene cylinder)	– 1 Set
23. Flux	– 500 g
24. Electrode 10 SWG	– 200 No's
25. Face shield	– 3 No's
26. Gas welding goggles	– 2 No's
27. Leather Glows 18"	– 4 Set
28. Flux chipping hammer	– 4 No's
29. Spot welding machine	- 1 No
30. Crucible furnace	- 1 No
31. Tilting furnace	- 1 No
32. Shovel	- 10 Nos

33. Rammer set	- 10 Nos
34. Slick	- 10 Nos
35. Strike-off bar	- 10 Nos
36. Riddle	- 10 Nos
37. Trowl	- 10 Nos
38. Lifter	- 10 Nos
39. Sprue pin	- 20 Nos
40. Brush	- 10 Nos
41. Vent rod	- 10 Nos
42. Draw spike	- 10 Nos
43. Gate cutter	- 10 Nos
44. Cope box	- 10 Nos
45. Drag box	- 10 Nos
46. Core box	- 10 Nos
47. Runner & riser	- 20 Nos
48. Moulding board	- 10 Nos
49. Patterns	- 5 Nos each

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020370
- Semester : III

Subject Title : Measurements and Metrology Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions	Examination			
4020370	Hours	Hours /		Marks		
Measurements	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Familiarize about measuring techniques of Metrology instruments.
- Select the range of measuring tools. Study of accuracy of instruments and calibration of instruments.
- Obtain accurate measurements.
- Determine the least count of measuring instruments.
- Acquire knowledge about linear measurement.
- Acquire knowledge about angular measurement.
- Acquire knowledge about geometric measurements.
- Study of Linear Measuring Instruments: Vernier Caliper, Micrometer, Inside Micrometer, Vernier Height gauge and Slip Gauge.
- Study of Angular Measuring Instruments–Universal Bevel Protractor, Sine Bar.

• Study of Geometric measurement - Gear tooth Vernier, Thread Vernier.

Exercises

PART A:

- 1. Measure the dimensions of ground MS flat / cylindrical bush using VernierCaliper compare with Digital / Dial Vernier Caliper.
- 2. Measure the diameter of a wire using micrometer and compare the result with digital micrometer
- 3. Measure the thickness of ground MS plates using slip gauges
- 4. Measure the inside diameter of the bore of a bush cylindrical component using inside micrometer compare the result with digital micro meter.
- 5. Measure the height of gauge blocks or parallel bars using vernier height gauge.
- 6. Detect of cracks of the given two specimens using liquid penetrant test and magnetic particle test.

7.

PART B:

- 1. Measure the angle of a V-block / Taper Shank of Drill / Dovetail using universal bevel protractor.
- 2. Measure the angle of the machined surface using sine bar with slip gauges.
- 3. Measure the geometrical dimensions of V-Thread using thread micrometer.
- 4. Measure the geometrical dimensions of spur gear.
- 5. Find out the measurement of given component and compare with a standard component using mechanical comparator and slip gauge .
- 6. Prepare a specimen to examine and find the grain structure using the Metallurgical Microscope.

BOARD EXAMINATION

Note:

- All the exercises in both sections have to be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Part-A	:	45 marks
Procedure / Preparation	10	
Observation / Dimensions	25	
Finishing	10	
Part-B	:	45 marks
Procedure / Preparation	10	
Observation / Dimensions	25	
Finishing	10	
Viva-voce	:	10 marks
Total	:	100Marks

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (For 30 students)

- 1. Vernier Caliper 2 Nos.
- 2. Digital / Dial Vernier Caliper. 2 Nos.
- 3. Outside micrometer 2 Nos.
- 4. Inside Micrometer 2 Nos
- 5. Digital Micrometer 2 Nos.
- 6. Slip gauges 2 Nos.
- 7. Universal bevel protractor. 2 Nos.
- 8. Sine bar 2 Nos.
- 9. Digital inside micrometer 2 Nos.
- 10. Surface plate 2 Nos.
- 11. Vernier height gauge 1No.
- 12. Thread Vernier 1 No.
- 13. Thread micrometer 1 No.
- 14. Gear tooth Vernier 2 Nos.
- 15. Mechanical comparator 2 Nos.
- 16. Dial indicator (0-10) 2 Nos.
- 17. Abrasive grinder 1 No.
- 18. Polishing Machine 1 No.
- 19. Mounting machine 1 No.
- 20. Metallurgical microscope 2 Nos
- 21. Magnetic yoke 1 No.
- 22. Liquid penetrant test kit 1 set.
- 23. Consumable Sufficient quantity

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020410
- Semester : IV
- Subject Title : Fluid Mechanics and Fluid Power

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination		
4020410		Hours /		Marks		
Fluid Mechanics	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
and Fluid Power	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours		
I	Properties of Fluids & Fluid Pressure	12		
II	Fluid Flow, Flow Through Pipes & Impact of Jet	17		
	Hydraulic Turbines, Centrifugal Pumps & Reciprocating Pumps	16		
IV	Hydraulic Systems	16		
V Pneumatic Systems				
Test and Model Exam				
Total				

RATIONALE:

The purpose of this subject is to teach the students the fundamentals of engineering fluid mechanics in a very general manner so that they can understand the way that forces are produced and transmitted by fluids that are, first, essentially at rest and, second, in motion. This will allow them to apply the physical principles behind some of the most common applications of fluid mechanics in engineering.

OBJECTIVES:

- To study the basic fluid properties and types of flow;
- To understand the transmission of pressure in liquids and its application to hydraulics;
- To calculate hydrostatic forces on plane and curved submerged surfaces;
- To employ the concept of continuity of flow and use Bernoulli's equation to measure flow rate and velocity;
- To apply the momentum principle to liquids in jets and pipes.
- To understand the working of hydraulic machines like, turbines, pumps.
- To identify the various components of a Hydraulic & Pneumatic systems and select them for design of hydraulic and pneumatic circuits for Engineering applications.

4020410 FLUID MECHANICS AND FLUID POWER DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	PROPERTIES OF FLUIDS & FLUID PRESSURE	
	Chapter: 1.1: Properties of Fluids	4
	Fluid – definition-classification. Properties – density, specific gravity,	
	specific weight, specific volume, dynamic viscosity, kinematic viscosity,	
	surface tension, capillarity, vapour pressure and compressibility -	
	Problems	
	Chapter: 1.2: Fluid Pressure & Its Measurement	8
	Fluid Pressure – Hydrostatic law - Pressure head, Pascal's Law – proof -	

	applications - Hydraulic press- Hydraulic jack. Concepts of absolute,	
	vacuum, gauge and atmospheric pressures.	
	Pressure measurements - Simple U tube manometers and differential	
	manometers and their types – Problems - Bourdon tube pressure gauge.	
	Pressure sensor technologies - classification only.	
	Total Pressure, Centre of pressure on immersed bodies (flat vertical., flat	
	vertical) – Problems.	
II	FLUID FLOW, FLOW THROUGH PIPES & IMPACT OF JET	
	Chapter: 2.1: Fluid Flow	6
	Types of Fluid flow - Laminar, turbulent, steady, unsteady, uniform,	
	non-uniform, rotational, irrotational. Continuity equation, Bernoulli's	
	theorem - assumptions- derivation - applications and limitations -	
	Problems.	
	Venturimeter - Construction - working principle, coefficient of discharge -	
	derivation for discharge. Orificemeter - Construction working principle,	
	coefficient of discharge- derivation for discharge. Problems. Pitots Tube	
	 Construction and working principle only. 	6
	Chapter: 2.2: Flow through Pipes	
	Laws of fluid friction for Laminar and turbulent flow- Darcy's equation and	
	Chezy's equation for frictional losses - Problems. Minor Losses -	
	description. Hydraulic gradient line and Total energy line. Hydraulic	
	Power transmission through pipes – problems.	5
	Chapter: 2.3: Impact of Jet	
	Impact of jet on fixed vertical plate - Impact of jet on moving vertical flat	
	plates in the direction of jet - Impact of jet on a series of moving plates or	
	vanes - Problems on work done and efficiency.	
	HYDRAULIC TURBINES, CENTRIFUGAL PUMPS &	
	RECIPROCATING PUMPS	
	Chapter: 3.1: Hydraulic Turbines	4
	Classification of hydraulic turbines and their applications. Construction	
	and working principle of Pelton wheel, Francis and Kaplan turbine. Draft	
	tubes – types and construction, Concept of cavitation in turbines, Surge	
	tank and its need.	

	Chapter: 3.2: Centrifugal Pumps	6
	Construction - Principle of working. Types of casings and impellers.	
	Concepts of multistage. Priming and its methods. Manometric head, work	
	done, manometric, mechanical and overall efficiencies - problems	
	Chapter: 3.3: Reciprocating Pumps	6
	Construction, working principle and applications of single and double	
	acting reciprocating pumps. Discharge - Theoretical power required	
	coefficient of discharge – Problems	
	Concepts of slip – negative slip. Cavitation and separation. Use of air	
	vessel. Indicator diagram with effect of acceleration head and friction	
	head.	
IV	HYDRAULIC SYSTEMS	
	Chapter: 4.1: Introduction to Fluid power systems	4
	Fluid power systems - general layout - components of hydraulic &	
	Pneumatic systems. Practical applications of Fluid power systems.	
	Comparison - Advantages and limitations.	
	Chapter: 4.2: Components of Hydraulic systems	8
	Types, construction, working Principle and symbol of the following	
	components. Pump – vane, gear and piston pumps. Valves: Pressure	
	Control valves – pressure relief . valve, pressure reducing valve,	
	pressure unloading valve. Direction control valve - poppet valve, spool	
	valve, 3/2, 4/2 & 4/3 DC valves, sequencing valve. Flow control valve -	
	pressure compensated – non pressure compensated.Actuators – Linear	
	actuactors – single acting & double acting – rotory actuators – hydraulic	
	motors. Accessories – Intensifiers and Accumulators.	
	Chapter: 4.3: Hydraulic Circuits	4
	Double acting cylinder with Meter in, Meter out circuits, Pump unloading	
	cut, Bleed off circuit, sequencing circuit. Hydraulic circuits for milling	
	machine, shaping machine. Motion synchronisation circuit.	
V	PNEUMATIC SYSTEMS	
	Chapter: 5.1: Components of pneumatic systems	8
	Types, construction, working Principle and symbol of the following	
	components. Compressor – Reciprocating & Rotary Compressors.	

Valves. Pressure Control valves – pressure relief valve, pressure	;
regulating valves. Direction control valves - 3/2, 5/2 & 5/3 DC valves	,
sequencing valve. Flow control valve - throttle valves - shuttle valves	-
quick exhaust valves. Actuators - Linear actuactors - single acting 8	ι (
double acting - rotary actuators - air motors. Accessories FRL unit.	
Chapter: 5.2: Pneumatic Circuits	
Double acting cylinder with Meter in, Meter out circuits, speed contro	I 4
circuit and sequencing circuit	

Reference Books:

- A Textbook of Fluid Mechanics and Hydraulic Machines, R. K. Bansal, Laxmi Publications (P).,Ltd, New Delhi, 2010
- Hydraulics and Fluid Mechanics, Modi P.N. and Seth, S.M. Standard Book House, New Delhi, 2013.
- 3. Fluid Power with Applications, Anthony Esposito,, Pearson Education 2005.
- 4. A Textbook of Fluid Mechanics, R. K Rajput, S.Chand & Co, New Delhi, 2019
- 5. Engineering Fluid Mechanics, Kumar K. L., Eurasia Publishing House (P) Ltd., New Delhi, 2016.
- Oil Hydraulics Systems- Principles and Maintenance", Majumdar S.R., Tata McGraw- Hill, 2001.
- Hydraulic and Pneumatic Controls, Shanmugasundaram.K, Chand & Co, 2006

Blank page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020420
- Semester : IV
- Subject Title : Manufacturing Technology II

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination		
	Hours	Hours /		Marks		
4020420 Manufacturing	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Technology			Assessment			
Technology - II	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Theory of Metal Cutting, Drilling Machine & Abrasive	15
	Process	
II	Reciprocating Machines and Broaching	15
III	Milling Machines and Gear Generating	14
IV	Unconventional Machining Processes	14
V	CNC Machine and CNC Programming	15
Test and Model Exam		7
Total		80
RATIONALE:

In the process of manufacturing we should possess adequate and through knowledge about the working of conventional as well as non-conventional machines. The topics included aim to inculcate in the students the skills of metal cutting, milling, grinding, CNC machines and other machining processes which are very much essential.

OBJECTIVES:

- Study the working of various machine tools: Planer, Shaper, Drilling and Slotter.
- Study the various work holding devices
- Study various types of milling cutter.
- Study the different types of grinders and grinding wheels.
- Study the broaching operation and their applications.
- Study the milling procedure for spur, helical and bevel gears.
- Study the various types of gear generating processes
- Study the use of non-conventional machining processes.
- Study the CNC machines working principle and its components.

4020420 MANUFACTURING TECHNOLOGY - II

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	THEORY OF METAL CUTTING, DRILLING MACHINE & ABRASIVE	
	PROCESS	
	Chapter: 1.1: Theory of metal cutting	4
	Introduction – orthogonal cutting – oblique cutting – single point cutting	
	tool - nomenclature - types of chips - chip breakers - cutting tool	
	materials - properties - tool wears - factors affecting tool life - cutting	
	fluids – functions – properties of cutting fluid.	
	Chapter: 1.2: Drilling machines	4
	Drills - flat drills - twist drills - nomenclature of twist drill - types of	

drilling machines – bench type – floor type – radial type – gang drill – multi spindle type – principle of operation in drilling – methods of holding drill bit – drill chucks – socket and sleeve – drilling operation – reaming, counter sinking, counter boring, spot facing, tapping and deep hole drilling.

Chapter: 1.3: Abrasive process

Types and classification – specifications – rough grinding – pedestal grinders - portable grinders – belt grinders. Precision grinding – cylindrical grinder – centerless grinders - surface grinder – tool and cutter grinder – planetary grinders – principles of operations – grinding wheels – abrasives – natural and artificial diamond wheels – types of bonds – grit, grade and structure of wheels – wheel shapes and sizes – standard marking systems of grinding wheels – selection of grinding wheel – mounting of grinding wheels – dressing and truing of wheels – balancing of grinding wheels.

RECIPROCATING MACHINES

Chapter: 2.1: Planer

Introduction – description of double housing planner – specifications – principles of operation – drives – quick return mechanism – feed mechanism - operations.

Chapter: 2.2: Shaper

Introduction – specifications – principles of operations – standard shaper – quick return mechanism – crank and slotted link – hydraulic shaper – feed mechanism – operations.

Chapter: 2.3: Slotter

Introduction - specifications – method of operation – whitworth quick return mechanism - feed mechanism – types of tools.

Chapter: 2.4: Broaching

Types of broaching machine – horizontal, vertical and continuous broaching – principles of operation – types of broaches – classification – broach tool nomenclature – broaching operations.

4

7

4

3

	MILLING MACHINES AND GEAR GENERATING PROCESSES	
	Chapter: 3.1: Milling machines	10
	Types – column and knee type, plain, vertical and universal milling	
	machines - principles of operation - specification of milling machines -	
	work holding devices – tool holding devices – arbor – stub arbor – spring	
	collet – adaptor. Milling cutters – cylindrical milling cutter - slitting cutter	
	 side milling cutter – angle milling cutter – T slot milling cutter – woodruff 	
	milling cutter - fly cutter - nomenclature of cylindrical milling cutter.	
	Milling operations – straddle milling - gang milling – vertical milling	
	attachment. Indexing plate - differential indexing - simple indexing and	
	compound indexing – simple problems.	
	Chapter: 3.2: Generating processes	4
	Gear shaper – gear hobbing – principle of operations only. Gear finishing	
	processes – burnishing – shaving – grinding and lapping – gear	
	materials.	
IV	UNCONVENTIONAL MACHINING PROCESSES	
	Chapter: 4.1: Mechanical energy based process	5
	Introduction – classification – process selection – advantages –	
	limitations – demerits of conventional processes. Mechanical energy	
	based process: Introduction - abrasive jet machining - metal removal	
	rate process parameters – water jet machining – hydrodynamic jet	
	machining – ultrasonic machining process – advantages – disadvantages	
	- applications - compare ultrasonic machining with traditional abrasive	
	machining.	
	Chapter: 4.2: Electrical energy based processes	5
	Introduction – electrical discharge machine (EDM) – flushing system in	
	EDM - tool (electrode) materials - tool wear - metal removal rate and	
	surface finish - factors affecting the metal removal rate - advantages -	
	disadvantages – applications – wire cut EDM , features of wire cut EDM	
	 difference between EDM and wire cut EDM. 	
	Chapter: 4.3: Thermal energy based processes	4
	Introduction – electron beam machining – laser beam machining – lasing	
	materials - machining applications of laser - plasma arc machining -	

	gases used in plasma arc machining - types of plasma arc torches -	
	advantages – disadvantages – applications.	
V	CNC MACHINE AND ITS COMPONENTS	
	Chapter: 5.1: CNC machines	5
	Numerical control - definition - working principle of a CNC system -	
	features of CNC machines - advantages of CNC machines - difference	
	between NC and CNC - construction and working principle of turning	
	centre - construction and working principle of machining centre -	
	machine axes conventions turning centre and machining centre - co-	
	ordinate measuring machine – construction and working principle.	
	Chapter: 5.2: Components of CNC machine	4
	Slide ways - requirement - types - friction slide ways and anti-friction	
	slide ways – linear motion bearing – recirculation ball screw – ATC – tool	
	magazine – feedback devices – linear and rotary transducers – encoders	
	 in process probing – tool material – tool inserts. 	
	Chapter: 5.3: CNC Programming	6
	Introduction – Cartesian coordinate system – Polar coordinate system –	
	Absolute and incremental positioning – Purpose of G and M codes. Basic	
	codes – basic CNC program. CNC turning program using linear	
	interpolation and circular interpolation. Machine control panel - Homing	
	position – Offset setting – Auto. CNC milling program using linear	
	interpolation and circular interpolation. Compensation – Machine control	
	panel – Home position – Work offset setting procedure – Tool offset .	

Reference Book:

- Elements of Workshop Technology- Vol. I & II, Hajra Choudry & Battacharya, Edn. 11, published by Media Promoters and Publishers Pvt. Ltd., Seervai Buildings `B', 20-G, Noshir Bharucha Marg, Mumbai 400 007 – 2007.
- Production Technology, Jain & Gupta, Khanna Publishers, 2-B, North Market, Naisarak, New Delhi – 110 006 – 2006.
- Production Technology, HMT, Edn. 18, published by Tata McGraw Hill Publishing Co. Ltd., 7, West Patel Nagar, New Delhi 110 008.

- 4. Manufacturing process, Myro N Begman, , Edn. 5, Tata McGraw Hill Publishing Co. Ltd., 7, West Patel Nagar, New Delhi 110 008.
- 5. Workshop Tech Vol I,II, III, WAJ. Chapman, published by Viva Books Pvt. Ltd., 4262/3, Ansari Road, Daryaganj, New Delhi 110 002.
- Production processes, NITTTR, published by 5, Tata McGraw Hill Publishing Co. Ltd., West Patel Nagar, New Delhi 110 008.
- Principles of the manufacturing of Composite materials Suong V Hoa, DES tech publication. Inc, 439, North Duke street, Lancaster, Pennsylvania – 17602 U.S.A.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(To be implemented for the students admitted from the year 2020 – 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020430
- Semester : IV
- Subject Title : Electrical Drives and Control

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions		Examination		
4020430	Hours	Hours /		Marks		
Electrical	/ Week	Semester	Internal	Board	Total	Duration
Drives and			Assessment	Examinations		
Control	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Dc Circuits and Dc Machines	15
II	Ac Circuits and Ac Machines	15
	Special Machines & Drives	15
IV	Power Supplies, Control Elements and Electrical Safety	14
V	Display Devices, Logic Gates and PLC	14
	Test and Model Exam	7
	Total	80

RATIONALE:

The automation is being the order of the day to improve the production with high quality consciousness. Such automation involves electrically operated switches, sensors controlled through electrically driven motors and actuators. The subject aims in introducing the basic electrical DC and AC circuits and motors and also focuses on the various special control devices like stepper, servo drives and its controlling elements.

OBJECTIVES:

- Explore fundamental electric circuit laws.
- Explain the working principle of DC and AC Electrical machines.
- Identify the effective uses of drives of Electrical machines.
- Analyze the various power supply circuits.
- Select the field controlled elements.
- Explain the construction and working of Transformer.
- Compare the different types of Logic gates.
- Appreciate the safety practices followed in Electrical system.
- Compare the use of servo motors and stepper motors in electrical driving system
- Identify PLC Input outputs.
- Identify the use of Control elements.

4020430 ELECTRICAL DRIVES AND CONTROL DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	DC CIRCUITS AND DC MACHINES	
	Chapter: 1.1:	7
	Definition- Electric Current, Voltage and Resistance -Ohm's law and	
	Kirchoff's law. Resistance in series, parallel and series parallel –	
	simple problems - Electromagnetism (definitions only) – Magnetic	
	flux, Fluxdensity, Magnetic field intensity, MMF, Permeability,	

	Reluctance, Faraday's law of Electromagnetic induction, Electrical	
	and Mechanical units.	
	Chapter: 1.2:	8
	DC Generators – Construction, Principle of operation and	
	Applications. DC Motors: - Construction, Principle of operation and	
	Applications.	
	Necessity of starters: Three point, four point starters.	
II	AC CIRCUITS AND AC MACHINES	
	Chapter: 2.1:	7
	Fundamentals of AC voltage, and current – Peak, Average, RMS	
	value of sine wave, frequency, time period, amplitude, power and	
	power factor (definition only).	
	Transformer: Principle of operation and construction – EMF equation	
	- Losses in Transformer – Efficiency – Applications.	
	Alternator construction – Principle of operation and Applications.	
	Chapter: 2.2:	8
	AC machine: AC Motors- Principle of operation of Single Phase,	
	Capacitor Start induction motor - universal motor - Applications-	
	Three Phase Induction Motors - Squirrel Cage and Slip ring	
	Induction motors (Construction and Working Principle only) -	
	Applications – Speed control of 3Φ Induction Motor - DOL and	
	star/delta starter.	
III	SPECIAL MACHINES & DRIVES	
	Chapter: 3.1:	7
	PMDC Motor, Stepper motor- Construction and Working Principle	
	and Applications - Servo motor – types.	
	Permanent Magnet Servo motor Construction and Applications.	
	Brushless Servo motor - Construction and Applications.	
	Chapter: 3.2:	8
	Industrial drives- types, Group drive, Individual drive, Multi motor	
	drive. Block diagram of Variable Frequency Drive (VFD).	
	Stepper motor Drive: Single stepping and Half stepping Servo drives.	
	DC Servo drive, AC Servo drive and BLDC Servo drive.	

IV	POWER SUPPLIES, CONTROL ELEMENTS AND ELECTRICAL	
	SAFETY	
	Chapter: 4.1:	5
	Rectifiers - Half wave, Full wave and Bridge rectifiers - Necessityof	
	Filters- Regulated Power Supplies: IC Voltage Regulators.Batteries -	
	Working, Constructions, Maintenances and Trouble shooting.	
	Chapter: 4.2:	5
	Fuses – Selection of Fuse – Necessity of Fuse- Fuse switch units.	
	Sensors: Photo electric sensor, Inductive Proximity sensors,	
	Temperature sensors. Contactors - usage - Necessity of Contactor-	
	Solenoid type Contactor.	
	Chapter: 4.3:	4
	Circuit breakers – Miniature Circuit Breaker (MCB), Earth	
	Leakage Circuit Breaker (ELCB). Electrical Safety: - Importance of	
	Earthing - Electric shock: First aid, Precautions - Causes of Accident	
	and their Preventive measures.	
V	DISPLAY DEVICES, LOGIC GATES AND PLC	
	Chapter: 5.1:	4
	Display devices – LED, 7 segments LED, LCD, applications.	
	Chapter: 5.2:	5
	Logic gates: Positive and Negative Logic, Definition, Symbol and	
	truth table.Boolean expression for OR, AND, NOT, NOR, NAND,	
	EXOR AND EXNOR gates. Universal Logic Gates: NAND, and NOR.	
	Chapter: 5.3:	5
	Features of PLC - PLC Block diagram - PLC scan. Fixed and	
	Modular PLC. Ladder logic - NO, NC contacts - Coils - AND logic,	
	OR logic.	

Reference Books

- 1. Fundamentals of physics, Brijlal and Subramaniam.
- 2. Fundamentals of Electricity, D.N. Vasudeva, S. Chand & co.
- 3. Electric motors and drives, Austin Hughes
- 4. A text bookof Electrical Technology, Volume II, B.L.Theraja, S. Chand & co.
- 5. Programmable Logic Controllers John R Hackworth Frederick D.Hackworth Jr., Pearson Education.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020440

Semester : IV

Subject Title : Production and Quality Management

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions		Examinatio	n	
4020440	Hours	Hours /		Marks		
Production and Quality	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Management	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Process Planning and Selection	15
II	Basic concepts of Total Quality Management	14
III	TQM Tools	14
IV	Statistical Fundamentals & Charts	15
V	Lean Manufacturing Concepts	15
	Test and Model Exam	07
	Total	80

RATIONALE:

In the product manufacturing the process selection and planning are important. Quality and customer satisfaction in every product and every activity is the order of the day. As there is a shift from quality control to quality management in all activities, the concept Total Quality Management and the pillars of TQM are to be given to Engineers, who are designing products and production systems.

OBJECTIVES:

- Understand the process planning.
- Study the process selection.
- Define quality and appreciate its signature.
- Explain the concept of TQM.
- Appreciate the use of principles of TQM to meet customer satisfaction.
- Solve problem using the Quality control tools.
- Apply Brainstorming and quality circle to solve problems.
- Use PDCA cycle for continuous improvement.
- Appreciate the benefits of implementing 5S concepts.
- Collect, classify and present the data.
- Determine the process capability of a manufacturing process.
- Practice on management planning tools.
- Use Bench Mark and JIT concepts.

4020440 PRODUCTION AND QUALITY MANAGEMENT DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
I	Process Planning And Selection	
	Chapter: 1.1:	3
	Production: Types of Production – Mass production, batch production	
	and job order production	
	Chapter: 1.2:	6
	Process Planning: Introduction - concept - Information required to do	
	processplanning – factors affecting process planning – process	

	planningprocedure – Make (or) Buy decision using Break Even Analysis –	
	simple problems. Manual process planning - Introduction ofAutomated	
	process planning and generator process planning -Advantage of	
	computer aided process planning - Principle of linebalancing - need for	
	line balancing - Value Engineering -Definition - cost control Vs cost	
	reduction - value analysis when todo - steps information needed -	
	selection of product.	
	Chapter: 1.3:	6
	Process Selection: Process selection – technological choice – specific	
	componentchoice - Process flow choice - Factors affecting process	
	selection- machine capacity - analysis of machine capacity - process	
	andequipment selection procedure - Determination of man, machineand	
	material requirements - simple problems - selection ofmaterial - jigs -	
	fixtures etc Factors influencing choice of machinery - selection of	
	machinery – simple problems – Preparation of operation planning sheet	
	for simple components.	
Ш	Chapter: 2.1: Basic Concepts Of Total Quality Management	14
	Quality-Definitions - Dimensions of quality - Brainstorming and	
	itsobjectives – Introduction to TQM - Characteristics – Basic concepts –	
	itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation -	
	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - 	
	itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements –	
	itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming	
	itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy -	
	itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle.	
111	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle. 	14
- 111	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle. 	14
111	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle. TQM Tools Chapter: 3.1: Seven tools of quality control (Q 7 tools): Check sheet – Types of 	14
111	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle. TQM Tools Chapter: 3.1: Seven tools of quality control (Q 7 tools): Check sheet – Types of check sheet – Histogram – Cause and effect diagram – Pareto diagram – 	14
111	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle. TQM Tools Chapter: 3.1: Seven tools of quality control (Q 7 tools): Check sheet – Types of check sheet – Histogram – Cause and effect diagram – Pareto diagram – Stratification Analysis – Scatter diagram-Graph/run charts – Control 	14
- 111	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle. TQM Tools Chapter: 3.1: Seven tools of quality control (Q 7 tools): Check sheet – Types of check sheet – Histogram – Cause and effect diagram – Pareto diagram – Stratification Analysis – Scatter diagram-Graph/run charts – Control charts – Construction of above diagrams.Quality circle – concept of 	14
111	 itsobjectives – Introduction to TQM - Characteristics – Basic concepts – Elements - Pillars – Principles – Obstacles to TQMimplementation - Potential benefits of TQM - Quality council – duties – Responsibilities - Quality statements – Vision – Mission – Quality policy statements – Strategic planning – Seven steps tostrategic planning – Deming philosophy – Customer – Input / Output process model – Juran Trilogy - PDCA (Deming Wheel) cycle. TQM Tools Chapter: 3.1: Seven tools of quality control (Q 7 tools): Check sheet – Types of check sheet – Histogram – Cause and effect diagram – Pareto diagram – Stratification Analysis – Scatter diagram-Graph/run charts – Control charts – Construction of above diagrams.Quality circle – concept of quality circle – Organisation of Qualitycircle and objectives of Quality 	14

Chapter: 3.2:	
Management Planning Tools (M 7 Tools)	
Affinity diagram – Radar Diagram – Inter Relationship diagram (Inter	
Relationship diagram) – Tree diagram – Prioritization matrix – Matrix	
diagram – Decision tree – Arrow diagram – Matrix data analysis diagram	
- Construction of above diagrams.	
IV Statistical Fundamentals And Control Charts	
Chapter: 4.1:	7
Types of Data – Collection of Data – Classification of Data – Tabular	
presentation of Data - Graphical representation of a frequency	
distribution – Comparison of Frequency distribution – Mean - Median –	
Mode – Comparison of measures of central tendency - Introduction to	
measures of dispersion – Sample – sampling – Normal curve – Sigma –	
Concept of six sigma – Principles – Process - Problems.	
Chapter: 4.2: Control Charts	8
Control chart – Types of control charts – Control chart for variables –	
Construction of X bar and R charts – control limits Vs specification limits –	
Process capability – Method of doing process capability Analysis –	
Measures of process capability – Problems.	
Attributes – Control charts - P chart – np chart – c chart – u chart –	
Construction of above diagrams - Problems - Comparison between	
variable chart and Attribute chart.	
V Capter 5.1: Lean Manufacturing Concepts	15
5S Concepts (SEIRI, SEITON, SEISO, SEIKETSU and SHITSUKE) -	
needs and objectives – effective implementation of 5S concepts in an	
organisation – Housekeeping – Kaizen – Kanban System.Bench marking	
- Objectives of bench marking – Types – Benchmarking process –	
Benefits of Bench marking – Pit falls of Benchmarking-Just In Time(JIT)	
concepts and its objectives – TotalProductive Maintenance(TPM) –	
Introduction, Objectives of TPM -steps in implementing TPM Overall	
Equipment Effectiveness(OEE)–Lean Six Sigma – Value Stream	
Mapping – DMAIC(Define, Measure, Analyse, Improve, Control) –	
DMADV (Define, Measure, Analyse, Design, Verify)	

Reference Books:

- 1. Industrial Engineering & Management O.P Khanna
- 2. Industrial Engineering & Production Management Martand Telsang
- 3. Total Quality Management, Date H.Besterfiled, Pearson Education Asia.
- 4. Total Quality Management, V.Jayakumar, Lakshmi Publications.(reprint 2005)
- 5. Training manual on ISO 9001 : 2000 & TQM, Girdhar J.Gyani, Raj PublishingHouse, Second Edition 2001
- 6. Quality Management, Howard Cuitlow, Tata Mc Graw Hill, 1998
- 7. Production Engineering P.C.Sharma.
- 8. Production and Costing GBS Narang and V.Kumar
- 9. Mechanical Estimating and Costing Banga & Sharma.
- 10. Total Quality Management, Oakiand.J.S. Butterworth Heinemann Ltd. Oxford1989.
- 11. Quality Management Concepts and Tasks- Narayana. V and
- 12. Sreenivasan.N.S., New Age International 1996.
- 13. Total Quality Management for engineers, Zeiri. Wood Head Publishers. 1991.
- 14. Quality Planning and Analysis, Juran J.M and Frank M.Gryna Jr., TMH. India. 1982
- 15. ISO 9001, Brain Rethry, Productivity and Quality Publications.
- 16. ISO 9001, Brain Rethry, Productivity and Quality Publishing Pvt. Ltd. 1993.
- 17. Quality Auditing D.Mills, Chapman and Hall, 1993.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020450
- Semester : IV
- Subject Title : Strength of Materials and Fluid Mechanics Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions	Examination		Examination		
4020450	Hours	Hours /		Marks			
Strength of Materials and Fluid	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration	
Mechanics Practical	4	64	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Acquire skills on different types of testing methods of metals.
- Conduct material testing on elasticity, hardness, shear strength
- Determine modulus of rigidity of open coil spring and closed coil springs.
- Determine the co-efficient of discharge of venturimeter and mouth piece
- Determine the co-efficient of friction in pipes.
- Conduct performance test on reciprocating pump.
- Conduct performance test on impulse turbine.

4020450 STRENGTH OF MATERIALS AND FLUID MECHANICS PRACTICAL DETAILED SYLLABUS

Experiments:

PART A : Strength of Materials Laboratory

1. Test on Ductile Materials:

Finding Young's Modulus of Elasticity, yield points, percentage elongation and percentage reduction in area, stress strain diagram plotting, tests on mild steel.

2. Hardness Test:

Determination of Rockwell's Hardness Number for various materials like mild steel, high carbon steel, brass, copper and aluminium.

3. Torsion test:

Torsion test on mild steel – relation between torque and angle of twistdetermination of shear modulus and shear stress.

4. Impact test:

Finding the resistance of materials to impact loads by Izod test and Charpy test.

5. Tests on springs of circular section:

Determination of modulus of rigidity, strain energy, shear stress and stiffness by load deflection method (Open or Closed coil spring)

6. Shear test:

Single or double shear test on M.S. bar to finding the resistance of material to shear load.

PART B: Fluid Mechanics Laboratory

- 1. Verify the Bernoulli's Theorem.
- 2. Determination of co-efficient of discharge of a mouth piece by variable head method.
- 3. Determination of co-efficient of discharge of a venturimeter.
- 4. Determination of the friction factor in a pipe.
- 5. Performance test on reciprocating pump and to draw the characteristics curves.
- 6. Performance test on impulse turbine and to find out the Efficiency.

BOARD EXAMINATION

Note:

- All the experiments in both sections have to be completed. Two experiments will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Part-A	:	45 marks
Procedure / Observation	10	
Tabulation / Calculations	25	
Result / Graph	10	
Part-B	:	45 marks
Procedure / Observation	10	
Tabulation / Calculations	25	
Result / Graph	10	
Viva-voce	:	10 marks
Total	:	100 Marks

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS: (For 30 students)

1.	UTM.	01
2.	Rockwell's Hardness Testing Machine.	01
3.	Torsion testing machine.	01
4.	Impact testing machine.	01
5.	Spring testing arrangements.	01
6.	Shear testing machine.	01
7.	Vernier calliper.	02
8.	The Bernoulli's Apparatus.	01
9.	An open tank fitted with an external mouth piece and a collecting tank v	/ith
	Piezometer.	01
10.	An arrangement to find friction factor of pipe.	01
11.	A reciprocating pump with an arrangement for collecting data to find out	the
	efficiency and plot the characteristics curves.	01
12.	A impulse turbine with an arrangement for calculating data to find out the	ne
	efficiency.	01
13.	An arrangement of Venturimeter fitted in horizontal water pipe line to fin	d
	coefficient of discharge.	01

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020460
- Semester : IV
- Subject Title : Manufacturing Technology II Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions		Examination		
4020460	Hours	Hours /		Marks		
Manufacturing	/ Week	Semester	Internal	Board	Total	Duration
Technology - II			Assessment	Examinations		
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify a milling machine and its parts
- Identify a cylindrical grinder, surface grinder and tool and cutter grinder
- Identify shaper, Slotter and its parts
- Identify the tools and instruments used in milling.
- Study the components of the CNC machine and setting.
- Handle the different types of work holding devices
- Machine a component using different machine tools.
- Calculate the indexing for a work
- Machine a gear using milling machine.
- Machine a cutting tool using Tool and Cutter grinder.
- Machine a plug gauge using Cylindrical grinding machine.
- Machine components by shaping machine
- Machine components by slotting machine.
- Machine components by the CNC machines.

4020460 MANUFACTURING TECHNOLOGY - II PRACTICAL DETAILED SYLLABUS

EXERCISES:

Raw Material: M.S. / C.I

1. Make 'V' Block using shaping machine

 Dimensions						
SI.No	Part Name	Actual	Obtained			
			0			
		1				

2. Make dovetail using shaping machine

Dimensions					
SI.No	Part Name	Actual	Obtained		
	1				

3. Make groove cut using slotting machine

Dime	nsions	
Part Name	Actual	Obtained
	19 - 98 	
-	3 - G	
	Dime Part Name	Dimensions Part Name Actual

4. Make round to hexagon in milling machine.

Dimensions						
SI.No	Part Name	Actual	Obtained			
		a				

5. Make Spur Gear using milling machine.

Dimensions					
SI.No	Part Name	Actual	Obtained		
		8			
		0			

6. Make Helical Gear using milling machine.

	Dimensions					
SI.No	Part Name	Actual	Obtained			
		2				
		9				
		5				

7. Make slot cut using milling machine.

8. Make Progressive type Plug gauge using Cylindrical Grinding machine

9

9. Make a turning tool using Tool and Cutter Grinder

Dimensions						
SI.No	Part Name	Actual	Obtained			
-						
	-	J				
	1					

10. Make plain surfaces (four surfaces)using surface Grinder

Dimensions					
Part Name	Actual	Obtained			
1.	ə - 6				
	Dime Part Name	Dimensions Part Name Actual			

11. Make the component in the CNC Turing Centre.

12. Make the component in the CNC Milling Centre.

BOARD EXAMINATION

Note:

- All the exercises should be completed. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

DETAILED ALLOCATION OF MARKS

Description	Marks
Procedure	10
Preparation of the Specimen	15
Setting and Machining	30
Dimensions	25
Finishing	10
Viva-voce	10
Total	100

LIST OF EQUIPMENTS (For 30 students)

1	Vertical milling machine / Vertical	-	2 Nos.
	attachment		
2.	Universal Milling Machine	-	2 Nos.
3.	Surface Grinding Machine	-	1 No.
4.	Cylindrical Grinding Machine	-	1 No.
5.	Tool and Cutter Grinder	-	1 No.
6.	Shaping Machine	-	2 Nos.
7.	Slotting Machine	-	1 No.
8.	CNC Turning centre	-	1 No.
9.	CNC Milling Centre	-	1 No.
10	Tools and Measuring instruments	-	Sufficient quantity.
11	Consumables	-	Sufficient quantity.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020470
- Semester : IV
- Subject Title : Electrical Drives and Control Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions	Examination			
4020460	Hours	Hours /		Marks		
Electrical	/ Week	Semester	Internal	Board	Total	Duration
Drives and	,	•••••••	Assessment	Examinations	Total	
Control Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify starters for different motors.
- Study and prepare earthing
- Test the characteristics of DC and AC machines.
- Identify and select controlling elements.
- Explore the performance of ELCB, MCB.
- Design regulated power supplies.
- Identify display devices-LED, 7 segment LED, LCD.
- Identify the drive circuit for special motors.Test the speed control circuit of the special motors.

4020460 ELECTRICAL DRIVES AND CONTROL PRACTICAL

EXPERIMENTS:

Part A:

- 1. Verification of Ohm's Law
- 2. Load test on DC shunt motor
- 3. Load teston single phase induction motor
- 4. Load test on three phase squirrel cage motor
- 5. Testing of relays, contactors, push buttons and limit switch
- 6. Connection and Testing of MCB, ELCB

Part B

- 1. Construction and testing of Halfwave and Fullwave rectifier.
- 2. Construction and testing of IC voltage regulator using IC 7805.
- 3. Verification of truth tables for logic gates.
- 4. Verification of universal gates.
- 5. Identification and testing of display devices LED, 7segment LED, Laser diode.
- 6. Testing of Stepper motor drive.
- 7. Testing of Servomotor drive.

BOARD EXAMINATION

Note:

- All the experiments in both sections have to be completed. Two experiments will be given for examination by selecting one from PART A and one from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All the students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

DETAILLED ALLOCATION OF MARKS

Part A:		45
Circuit diagram	10	
Connections & Readings	20	
Calculations & Graph	15	
Part B:		45
Circuit diagram	10	
Connections & Readings	20	
Execution	15	
Viva Voce		10
Total		100

LISTOF EQUIPMENTS (For 30 students)

Electrical Lab

1. DC ammeter 0-5A	-	1 no
2. DC ammeter 0-25A	-	1 no
3. DC voltmeter 0-30V	-	1 no
4. DC voltmeter 0-300V	-	1 no
5. Rheostat 10.8 ,8.5A	-	1 no
6. AC ammeter 0-5A	-	1 no
7. AC ammeter 0-10A	-	2 nos.
8. AC voltmeter 0-50V	-	3 nos
9. ACwattmeter 5A-10A	-	3 nos
(0-750W,0-600V)		
10. Loading rheostat 5A,230V	-	1 no
11. Tachometer 0-1000rpm	-	1 no
(Analog type)		
12. Variac 20A,250V	-	2 nos
(Auto transformer)		
13. Over load relay1 to 2.5A	-	1 no
14. Air breakcontactors 20A,220V	-	4 nos

15.Push button 2A ,220V	-	2 nos
16.Limit switch 20A,220V	-	1 no
17.MCB 20A single pole	-	1 no
18.MCB 20A double pole	-	1 no
19. ELCB 2pole 20A,100mA	-	1 no
20. ELCB 4POLE 20A,100mA	-	1 no

Electronics Lab

1.	Transformer 230 / 9-0-9V, 1A	-	4 nos.
2.	Resistor 1 Ko/ 1/2W	-	3 nos.
3.	Capacitor 1000 ^µ F/25V	-	4 nos.
4.	IC 7805	-	1 no.
5.	Logic Gates IC		
	7400, 7408, 7432, 7404,7402,	7486-	1 each
6.	Stepper Motor Drive kit	-	1no.
7.	Servo Motor Drive Kit	-	1no
8.	Digital Multimeter	-	1no.
9	LED, 7 Segment LED, Laser Diode	- 1	each

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020510
- Semester : V
- Subject Title : Design of Machine Elements

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions	Examination			
4020510	Hours	Hours /		Marks		
Design of Machine	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Elements	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Unit No Topics		
I	I Engineering Materials and Joints		
II	Design Of Shafts, keys and Couplings	18	
III	Design of Flat Belts and V-Belts	18	
IV	Design of Bearings & Spur Gears	18	
V	Computer Aided Design (CAD) and Geometrical Modelling	17	
	Test and Model Exam		
	Total	96	

RATIONALE:

The main objective of Machine Design is to create new and better machine components to improve the existing one. A mechanical engineer should have thorough knowledge of design of machine elements to avoid the failure of machines or components.

OBJECTIVES:

- Design sleeve and cotter joint, knuckle joint and Welded joints
- Design shafts, keys and couplings required for power transmission.
- Compare the different types of couplings.
- Design flat and V-belt for power transmission.
- Study the various types of bearings and their applications.
- Design journal bearings.
- Design Spur gear.
- Role of CAD in design and analysis.

4020510 DESIGN OF MACHINE ELEMENTS DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Engineering Materials and Joints	
	Chapter: 1.1:	
	General Considerations in Machine Design. Engineering	10
	materials - Factors affecting selection of material - BIS	
	designation of Ferrous materials – Preferred number - Factor of	
	safety and allowable stress - Stresses: Tension, Compression,	
	Shear, Bearing pressure Intensity, Crushing, bending and torsion	
	- problem. Creep strain and Creep Curve- Fatigue, S-N curve,	
	Endurance Limit - Stress Concentration – Causes & Remedies.	
	Theories of Elastic Failures - Principal normal stress theory,	
	Maximum shear stress theory & maximum distortion energy	
	theory.	
	Chapter: 1.2:	8

	Joints: Design of sleeve and cotter joint, knuckle joint and	
	welded joint.	
II	Design Of Shafts, Keys and Couplings	
	Chapter: 2.1:	9
	Shafts: Design of shafts subjected to - twisting moment -	
	bending moment – combined twisting and bending moments –	
	fluctuating loads – design of shafts based on rigidity.	
	Chapter: 2.2:	9
	Keys: Types of keys - design of sunk keys only - Effect of	
	keyways on shaft - problems.	
	Couplings: Requirements of good couplings – types - design of -	
	rigid protected type flange couplings - marine couplings - pin type	
	flexible coupling (Description only).	
	Design of Flat Belts and V-Belts:	
	Chapter: 3.1:	9
	Flat Belts: Types of belts - materials for belt types of belt	
	drives - Speed ratio - effect of slip - length of flat belts -Tension	
	Ratio T1/T2= $e^{\mu\theta}$ – centrifugal tension - power transmitted –	
	condition for maximum power - transmission - Initial Tension -	
	problems - design procedure of flat belts - design of flat belt	
	based on manufacturer's data only – problems.	
	Chapter: 3.2:	9
	V-belt drive - comparison with flat belt drive - designation of V-	
	belts – length of belt - power transmitted – Design of V-belt using	
	manufacturer's data only – Problem.	
IV	Design of Bearings & Spur Gears	
	Chapter: 4.1:	10
	Bearings: Classifications of bearings – sliding contact and rolling	
	contact bearings - radial and thrust bearings - roller bearing -	
	types - Designation of ball bearings - materials used for bearings	
	- journal bearings - heat generated - heat dissipated - cooling oil	
	requirement – problems - design of journal bearings – Problems.	
	(Design based on approved data books only.).	

	Chapter: 4.2:	8
	Spur Gears: Gear drives - Types of gears - applications -	
	materials - spur gear terminology - design of spur gear based on	
	Lewis and Buckingham equation (design procedure only) - speed	
	reducer – types.	
V	Computer Aided Design (CAD) and Geometric Modelling	
	Chapter: 5.1:	9
	CAD - Roles of CAD in design - Development and uses -	
	Applications – Advantages – Product cycle – Design process:	
	Shigley Model - Pahl and Beitz Model – Sequential Engineering –	
	Concurrent Engineering – 2D and 3D Transformation.	
	Chapter: 5.2:	
	Geometric Modelling: Solid modelling – entities – advantages and	8
	disadvantages – Boolean operations - Boundary representation –	
	Constructive Solid Geometry – Comparison – Finite Element	
	analysis – Steps.	

Reference Book:

- Machine Design, Pandya & Shah, Edn. 1995, Charotar Publishing House.
- Machine Design, T. V. Sundararajamoorthy & N. Shanmugam, Revised Edition June-2003–Anuradha Publications.
- Design Data Book by PSG College of Technology, DPV Printers.
- A text book of Machine Design, R.S. Khurmi & J.K.Gupta, Edn. 18, Eurosia Publishing House Pvt. Limited.
- Machine Design, Bandari,
- Theory and Problems of Machine Design, Holowenko, Laughlin, Schaum's outline series.
- R.Radhakrishnan, and S.Subramanian, "CAD/CAM/CIM", New Age International Pvt Limited.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020520
- Semester : V
- Subject Title : Thermal Engineering II

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination		
	Hours	Hours /		Marks		
4020520	/ Week	Semester	Internal	Board	Total	Duration
Thermal	,	•••••••	Assessment	Examinations	Total	
Engineering - II	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Formation and Properties of Steam & Thermodynamic Processes of Vapour	15
II	Steam Boilers and Performance Of Boiler	15
III	Thermal Power Plant and Steam Turbines and Condensers	15
IV	Conventional Sources of Energy and Nuclear Power Plant	13
V	Air Compressors and Gas Turbines	15
Test and Model Exam		7
Total		

RATIONALE:

This subject is one of the core subjects. Diploma engineers have to work with various power producing and power absorbing devices. This subject will enable students to establish foundation required to operate and maintain the devices. This subject emphasizes on steam boilers and allied components that are used in industrial sectors. Thermal power plants are still contributing major share in electricity production in India.

OBJECTIVES:

- Define various types of steam.
- Explain the working of Boiler.
- Compare various types of Boilers.
- Familiarize boiler mounting and accessories.
- Describe various circuits used in the thermal power plant.
- Explain working of steam turbine and condensers.
- Compare conventional energy sources with Non-Conventional Sources of energy.
- Explain working of nuclear power plant.

4020520 THERMAL ENGINEERING - II

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
	Formation and Properties of Steam & Thermodynamic	
	Processes of Vapour	l
	Steam - Properties – formation of steam– saturation temperature	10
	- enthalpy of water - enthalpy of evaporation - conditions of	l
	steam - wet, dry and superheated steam - dryness fraction -	l
	enthalpy of wet, dry and superheated steam - advantages of	
	superheated steam - Property diagrams - p-v diagram - T-H	1

	diagram – T-V diagram – T-S diagram - phase diagram-H-S	
	diagram – P-H diagram – critical conditions of water – specific	
	volume of water and steam - density of steam - external work	
	done during evaporation - internal latent heat - internal energy of	
	steam - entropy of water and steam - steam tables - Mollier chart	
	 Description only. 	
	Determination of dryness fraction of steam – bucket calorimeter -	5
	combined separating and throttling calorimeters - problems.	
	Expansion processes of steam - constant volume, constant	
	pressure, constant temperature, hyperbolic, polytrophic, isentropic	
	and throttling processes – problems.	
II	Steam Boilers And Performance Of Boilers	
	Introduction -Classification of boilers - comparison of fire tube and	
	water tube boilers- high pressure boilers - advantages of high	10
	pressure boilers - BHEL high pressure boilers – boiler mountings	
	and function- construction and working - boiler accessories and	
	function - construction and working - comparison of mountings	
	and accessories - feed water treatment - internal and external	
	treatments - starting boiler from cold condition - safety	
	precautions in boiler operation – clauses of Indian boiler act.	
	Evaporation rate - actual, equivalent and factor of evaporation -	
	boiler efficiency - factors influencing boiler efficiency - boiler	5
	power - problems - boiler plant - efficiency of economizer and	
	super heater - problems - boiler trial - heat losses in a boiler-	
	heat balance sheet – problems.	
	Thermal Power Plant And Steam Turbines and condensers	
----	---	----
	Selection of site for thermal power plant -Layout of thermal power	5
	plant – fuel and ash circuit – water and steam circuit – air and flue	
	gas circuit – cooling water circuit – merits and demerits of thermal	
	power plant — air pollution by thermal power plants – pollutants,	
	effects and control – cyclone separator – wet scrubber –	
	electrostatic precipitator - control of No2 and SO2.fiudised bed	
	combustion- thermal and noise pollution.	
	Basic steam power cycles - Carnot, Rankine and modified	5
	Rankine cycles. Classification of steam turbine-Impulse and	
	reaction turbines- Difference - necessity of compounding -	
	Methods of compounding – special turbines.	
	Steam condensers – elements of condensing plant – classification	5
	of condensers – jet condenser – surface condensers –	
	Comparison of jet and surface condensers - sources of air in	
	condenser – condenser vacuum – vacuum efficiency – condenser	
	efficiency - mass of cooling water required – mass of air present –	
	number of tubes – simple problems.	
IV	Conventional Sources Of Energy And Nuclear Power Plant	
	Conventional sources of energy - layout of hydel and diesel	3
	power plants – merits and demerits.	
	Nuclear fuelsfissile and fertile fuels Nuclear fission and fusion	12
	 chain reaction – radio activity – layout of nuclear power plant – 	
	merits and demerits - Nuclear reactors -Components-Reactor	
	Core -moderators – control rods – coolant – reflectors – biological	
	shield-Reactor Vessels-Classification of Reactor- pressurized	
	water reactor - boiling water reactor - Candu type reactor - fast	
	breeder reactor — effect of nuclear radiation - Fuel Cycle -Site	
	selection – Safety-Floating Nuclear Power Plants-Uranium	
	Enrichment – Methods-disposal of nuclear wastes- comparison of	
	nuclear power plants with thermal power plants- Nuclear Power	
	Plant in India.	

V	Air Compressors And Gas Turbines	
	Air Compressors-uses of compressed air - classifications of Air	6
	compressor - reciprocating compressor - single stage	
	reciprocating compressor - compression processes - power	
	required to drive the compressor (Neglecting clearance Volume)	
	- clearance volume and its effects - volumetric efficiency -power	
	required to drive the compressor with clearance volume -	
	problems - multi stage compression - merits and demerits - work	
	input – ratio of cylinder diameters for minimum work input.	
	Rotary compressors - Roots blower - vane blowers - centrifugal	
	and axial flow air compressors.	
	Gas turbines – uses - classifications – merits and demerits of gas	5
	turbines -constant pressure combustion gas turbine - gas turbine	
	with - intercooler -reheater - regenerator -effects - closed cycle	
	gas turbines - merits and demerits of open and closed cycle gas	
	turbines	
	Jet propulsion -turbojet engines- merits and demerits - turbo	4
	propeller engines - merits and demerits - ramjet - merits and	
	demerits - Rocket engines - solid propellant rocket -applications	
	of rockets.	

Reference Books:

- 1. Thermal Engg, R.K . Rajput , ,8th Edition, Laxmi publications Pvt Ltd , New Delhi.
- Applied Thermodynamics, P.K. Nag, ,2nd Edition, TATA Mcgraw Hill Publishing Company, New Delhi.
- 3. Thermal Engineering, R.S. Khurmi and J.K. Gupta, 18th Edition,S.Chand & Co,NewDelhi
- 4. Thermal Engineering ,P.L Ballaney , 24th Edition ,Khanna Publishers,New Delhi.
- 5. Thermal Engineering ,B.K. Sarkar , 3rd Edition , Dhanpat Rai & Sons New Delhi .
- Applied Thermodynamics, Domkundwar and C.PKothandaraman, 2ndEdition Khanna publishers, New Delhi.

Blank page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020531
- Semester : V
- Subject Title : Computer Integrated Manufacturing

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination		
4020524	Hours	Hours /		Marks		
4020531	nours	1100137	Internal	Board		Duration
Computer Integrated	/ Week	Semester	Assessment	Examinations	Total	
Manufacturing	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Computer Aided Design	15
II	Computer Aided Manufacturing	14
III	CNC programming	16
IV	FMS, AGV, AS/RS, Robotics	14
V	Advanced concepts of CIM	14
	Test and Model Exam	7
	Total	80

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various concepts of Computer Aided Design and Manufacturing. They are able to operate CNC machines and write part program. They are able to understand the advanced concepts adopted in automated industries.

OBJECTIVES:

- Acquire knowledge in the field of Computer aided Design
- Explain the various concepts of Computer Aided manufacturing
- Write part program for manufacturing components in CNC machines
- Explain the concepts of automatic material handling and storage systems and robotics
- Explain the advanced concepts of CIM

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
Ι	Computer Aided Design	
	Computer Aided Design: Introduction – definition – Shigley's design	6
	process - CAD activities - benefits of CAD - CAD software packages -	
	point plotting, drawing of lines, Bresenham's circle algorithm,	
	Transformations: 2D & 3D transformations – translation, scaling, rotation	
	and concatenation.	
	Geometric modelling: Techniques - Wire frame modelling – applications –	6
	advantages and disadvantages. Surface modelling - types of surfaces -	
	applications – advantages and disadvantages – Solid modelling – entities –	
	advantages and disadvantages – Boolean operations - Boundary	
	representation – Constructive Solid Geometry – Comparison.	
	Graphics standard: Definition – Need - GKS – IGES – DXF. Finite Element	3
	Analysis: Introduction – Development - Basic steps – Advantages.	
Ш	Computer Aided Manufacturing	
	CAM – Definition - functions of CAM – benefits of CAM. Introduction of CIM	3
	- concept of CIM - evolution of CIM - CIM wheel - Benefits - integrated	
	CAD/CAM.	

		Group technology: Part families - Parts classification and coding - coding	6
		structure – Opitz system, MICLASS system and CODE System. Process	
		Planning: Introduction – Computer Assisted Process Planning (CAPP) –	
		Types of CAPP - Variant type, Generative type – advantages of CAPP.	
		Production Planning and Control (PPC): Definition – objectives - Computer	5
		Integrated Production management system – Master Production Schedule	
		(MPS) – Capacity Planning – Materials Requirement Planning (MRP) –	
		Manufacturing Resources Planning (MRP-II) – Shop Floor Control system	
		(SFC) - Just In Time manufacturing philosophy (JIT) - Introduction to	
		Enterprise Resources Planning (ERP).	
	III	CNC Programming	16
		NC in CAM, tooling for CNC – ISO designation for tooling – CNC operating	
		system. Programming for CNC machining – part program - Manual part	
		programming - coordinate system – Datum points: machine zero, work	
		zero, tool zero - reference points - NC dimensioning - G codes and M	
		codes - linear interpolation and circular interpolation - CNC program	
		procedure - sub-program – canned cycles - stock removal – thread cutting	
		- mirroring - drilling cycle - pocketing. Rapid prototyping: Classification -	
		subtractive – additive – advantages and applications – materials – Virtual	
		machining.	
	IV	FMS, AGV, AS/RS, Robotics	
		FMS: Introduction – FMS components – FMS layouts – Types of FMS:	5
		Flexible Manufacturing Cell (FMC) – Flexible Turning Cell (FTC) – Flexible	
		Transfer Line (FTL) – Flexible Machining System (FMS) – benefits of FMS	
		- introduction to intelligent manufacturing system.	
		Material handling in CIM environment: Types – AGV: Introduction – AGV -	3
		working principle – types – benefits. AS/RS – working principle –types –	
		benefits.	
		Robotics: Definition – robot configurations – basic robot motion – robot	6
		programming method - robotic sensors - end effectors - mechanical	
		grippers - vacuum grippers - robot programming concepts - Industrial	
		applications of Robot: Characteristics - material transfer and loading -	
		welding - spray coating - assembly and inspection.	
1			

V	Advanced Concepts Of CIM	14
	Concurrent Engineering: Definition – Sequential Vs Concurrent engineering	
	- need of CE - benefits of CE. Quality Function Deployment (QFD):	
	Definition – House of Quality (HOQ) – advantages – disadvantages. Steps	
	in Failure Modes and Effects Analysis (FMEA) – Value Engineering (VE) –	
	types of values – identification of poor value areas – techniques – benefits.	
	Guide lines of Design for Manufacture and Assembly (DFMA). Product	
	Development Cycle: Product Life Cycle - New product development	
	processes. Augmented Reality (AR) - Introduction - concept -	
	Applications.	

REFERENCES BOOKS:

- 1. R.Radhakrishnan, and S.Subramanian, "CAD/CAM/CIM", New Age International Pvt. Ltd.
- Mikell P.Groover, and Emory Zimmers, "CAD/CAM", Jr.Prentice Hall of India Pvt., Ltd.
- Dr.P.N.Rao, "CAD/CAM Principles and Applications,", Tata Mc Graw Hill Publishing Company Ltd.
- 4. Ibrahim Zeid, "Mastering CAD/CAM", Tata McGraw-Hill Publishing Company Ltd., New Delhi.
- 5. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing", Pearson Education Asia.
- Yoram Koren, "Computer control of manufacturing systems,", McGraw Hill Book.
- Chris Mcmahon and Jimmie Browne, "CAD/CAM Principle Practice and Manufacturing Management", Addision Wesley England, Second Edition,2000.
- Dr.Sadhu Singh, "Computer Aided Design and Manufacturing,", Khanna Publishers, NewDelhi, Second Edition,2000.
- 9. S.Kant Vajpayee, "Principles of Computer Integrated Manufacturing,", Prentice Hall of India, 1999.
- 10. David Bed worth, "Computer Integrated Design and Manufacturing,", TMH, 1998.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020532
- Semester : V

Subject Title : Green Energy and Energy Conservation

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	bject Instructions			Examination		
4020522	Hours	Hours /		Marks		
4020552	Tiours	nours/	Internal	Board		Duration
Green Energy and Energy	/ Week	Semester	Assessment	Examinations	Total	
Conservation	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Fundamentals of Energy, Geothermal energy, Wind energy	15
II	Bio mass energy, Solar Energy	15
	Photovotaic (PV)	15
IV	PV Technologies, Applications	14
V	Energy conservation	14
Test and Model Exam		7
Total		

RATIONALE:

There is an ever increasing demand for energy in spite of the rising prices of oil & other fossil fuel / depletion of fossil fuels. Energy demand, in particular electricity production has resulted in creation of fossil fuel based power plants that let out substantial greenhouse gas / carbon emission into the atmosphere causing climate change and global warming. We have various forms of renewable energy sources viz., Wind, Solar, Biomass, Biogas, etc. Municipal and Industrial wastes could also be useful sources of energy while ensuring safe disposal. This subject is introduced to learn about the major renewable energy sources and more focus on the PV module solar energy. The government act and guidelines are discussed for the benefit of the Diploma Engineers.

OBJECTIVES:

- 1. Study about the fundamentals of Energy.
- 2. Study of construction and principle of Wind energy, Solar energy, Geo thermal and Bio energy.
- 3. Understand the solar energy.
- 4. Understand the PV design and its components.
- 5. Study the energy conservation process.
- 6. Understand the Government Policies and Acts.
- 7. Study the TEDA projects in Tamil Nadu.

4020532 GREEN ENERGY AND ENERGY CONSERVATION

DETAILED SYLLABUS

Contents: Theory

UNIT	Name of the Topics	Hrs.
I	Fundamentals of Energy, Geothermal energy, Wind energy	
	Energy: Introduction – Energy need and trends - Forms of Energy	5
	- First Law of Thermodynamics - Second Law of Thermodynamics	
	- energy requirement and supply - Fossil fuels and climate	
	changes – need of renewable energy sources – Current renewable	
	energy uses – Renewable energy policies in India.	
	Geothermal energy: Introduction - Essential characteristic -	4

	Sources – Power Plants – Single flash power plant – double flash	
	power plant – Flow diagram and principle only.	
	Wind energy: Introduction - energy conversion - site selection	6
	considerations – Components of wind energy conversion system –	
	Classification. Wind mill: Horizontal axis machines - Vertical axis	
	machines - working principle, advantages and disadvantages.	
	Schemes for electric generation.	
II	Bio mass energy, Solar Energy	
	Bio mass energy: Introduction - conversion technologies: Wet	7
	processes - dry processes. Bio gas generation - factors affecting	
	the bio gas generation - classification of bio gas plants - Bio gas	
	plant - construction - advantages and disadvantages. Materials	
	used for bio gas generation - factors to be considered for the	
	selection of site.	
	Solar Energy: Introduction – Sun's energy: advantages –	8
	conversion challenges- The Sun-Earth movement - Solar radiation	
	- Different angles - optimal angle for fixed collector, in summer and	
	winter. Sun tracking - measuring instruments of solar radiation -	
	methods to estimate solar radiation.	
III	Photovotaic (PV)	
	Photovotaic (PV): Semiconductors as solar cell – types of unit cells	6
	- electronic arrangement of silicon atom - intrinsic semiconductor	
	- extrinsic semiconductor - Description only. P-N junction diode -	
	forward bias - reverse bias. Solar cell - characteristics - description	
	of short circuit current, open circuit voltage, fill factor and efficiency	
	- losses in solar cells.	
	Growth of solar PV and silicon (Si) requirement - production of	9
	metallurgical grade (MGS) – production of electronic grade (EGS)	
	- Production of Si wafers: ingot making - monocrystalline -	
	multicrystalline – wafer dicing. Si sheets. Solar grade silicon (SoG)	
	- refining processes - Si usage in Solar PV. Process flow of	
	commercial Si cell technology - Description of saw damage	
1		

	anti reflection coating and surface passivation, metal contacts and	
	their deposition.	
IV	PV Technologies, Applications	
	PV Technologies: Thin film Technologies - materials for thin film	6
	technologies – Thin film deposition techniques: Physical vapour	
	deposition – Evaporation – Sputtering. Chemical vapour deposition	
	- Low pressure - plasma enhanced. Advantages of thin film Si	
	solar cell technologies. Solar cell structures – substrate	
	arrangement – superstrate arrangement. Solar PV module: series	
	and parallel connections of cells - mismatch in cell / module-	
	Design and structure of PV module.	
	Batteries for PV systems – factors affecting battery performance –	3
	DC to DC converters – Charge controllers – DC to AC converter	
	(inverter) (Description only).	
	Applications: Flat plate collector - concentrating solar collectors -	5
	solar pond – solar water heating – space heating and cooling –	
	solar pumping – solar cooking – solar green house. principle and	
	applications only.	
V	Energy conservation	14
	Energy conservation act 2001 - Power of state government to	
	facilitate and enforce efficient use of energy and its conservation -	
	Finance, Accounts and Audit of bureau - Penalties and	
	Adjudication - Appellate tribunal for energy conservation – Energy	
	Conservation Guidelines for Industries by BEE, Govt of India -	
	Guide lines – heating, cooling and heat transfer – waste recovery	
	and usage - conversion of heat to electricity - Prevention of	
	energy loss due to heat radiation and electric resistance – Industry	
	energy management system. Net-metering policies – Tamil Nadu	
	Energy Development Agencies – Projects in Tami Nadu: Solar	
	energy, Bio energy and Wind energy - Tamil Nadu Solar policy	
	2019.	

Reference Books

- 1. Non Conventional Energy Sources, G.D.Rai, Khanna Publishers.
- Non Conventional Energy Sources and Utilisation, R.K.Rajput, S.Chand & Company Ltd.
- 3. Renewable Energy, Stephen Peake, Oxford press
- 4. Non Conventional Energy Resources, B.H.Khan, Tata Mc Graw Hill.
- 5. Industrial energyconservation- D. A. Ray- Pergaman Press
- 6. Energy resource management, Kirpal Singh Jogi, Sarup and sons.
- 7. Solar Photovltaics, Chetan Singh Solanki, PHI Learning Pvt. Ltd.
- 8. Renewable Energy Engineering and Technology, V V N Kishore, TERI.
- 9. Principles of Solar Engineering, D.Yogi Goswami, Frank Kreith, Jan F.Kreider, Taylor & Francis.
- 10. Energy conservation act 2001, Government of India.
- 11. Energy Conservation Guidelines for Industries, Bureau of energy Efficiency, Ministry of Power, Government of India.
- 12. Tamil Nadu Solar policy 2019
- 13) https://teda.in/achievements/solar-energy-4/
- 14) https://teda.in/achievements/bio-energy-2/
- 15) https://teda.in/achievements/wind-energy-2/

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020533
- Semester : V
- Subject Title : Mechatronics

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions				
	Hours	Hours /		Marks		
4020533 Mechatronics	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Introduction, Sensors & Transducers	15
II	Actuation systems	14
	Basic system models, Input / Output systems	14
IV	Programmable Logic Controller	14
V	Design examples & advanced applications In Mechatronics	16
	Test and Model Exam	7
	Total	80

RATIONALE:

As per the latest requirements in the automation industries this enables to learn the various concepts of automation components. They are able to write program, and operate PLCs. They are able to select the electronic components for various industry applications.

OBJECTIVES:

- Explain the working of sensors and transducers
- Acquire knowledge about actuation systems
- Explain the system models and I/O systems
- Write program and operate PLCs
- Explain the applications of mechatronics

4020533 MECHATRONICS

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Introduction, Sensors & Transducers	15
	Introduction – Systems – Measurement Systems – Control Systems –	
	Microprocessor Based Controllers. Examples – Mechatronics	
	approach. Measurement System terminology – Displacement, Position	
	& Proximity Sensors – Velocity and Motion Sensors – Force Sensors –	
	Fluid Pressure Sensors - Flow Sensors - Liquid Level Sensors -	
	Temperature Sensors – Light Sensors – Selection of Sensors –	
	Calibration of sensors.	
II	Actuation Systems	
	Mechanical Actuation Systems - Types of motion - Freedom and	7
	constraints – Loading – Gear Trains – Pawl & Ratchet – Belt & Chain	
	drive - Bearing - Selection - Ball & Roller bearings - Mechanical	
	aspects of motor selection.	
	Electrical Actuation Systems - Switches & Relays - Solenoids - D.C	7
	Motors – A.C. Motors – Stepper Motors – Specification and control of	

	stepper motors – Servomotors: D.C Servomotor and A.C Servomotor.	
	Pneumatic & Hydraulic Systems – Power supplies – DCV – PCV –	
	Cylinders – Rotary actuators.	
III	Basic System Models, Input/Output Systems	14
	Mathematical Model – Introduction to mathematical model –	
	Mechanical System building blocks – Electrical System building blocks	
	- Fluid System building blocks - Thermal System building blocks.	
	System Model – Engineering Systems – Rotational – Translational	
	Systems – Electro-Mechanical System – Hydro- Mechanical System.	
	Interfacing – Input/Output ports – Interface requirements: Buffers,	
	Handshaking, Polling and interrupts, Serial interfacing – Introduction to	
	PIA – Serial communications interface – Example of interfacing of a	
	seven-segment display with a decoder.	
IV	Programmable Logic Controller	14
	Definition – Basic block diagram and structure of PLC – Input/Output	
	processing – PLC Programming: Ladder diagram, logic functions,	
	latching and sequencing – PLC mnemonics – Timers, internal relays	
	and counters – Shift registers – Master and jump controls – Data	
	handling – Analog input/output – Selection of PLC – sample ladder	
	programs.	
V	Design Examples & Advanced Applications In Mechatronics	16
	Design process stages – Traditional Vs Mechatronics designs –	
	Possible design solutions: Timed switch, Wind- screen wiper motion,	
	Bath room scale – Case studies of mechatronics systems: A pick-and-	
	place robot, Car park barrier, Car engine management system,	
	Automatic Camera and Automatic Washing Machine. Sensors for	
	condition monitoring systems of production systems - Examples of	
	monitoring methods: Vibration monitoring, Temperature monitoring,	
	Wear behavior monitoring – Mechatronics control in automated	
	manufacturing: Monitoring of manufacturing processes, On-line quality	
	monitoring, Model-based systems, Hardware-in-the-loop simulation,	
	Supervisory control in manufacturing inspection, Integration of	
	heterogeneous systems.	

REFERENCES BOOKS:

- 1. W.Bolton, "Mechatronics", 2nd Edition 2001, Pearson Education, New Delhi.
- R.K.Rajput, A Text Book of Mechatronics, 1st Edition 2007, S.Chand & Co. Ltd., New Delhi.
- 3. HMT, "Mechatronics", 1st Edition 1998, Tata McGraw Hill, New Delhi.
- Devdas Shetty & Kolk, "Mechatronics System Design", 1st Reprint, 2001, PWS Publishing Co., Boston.
- James H.Harter, "Electromechanics", 1st Edition 2003, Prentice-Hall of India, New Delhi.
- M.D.Singh & J.G.Joshi, "Mechatronics", 1st Edition 2006, Prentice-Hall of India, New Delhi.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020540
- Semester : V
- Subject Title : Process Automation Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions				
4020540	Hours Hours /			Marks		
Process Automation	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Design and operate pneumatic circuits.
- Design and operate fluid power circuits
- Use PLC system and its elements for process control
- Familiarize the working of function blocks in PLC
- Use ON-Delay timer to control a motor
- Use OFF-Delay timer to control a motor
- Use counter function block (Up counter and Down counter)
- Control the automatic operation of pneumatic cylinder using PLC
- Record of work to be prepared.

Exercises

PART A

Pneumatics Lab.

- 1. Direct operation of single and double acting cylinder.
- 2. Operation of double acting cylinder with quick exhaust valve.
- 3. Speed control of double acting cylinder using metering-in and metering-out circuits.
- 4. Automatic operation of double acting cylinder in single cycle using limit switch.

Hydraulics Lab.

- 5. Direct operation of double acting cylinder.
- 6. Direct operation of hydraulic motor.
- 7. Speed control of double acting cylinder metering-in and metering-out control.

PART B

PLC Lab.

- 1. Direct operation of a motor using latching circuit.
- 2. Operation of a motor using 'AND' logic control.
- 3. Operation of a motor using 'OR' 'control.
- 4. On-Delay control of a motor and Off Delay control of a motor.
- 5. Automatic operation of a Double acting cylinder-single cycle forward, time delay, return.
- 6. Automatic operation of Double acting cylinder-Multi cycle.
- 7. Sequential operation of double acting cylinder and a motor.

BOARD EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Part A:		45
Procedure / Circuit diagram	10	
Identification of Components	15	
Connection and execution	20	
Part B:		45
Procedure / Circuit diagram	10	
Ladder diagram / Programming	g 25	
Execution	10	
Viva Voce		10
Total		100
LIST OF EQUIPMENTS (For 30 Students)		
1. Pneumatic Trainer Kit –	- 3 Nos	
(All Cylinders, Control Valves, Limit s	witches and ot	her accessories)

Detailled Allocation of Marks

(All Cylinders, Control Valves, Limit switches and other accessories)

– 2 No.

3. PLC kit – 3 Nos.

2. Hydraulics Trainer Kit

4. Computer with software – 10 Nos.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020550
- Semester : V
- Subject Title : Thermal Engineering Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions				
4020550	Hours	Hours /		Marks		
Thermal Engineering	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Determine the flash and fire point and viscosity of oil.
- Draw the valve timing diagram of petrol and diesel engines.
- Draw the port timing diagram of petrol and diesel engines.
- Conduct performance test on petrol and diesel engines.
- Prepare heat balance sheet for an IC engine.
- Conduct of C.O.P of Refrigerators.
- Determine the volumetric efficiency of the Air Compressor.

Experiments:

<u> PART - A</u>

- 1. Determine flash and fire point of the given oil using open cup and closed cup apparatus.
- 2. Determine the absolute viscosity of the given lubricating oil using Redwood viscometer.
- 3. Determine the absolute viscosity of the given lubricating oil using Say bolt viscometer.
- 4. Port timing diagram of two stroke petrol Engine
- 5. Valve time diagram for four stroke petrol Engine.
- 6. Valve time diagram for four stroke diesel engines.

<u> PART - B</u>

- 1. Load test (Performance test) on Four Stroke Petrol Engine.
- 2. Load test (Performance test) on Four Stroke diesel Engine.
- 3. Morse test on Multi-cylinder petrol engine.
- 4. Heat balance test on Four Stroke Diesel / Petrol Engine.
- 5. Volumetric efficiency of Air Compressor.
- 6. Determination of COP of Refrigeration System.

BOARD EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Detailled Allocation of Marks

Part A:		35
Observation and Tabular Column	5	
Calculations	20	
Result / Graph	10	
Part B:		55
Observation and Tabular Column	10	
Formulae, Calculations	30	
Result / Graph	15	
Viva Voce		10
Total		100

LIST OF EQUIPMENTS (For 30 students)

1.	Open cup apparatus	- 2 Nos.
2.	Close cup apparatus	- 2 Nos.
3.	Redwood viscometer	- 2 Nos.
4.	Say bolt viscometer	- 2 Nos.
5.	Four stroke petrol engine Model	- 2 Nos.
6.	Four stroke diesel engine Model	- 2 Nos.
7.	Two stroke petrol engine Model	- 2 Nos.
8.	Four stroke Petrol Engine Test rig	- 1 No.
9.	Four stroke Diesel engine Test rig	- 1 No.
10.	Multi -cylinder petrol engine test rig.	- 1 No.
11.	Air compressor test rig	– 1 No.
12.	Refrigeration Test rig	– 1 No.
13.	Measuring instruments	- Required quantity
14.	Consumables	- Required quantity

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020561
- Semester : V

Subject Title : Computer Integrated Manufacturing Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions				
4020561		Heure /		Marks		
Computer Integrated	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various concepts of Computer Integrated Manufacturing. They are able to write part program and able operate CNC lathe and Milling machines. They are able to understand the advanced concepts adopted in CIM.

OBJECTIVES:

- Acquire knowledge in the field of Computer Integrated Manufacturing
- Create 3D Solid models of machine components using modelling software
- Execute and perform machining operations in CNC Lathe and CNC Milling machines.

DETAILED SYLLABUS

Contents: Practical

PART A: SOLID MODELLING

Introduction to Part modelling - Datum Plane – constraint – sketch – dimensioning – extrude – revolve – sweep – blend – protrusion – extrusion – rib – shell – hole – round – chamfer – copy – mirror – assembly – align – orient – drawing and detailing –creating assembly views

Exercise No. 1. Geneva Wheel

Exercise No. 2. Bearing Block

Exercise No. 3. Bushed bearing

Exercise No. 4. Gib and Cotter joint

3. Gib and 4. cotter

Exercise No. 5. Screw Jack

Exercise No. 6. Universal Coupling

Note: Print the orthographic view and sectional view from the above assembled 3D drawing.

PART B: CNC Programming and Machining

Introduction: 1. Study of CNC lathe, milling. 2. Study of international standard codes: G-Codes and M-Codes 3. Format – Dimensioning methods. 4. Program writing – Turning simulator – Milling simulator, IS practice – commands menus. 5. Editing the program in the CNC machines. 6. Set the machine and execute the program in the CNC machines.

Note: Create and edit the part program in the simulation software for verification of the part program. Enter / tranfer the program to make the component in the CNC machine.

CNC Turning Machine Material: M.S / Aluminium / Acrylic fibre / Plastic
1. Using Linear and Circular interpolation - Create a part program and produce component in the Machine.

2. Using Stock removal cycle – Create a part program for multiple turning operations and produce component in the Machine.

3. Using canned cycle - Create a part program for thread cutting, grooving and

CNC Milling Machine Material: M.S / Aluminum / acrylic fibre / plastic

4. Using Linear interpolation and Circular interpolation – Create a part program for grooving and produce component in the Machine.

5. Using canned cycle - Create a part program for drilling, tapping, counter sinking and produce component in the Machine.

6. Using subprogram - Create a part program and produce component in the Machine.

BOARD EXAMINATION

Note:

- All the exercises in both sections should be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Note: Part A: The given component drawing should be created and solid modelling after assembly should be printed and submitted along with the answer paper for evaluation by the external examiner.

Part B: The program for the given component should be written in the answer paper. The program should be entered in the CNC machine and the component should be submitted for evaluation by the external examiner. The machined component should be kept under the custody of examiner.

Allocation of marks for Board Examination

PART A: Solid Modelling

Creation of sketch	:	15
Modelling	:	25
Accuracy	:	5
PART B: CNC Programming		
Program writing	:	15
Setting	:	10
Editing and Machining	:	20
Viva voce	:	10

Total Marks : 100

LIST OF EQUIPMENTS (For 30 students)

- 1. Personal computer 30 Nos.
- 2. 3D Solid Modelling and Simulation software Sufficient to the strength
- 3. CNC Lathe -2 Nos.
- 4. CNC Mill –2 Nos.
- 5. Consumables Sufficient quantity
- 6. Laser / Inkjet Printer 1 No.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020562
- Semester : V

Subject Title : Green Energy and Energy Conservation Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions				
4020562				Marks		
Green Energy and Energy Conservation Practical	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Objectives:

- To demonstrate the I-V and P-V Characteristics of PV module .
- To show the effect of variation in tilt angle on PV module power.
- To study the characteristics of battery.
- To understand how a solar PV standalone system works
- To workout power flow calculations of standalone PV system AC load DC load with battery.
- To understand how to use various electrical measuring equipments.
- To study the different electrical parameters of a monocrystalline and polycrystalline silicon solar panel
- To study the effect of shading on the output of solar panel.
- To understand and determine the power flow in a solar DC system.
4020562 GREEN ENERGY AND ENERGY CONSERVATION PRACTICAL

DETAILED SYLLABUS

Experiments

PART A

- 1. Study and demonstrate the I-V and P-V Characteristics of PV module with varying radiation and temperature level.
- 2. Study and demonstrate the I-V and P-V characteristics of series and parallel combination of PV modules.
- 3. Study and demonstrate the effect of shading on module output power.
- 4. Do a shading analysis on the site where solar PV system needs to be setup.
- 5. Study the wind power generation status in Tamilnadu.
- 6. Study the biogas generation status in Tamilnadu.

PART B

- 1. Conduct experiment to show the effect of variation in tilt angle on PV module power.
- 2. Conduct the experiment to demonstrate the working of diode as Bypass diode and blocking diode.
- 3. Conduct the experiment to draw the charging and discharging characteristics of battery.
- 4. Conduct the experiment for the power flow calculations of standalone PV system of AC load with battery.
- 5. Conduct the experiment for the power flow calculations of standalone PV system of DC load with battery.
- 6. Conduct the experiment to determine the different electrical parameters of a monocrystalline and polycrystalline silicon solar panel.

BOARD EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one from PART A and one from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

ALLOCATION OF MARKS

Part - A			
Study explanation		:	30
Part - B		:	60
Procedure	15		
Observation / Reading /			
calculation	35		
Result	10		
Viva-voce		:	10
Total		:	100

S.No.	Description	Qty.
1	150 /160 Wp Polycrystalline Solar PV Modules	2 Nos.
2	340/350 Wp Mono crystalline Solar PV Modules	2 Nos.
3	80 / 90 Wp Thin film Solar PV Modules	2 Nos.
4	1000W/1500W Off-grid Grid Inverter with MPPT Charge Controller	1 No.
5	Solar Structure	1 No.
6	Wall mountable ACDB Box	1 No.
7	Earthing kit	3 No.
8	DC Wire , AC Wire, PVC items	1 No.
9	Accessories like MC4 connectors, Lugs, Screws etc	Sufficient quantity
10	Solar System Analyser	1 No.
11	Solar Power Meter	1 No.
12	Solar Module Analyser	1 No.
13	Thermal Imaging Camera	1 No.
14	Drill m/c, Multimeters, Clamp meters, Tools & Tackles, Safety gear	1 Set
15	Electrical Measuring Instruments	Sufficient Quantity
16	Shop Floor Tools	Sufficient Quantity

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020563
- Semester : V
- Subject Title : Mechatronics Practical

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 We					'eeks	
Instructions		Examination				
Subject	Hours/			Marks		
,	Week S	Semester	Internal Assessment	Board Examination	Total	Duration
4020563 Mechatronics Practical	4	64	25	100*	100	3Hrs.

*Examinations will be conducted for 100 marks and it will be reduced for 75 marks for result

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various concepts of industrial automation. They are able to write ladder logic program and able operate PLCs. They are able to understand the advanced concepts adopted in industrial automation.

OBJECTIVES:

- Acquire knowledge in the field of mechatronics
- Explain the various components of electro pneumatics and electro hydraulics
- Handle PLC, HMI, SCADA and DCS components

4020563 MECHATRONICS PRACTICAL

DETAILED SYLLABUS

ELECTRO PNEUMATICS: Introduction to Electro Pneumatics - Applications of pneumatics - Pneumatic and electro pneumatic controllers - Components and assemblies in the electrical signal control section: Power supply unit - Push button and control switches - Sensors for measuring displacement and pressure - Relays and contactors. Electrically actuated directional control valves - Construction and mode of operation - Functions - Electrical connection of solenoid coils. Procedure for developing a control system.

ELECTRO HYDRAULICS: Basic principles of electro hydraulics - Function and use of electrohydraulic components - Production and interpretation of standard hydraulic and electrical circuit diagrams

PROCESS CONTROL INSTRUMENTATION: Process control - Types of processes – Structure of control system – Controllers - Digital controllers – Types of process control – ON/OFF Control – Analog control – Digital control. Data Acquisition System - Objectives of DAS - Types of DAS: Single channel DAS – Multichannel DAS – Computer based DAS. Data Loggers - Block diagram of Data Loggers – Control facilities in Data Logger – Uses of Data Logger - Different stages of Direct Digital Control.

SCADA - Fundamental principles of modern SCADA systems - SCADA hardware -SCADA software - Landlines for SCADA - SCADA and local area networks - Modem used in SCADA systems - Remote terminal units. Human Machine Interface – components of HMI.

Distributed Control System - Parts of DCS – Layered structure of DCS – Communication options in DCS.Variable Frequency Drives - Construction, Working, Operation, Applications and Specifications

Experiments

PART A

(ELECTRO PNEUMATICS)

- Direct control of a 3/2 NC Single solenoid valve and a 3/2 NO Single solenoid valve
- 2. Direct control of a 5/2 single solenoid valve and a 5/2 double solenoid valve
- 3. Simple circuit using OR Logic and AND Logic
- 4. Limit switch and proximity switch application circuits

(ELECTRO HYDRAULICS)

- 1. Sorting device using double acting cylinder, directly actuated, manually
- 2. Component selection on conveyor belt using double acting cylinder and directly actuated, manually
- 3. Lifting station using single acting cylinder and directly actuated, manually
- 4. Door control using double acting cylinder and interlocking

PART B

PROCESS CONTROL INSTRUMENTATION

- 1. Wiring practice of HMI
- 2. Design of HMI screen
- 3. HMI Configuration and Interfacing with PLC and PC
- 4. Configuring Alarms in SCADA
- 5. Real time project development and interfacing with PLC
- 6. Monitoring & Control of Pneumatic System using HMI

BOARD EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one from PART A and one from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.

- 3. All regular students appearing for first attempt should submit record notebook for the examination.
- 4. The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- 5. The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

ALLOCATION OF MARKS

PART A: Electro Pneumatic circuit / Electro Hydraulic circuit (by lot):

Circuit diagram	:	15
Components connections & execution	:	20
Output	:	10

PART B: Process Control Instrumentation

:	15
:	20
:	10
:	10
:	100
	: : :

List of Equipment (For 30 students)

Electro Pneumatics:

- Basic Pneumatic Trainer Kit with FRL Unit, Compressor and Accessories 2 Nos
 - 3/2 NC Single Solenoid Valve 2Nos
 - 3/2 NO Single Solenoid Valve 2Nos
 - 5/2 Single Solenoid Valve 2Nos
 - 5/2 Double Solenoid Valve 2Nos
 - Limit Switch 6 Nos
 - Proximity Sensor (Inductive, Capacitive & Optical) Each 2 Nos
 - Single Acting Pneumatic Cylinder 4 Nos
 - Double Acting Pneumatic Cylinder 2 Nos
 - Power Supply Unit, Connecting Leads and Hoses As per Requirements

Electro Hydraulics:

- 1. Basic Hydraulics Trainer Kit with Hydraulic Pump, Regulator and Hoses Accessories – 2 Nos
 - Double Acting Cylinder 2 Nos
 - Single Acting Cylinder 2 No
 - Manual Actuator Switch 4 Nos
 - Material Sorting assembly set up 1 No
 - Conveyor Assembly set up 1 No
 - Lifting Station Assembly Set up 1 No
 - Limit Switch 4 Nos

Process Control Instrumentation:

- Programmable Logic Controller (PLC) with Software 3 Nos
- o Human Machine Interface (HMI) with Software 3 Nos
- SCADA Software 1 No or Integrated Software for PLC, HMI and SCADA)
- Personnel Computer 3 Nos
- Water Tank Assembly set up with Level Sensor and Flow Controller (Actuator) to interface with PLC and HMI – 1 No

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(implemented from the Academic year 2020-2021 onwards)

Course Name : 1020 Diploma in Mechanical Engineering

Subject Code : 4020570

Semester : V

Subject Title : Entrepreneurship & Startups

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 Weeks

	Instructions		Examination			
			Marks			
Subject	Hours/ Week	Hours/ Semester	Internal Assessment	Board Examination	Total	Duration
4020570 Entrepreneurship & Startups	4	64	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced for 75 marks for result

UNIT Topic Hours Entrepreneurship – Introduction and Process 1 10 2 10 Business Idea and Banking 3 Start ups, E-cell and Success Stories 10 Pricing and Cost Analysis 4 10 5 Business Plan Preparation 10 Field visit and Preparation of case study report 14 Total 64

Topics and Allocation of Hours

RATIONALE:

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socio-economic environments; to ensure equity of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

OBJECTIVES:

At the end of the study of 5th semester the students will be able to

- o To excite the students about entrepreneurship
- o Acquiring Entrepreneurial spirit and resourcefulness
- o Understanding the concept and process of entrepreneurship
- o Acquiring entrepreneurial quality, competency and motivation
- Learning the process and skills of creation and management of entrepreneurial venture
- Familiarization with various uses of human resource for earning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- o Survey and analyze the market to understand customer needs
- Understand the importance of generation of ideas and product selection
- o Learn the preparation of project feasibility report
- o Understand the importance of sales and turnover
- o Familiarization of various financial and non financial schemes
- o Aware the concept of incubation and starts ups

Unit	Name of the Topics				
1	ENTREPRENEURSHIP – INTRODUCTION AND PROCESS	10			
	 Concept, Functions and Importance 				
	Myths about Entrepreneurship				
	Pros and Cons of Entrepreneurship				
	Process of Entrepreneurship				
	Benefits of Entrepreneur				
	 Competencies and Characteristics 				
	Ethical Entrepreneurship				
	 Entrepreneurial Values and Attitudes 				
	Motivation				
	Creativity				
	Innovation				
	 Entrepreneurs - as problem solvers 				
	 Mindset of an employee and an entrepreneur 				
	 Business Failure – causes and remedies 				
	Role of Networking in entrepreneurship				
2	BUSINESS IDEA AND BANKING	10			
	 Types of Business: Manufacturing, Trading and Services 				
	 Types of Busilless: Manufacturing, Trading and Services Stakeholders: Sellers, Vendors and Consumers 				
	E- Commerce Business Models				
	Types of Resources - Human, Capital and Entrepreneurial				
	tools				
	 Goals of Business and Goal Setting 				
	 Patent, copyright and Intellectual Property Rights 				
	 Negotiations - Importance and methods 				
	Customer Relations and Vendor Management				
	Size and Capital based classification of business enterprises				
	Role of Financial Institutions				
	Role of Government policy				

DETAILED SYLLABUS

	Entrepreneurial support systems	
	 Incentive schemes for State Government 	
	 Incentive schemes for Central Government 	
3	STARTUPS, E-CELL AND SUCCESS STORIES	10
	 Concept of Incubation centre's 	
	 Activities of DIC, financial institutions and other relevance 	
	 Success stories of Indian and global business legends 	
	 Field Visit to MSME's 	
	Various sources of Information	
	Learn to earn	
	Startup and its stages	
	 Role of Technology – E-commerce and Social Media 	
	Role of E-Cell	
	E-Cell to Entrepreneurship	
4	PRICING AND COST ANALYSIS	10
	Colouistics of Lisit of Colo Lisit Drice and Lisit Cost	
	Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs Norisble and Fixed Operational Costs	
	Types of Costs - Variable and Fixed, Operational Costs Prock Even Analysis	
	Break Even Analysis Junderstand the meaning and concent of the term Cash	
	Onderstand the meaning and concept of the term Cash Inflow and Cash Outflow	
	Prepare a Cash Flow Projection	
	Pricing and Eactors affecting pricing	
	Understand the importance and preparation of Income	
	Statement	
	 Launch Strategies after pricing and proof of concept 	
	 Branding - Business name, logo, tag line 	
	 Promotion strategy 	
5	BUSINESS PLAN PREPARATION	10
	Conception of Ideas	
	Generation of ideas, Dusiness Opportunities	
	 Business ideas vs. Business Opportunities 	

•	Selecting the Right Opportunity	
•	Product selection	
•	New product development and analysis	
•	Feasibility Study Report – Technical analysis, financial	
	analysis and commercial analysis	
•	Market Research - Concept, Importance and Process	
•	Marketing and Sales strategy	
•	Digital marketing	
•	Social Entrepreneurship	
•	Risk Taking-Concept	
•	Types of business risks	

REFERNCE BOOKS:

- Dr. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra - 282002
- Dr. G.K. Varshney, Business Regulatory Framework , Sahitya Bhawan Publications, Agra - 282002
- Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship, McGraw Hill (India) Private Limited, Noida - 201301
- 4. M.Scarborough, R.Cornwell, Essentials of Entrepreneurship and small business management, Pearson Education India, Noida 201301
- Charantimath Poornima M. Entrepreneurship Development and Small Business Enterprises, Pearson Education, Noida - 201301
- Trott, Innovation Management and New Product Development, Pearson Education, Noida - 201301
- M N Arora, A Textbook of Cost and Management Accounting, Vikas Publishing House Pvt. Ltd., New Delhi-110044
- 8. Prasanna Chandra, Financial Management, Tata McGraw Hill education private limited, New Delhi
- I. V. Trivedi, Renu Jatana, Indian Banking System, RBSA Publishers, Rajasthan
- 10. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai 600018

 Ramani Sarada, The Business Plan Write-Up Simplified - A practitioners guide to writing the Business Plan, Notion Press Media Pvt. Ltd., Chennai 600095.

Board Examination – Evaluation Pattern

Internal Mark Allocation

Total	-	25
Attendance	-	5
Seminar Presentation	-	10
Assignment (Theory portion)*	-	10

Note: * Two assignments should be submitted. The same must be evaluated and converted to 10 marks.

Guidelines for assignment:

First assignment – Unit I

Second assignment – Unit II

Guidelines for Seminar Presentation - Unit III

Each assignment should have five three marks questions and two five marks questions.

BOARD EXAMINATION

Note

- 1. The students should be taught all units and proper exposure and field visit also arranged. All the portions should be completed before examinations.
- The students should maintain theory assignment and seminar presentation. The assignment and seminar presentation should be submitted during the Board Practical Examinations.
- 3. The question paper consists of theory and practical portions. All students should write the answers for theory questions (45 Marks)

and practical portions (55 Marks) should be completed for board examinations.

- 4. All exercises should be given in the question paper and students are allowed to select by lot. If required the dimensions of the exercises may be varied for every batch. No fixed time allotted for each portion and students have liberty to do the examination for 3Hrs.
- For Written Examination: theory question and answer: 45 Marks Ten questions will be asked for 3 marks each. Five questions from each unit 1 & 2. (10 X 3 = 30). Three questions will be asked for 5 marks each. One question from

each unit 1, 2 & 3. (3 X 5 = 15)

 For Practical Examination: The business plan/Feasibility report or Report on Unit 4 & 5 should be submitted during the board practical examinations. The same have to be evaluated for the report submission (40 marks).

SI.	Description	Marks
No		
Part A	Written Examination - Theory Question and answer 10 questions x 3 marks = 30 marks	45
	3 questions x 5 marks = 15 marks	
Part B	Practical Examination – Submission on Business Plan/Feasibility Report or Report on Unit 4 & 5	40
Part C	Viva voce	15
	Total	100

DETAILED ALLOCATION OF MARKS

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020610
- Semester : VI
- Subject Title : Industrial Engineering and Management

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination			
4020610	Hours	Hours /					
Industrial Engineering and	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration	
Management	6	96	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours			
I	Plant Engineering and Plant Safety	18			
II	Work Study, Method Study and WorkMeasurement	18			
	Principles, Personnel Management and Organizatioal Behavior:	19			
IV	Financial and Material Management	18			
V	Engineering Ethics and Human Values	16			
Test and Model Exam					
Total					

RATIONALE:

In the Indian Economy, Industries and Enterprises always find prominent place. After globalization, the students should be trained not only in manufacturing process but also in managing activities of industries. The knowledge about plant, safety, work study techniques, personnel management, financial management and engineering ethics and human values will definitely help the students as managers to suit the industries.

OBJECTIVES:

- To study the different types of layout.
- To study the safety aspects and its impacts on an organization.
- To study different work measurement techniques.
- To study engineering ethics and human values.
- To study the staff selection procedure and training of them.
- To study capital and resources of capital.
- To study inventory control system.
- To study about organization and it's behavior.

4020610 INDUSTRIAL ENGINEERING AND MANAGEMENT DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Time
I	Plant Engineering and Plant Safety	
	Chapter: 1.1: Plant Engineering : Plant – Selection of site of industry	9
	- Plant layout - Principles of a good layout - types - process, product	
	and fixed position - techniques to improve layout - Principles of	
	material handling equipment – Plantmaintenance – importance – Break	
	down maintenance, preventive maintenance and scheduled	
	maintenance.	
	Chapter: 1.2: Plant Safety: Importance - accident - causes and	9
	cost of an accident - accident proneness - prevention of accidents -	
	Industrial disputes - settlement of Industrial disputes - Collective	
	bargaining, conciliation, Mediation, arbitration - Indian Factories Act	
	1948 and its provisions related to health, welfare and safety.	

II	Work Study, Method Study and Work Measurement	
	Chapter: 2.1: Work Study: Productivity – Standard of living – method	4
	of improving productivity – Objectives – Importance of good working	
	conditions.	
	Chapter: 2.2: Method Study: Definition - Objectives - Selection of	6
	a job for method study - Basic procedure for conduct of method	
	study – Tools used – Operation process chart, Flow process chart,	
	two handed process chart, Man Machine chart, String diagram and	
	flow diagram.	
	Chapter: 2.3: Work Measurement: Definition - Basic procedure in	8
	making a time study – Employees rating factor – Application of time	
	allowances – Rest, Personal, Process, Special and Policy allowances –	
	Calculation of standard time – Problems – Basic concept of production	
	study – Techniques of work measurement - Ratio delay study,	
	Synthesis from standard data, analytical estimating and Pre determined	
	Motion Time System (PMTS).	
=	Principles, Personnel Management and Organizational Behavior:	
	Chapter: 3.1: Principles of Management: Definition of management –	7
	Administration - Organization - F.W. Taylor's and Henry Fayol's	
	Principles of Management – Functions of Manager – Directing –	
	Leadership –Types of Leadership – Qualities of a good leader –	
	Motivation – Positive and negative motivation - Modern management	
	techniques- Management Information Systems – Strategic	
	management – SWOT Analysis - Business Process Re-engineering	
	(BPR) – Enterprises Resource Planning (ERP) – Activity Based	
	Management (ABM) – Global Perspective – Principles and brief	
	description.	
	Chapter: 3.2: Personnel Management: Responsibility of human	7
	resource management - Selection procedure - Training of workers	
	- Apprentice training - On the job training and vestibule school	
	training – Job evaluation and merit rating – objectives and	
	importance - wages and salary administration - Components of wages	
	 Wage fixation – Type of wage payment – Halsey's 50% plan, 	

	Rowan's plan and Emerson's efficiency plan – Problems.	
	Chapter: 3.3: Organizational behavior: Definition – organization	5
	- Types of Organization – Line, Staff, Taylor's Pure functional types –	
	Line and staff and committee type - Organizational Approaches,	
	individual behavior - causes - Environmental effect - Behavior and	
	Performance, Perception - organizational implications.	
IV	Financial and Material Management	
	Chapter: 4.1: Financial Management: Fixed and working capital -	9
	Resources of capital – shares preference and equity shares –	
	debentures – Type of debentures – Public deposits, Factory costing –	
	direct cost - indirect cost - Factory overhead - Selling price of a	
	product - Profit - Problems. Depreciation - Causes - Methods -	
	Straight line, sinking fund and percentage on diminishing value method	
	– Problems.	
	Chapter: 4.2: Material Management: Objectives of good stock control	9
	system – ABC analysis of inventory – Procurement and consumption	
	cycle – Minimum Stock, Lead Time, Reorder Level - Economic order	
	quantity - problems - supply chain management - Introduction -	
	Purchasing procedure – Store keeping – Bin card.	
V	Engineering Ethics and Human Values	
	Chapter: 5.1: Engineering Ethics: Definition - engineering ethics -	9
	personal and business ethics - duties and rights - engineering as a	
	profession - core qualities of professional practitioners - environment	
	and their impact - code of ethics - procedure for solving ethical conflicts	
	- ethical judgement - Kohiberg's stages of moral development - value	
	based ethics - engineers as managers, consultants and leaders -	
	environmental ethics - computer ethics - Intellectual Property Rights	
	(IPRs).	
	Chapter: 5.2: Human values : Morals - values - integrity - service	7
	learning - civic virtue - respect for others - living peacefully - caring -	
	sharing - honesty - courage - valuing time cooperation - commitments	
	 empathy - selfconfidence – character - stress management. 	

Reference Books :

- Industrial Engineering and Management, O.P. Khanna, Revised Edition Publications (P) Ltd – 2004, 67/4 Madras House, Daryaganj, New Delhi– 110002.
- Engineering Economics and Management, T.R. Banga& S.C. Sharma, McGraw Hill Editiion. 2 – 2001, New Delhi.
- Herald Koontz and Heinz Weihrich, Essentials of Management, McGraw Hill Publishing Company, Singapore International Edition. Latest
- 4. Govindarajan .M, Natarajan. S, Senthilkumar V.V, Engineering ethics, prentice hall of India New Delhi, 2004.
- 5. Management, Aglobal perspective, Heinz Weihrich, Harold Koontz, 10th Edition, McGraw Hill International Edition. Latest.
- Essentials of Management,4th Edition, Joseph L. Massie, Prentice Hall of India, New Delhi 2004.
- 7. S.Chandran, Organizational Behaviours, Vikas Publishing House Pvt. Ltd. Latest
- 8. M.Govindarajan and S.Natarajan, Principles of Management, Prentce Hall of India Pvt.Ltd. New Delhi. Latest.
- 9. Charles B. Fledderman, Engineering ethics, pearson prentice hall, New Jersey, 2004.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020620
- Semester : VI
- Subject Title : E Vehicle Technology & Policy

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Subject Instructions		Examination			
4020620	Hours	Hours /		Marks		
E Vehicle Technology &	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Policy	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours			
I	Environmental impact and history, Types of Electric vehicles	12			
II	Electric vehicle, Electrical Propulsion System	12			
	Energy Storages, Charging System, Effects and Impacts	11			
IV	Electric Mobility Policy Frame Work	11			
V	V Tamilnadu E-Vehicle Policy 2019				
Test and Model Exam					
Total					

RATIONALE:

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and auto-components. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. Due the rapid depletion of fossil fuel and increase in fuel cost, environmental pollution, the shift to clean transport is necessary. This subject introduced by keeping all the above factors.

OBJECTIVES:

- To learn the environmental impact and history of Electric Vehicles.
- To understand the concept of Electric Vehicle and its types.
- To study the configurations of Electric Vehicles
- To acquire knowledge about Energy Storages, Charging System, Effects and Impacts
- To appreciate the Electric Mobility Policy Frame work India and EV Policy Tamil Nadu 2019.

4020620 E Vehicle Technology & Policy DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Environmental impact and history:	6
	Environmental impact of conventional vehicle - Air pollution - Petroleum	
	resources - History of Electric vehicles & Hybrid Electric Vehicles -	
	Conventional drive train system - Rear Wheel, Front Wheel and All	
	wheel - Parts of Drive train system	
	Types of Electric Vehicles:	6
	Introduction to Battery Electric Vehicle (BEV) - Definition BEV -	
	Necessity BEV - Different between BEV and Conventional Vehicle -	

	Advantages of BEV - Block diagram of BEV - Hybrid electric Vehicle	
	(HEV) - Plug-in Hybrid Electric Vehicle (PHEV) – Fuel Cell Electric	
	Vehicle (FCEV) – Description.	
II	Electric Vehicles:	6
	Configurations of Electric Vehicle – Performance of Electric Vehicles –	
	Tractive Effort in Normal Driving – energy consumption.	
	Hybrid Electric Vehicles: Concept of Hybrid electric drive trains -	
	Architecture of Hybrid Electric Drive trains – Series, Parallel and Series &	
	Parallel	
	Electric Propulsion Systems:	6
	Types of EV motors - DC motor drives- Permanent Magnetic Brush Less	
	DC Motor Drives (BLDC) – Principles, Construction and Working – Hub	
	motor Drive system - Merits and Demerits of DC motor drive, BLDC	
	motor drive	
	Energy Storages:	5
	Electrochemical Batteries - Battery Technologies - Construction and	
	working of Lead Acid Batteries, Nickel Based Batteries and Lithium	
	Based Batteries - Role of Battery Management System (BMS)- Battery	
	pack development Technology- Cell Series and Parallel connection to	
	develop battery pack.	
	Charging:	4
	Battery Charging techniques - Constant current and Constant voltage,	
	Trickle charging – Battery Swapping Techniques – DC charging –	
	Wireless charging - Maintenance of Battery pack - Latest development	
	in battery chemistry.	
	Effects and Impacts:	1
	Effects of EV – Impacts on Power grid – Impacts on Environment –	
	Impacts on Economy.	
IV	Electric Mobility Policy Frame Work	11
	Government of India Electric Mobility Policy Frame work – Global	
	Scenario of EV adoption - Electric mobility in India - National Electric	
	Mobility Mission Plan 2020 - Action led by Original Equipment	
	Manufacturers - Need of EV Policy - Advantage of EV Eco system -	

	Scope and Applicability of EV Policy – ARAI Standards for Electric	
	Vehicle – AIS 038, AIS 039 & AIS 123 - Key Performance Indicator -	
	Global impact – Trends and Future Developments	
V	Tamil Nadu E-Vehicle Policy 2019	11
	Tamil Nadu E-vehicle Policy 2019: Vehicle Population in Tamil Nadu -	
	Objectives of EV Policy – Policy Measures – Demand side incentives –	
	Supply side incentives to promote EV manufacturing - Revision of	
	Transport Regulation of EV – City building codes – Capacity Building and	
	Skilling – Charging structure – implementing agencies – Reasearch	
	&Development and Business Incubation – Recycling Ecosystem –	
	Battery and EVs	

Reference Books

- 1. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York.
- Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal
- A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development (MDPI), Fuad Un-Noor, Sanjeevikumar Padmanaban, Lucian Mihet-Popa, Mohammad Nurunnabi Mollah and Eklas Hossain.
- 4. Electric Vehicles: A future Projection CII October 2020 report.
- 5. Design and analysis of aluminum/air battery system for electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.
- 6. Propelling Electric Vehicles in India, Technical study of Electric Vehicles and Charging Infrastructure
- ZERO EMISSION VEHICLES (ZEVs): TOWARDS A POLICY FRAMEWORK

 NTI Aayog.
- FASTER ADOPTION OF ELECTRIC VEHICLES IN INDIA: PERSPECTIVE OF CONSUMERS AND INDUSTRY, The Energy and Resources Institute, New Delhi.
- 9. India EV Story: Emerging Opportunities by Innovation Norway.
- 10. Automotive Industry Standards AIS 038, AIS 039 & AIS 123 Manual

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

(To be implemented for the students admitted from the year 2020 – 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020631
- Semester : VI
- Subject Title : Industrial Robotics and 3D Printing

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination		
4020631	Hours	Hours /	Marks			
Industrial Robotics and 3D	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Printing	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours			
I	Fundamentals of Robot Technology	12			
II	Drive Systems, End Effecters, Sensors and Machine Vision System	12			
III	Robot Programming, Robot Applications in Maufacturing	12			
IV	Introduction and Design for Additive Manufacturing	18			
V	Additive Manufacturing Processes	19			
Test and Model Exam					
Total					

RATIONALE:

Rapid industrialization and globalization needs industries to be more competitive and deliver cost effective quality products. This needs industries to implement flexible manufacturing systems where Robotic technology plays major role. Hence study of robotic technology is very essential.

3D printing is often utilized when manufacturers need to create a product accurately, quickly and at a low quantity. This has lead to 3D printers being brought in to prototype industrial robots, helping to aid the development of better, more efficient robots in the industrial sector.

OBJECTIVES:

- Understand fundamentals of robotics
- Acquire knowledge structure and elements of robot
- Gain knowledge on controller and various drives used in robotics
- Develop knowledge on role of sensors and vision system
- Acquire skill to program and control robot
- Understand to adopt robot to various industrial applications.
- To acquire the knowledge on 3D Printing and design principles for additive manufacturing
- To understand the principles of latest manufacturing processes in Additive manufacturing

4020631 Industrial Robotics and 3D Printing DETAILED SYLLABUS

Contents: Theory

Unit	Name Of The Topic	Hours
I	Fundamentals of Robot Technology	12
	Introduction – History of robot– Definitions– Basic configuration of	
	Robotics - Robot Components - Manipulator, End effecter,	
	Driving system, Controller and Sensors – Degrees of freedom –	
	Links and joints – Types of joints – Joint notation scheme – Pitch,	
	Yaw, Roll - Classification of robots - Work envelope and Work	
	Volume – Effect of structure on Control ,Work envelop and Work	
	volume- Introduction to PUMA robot- Robot controller -	

	Configuration - Four types of controls - Open loop and closed	
	loop controls - Speed of response and stability - Precision of	
	movements: Spatial resolutions, accuracy and repeatability.	
П	Drive Systems, End Effecters, Sensors and Machine Vision	12
	System	
	Pneumatic drives - Hydraulic drives - Mechanical drives -	
	Electrical drives - Stepper motors, DC Servo motors and AC	
	Servo motors- Applications and Comparisons of Drives. End	
	effecters – Grippers – Mechanical Grippers, Magnetic Grippers,	
	Vacuum Grippers- Selection and design considerations in robot	
	gripper- Requirements of Sensors - Position sensors: LVDT,	
	Resolvers, Optical encoders- Proximity sensors: Inductive,	
	Capacitive, Ultrasonic and Optical proximity sensors- Touch	
	Sensors - Range Sensors- Machine Vision System: Sensing &	
	Digitizing Image Data - Image Processing and Analysis -	
	Application	
III	Robot Programming, Robot Applications In Manufacturing	12
	Forward kinematics, Inverse kinematics and differences -	
	Forward kinematics and Reverse kinematics of manipulators with	
	Two and Three degrees of freedom - Derivations. Robot	
	programming -Lead through programming, Textual programming	
	 Teach Pendant for Robot system – Robot programming 	
	languages – Motion commands, Sensor commands, End effecter	
	commands. Robot applications – Material handling-Spot welding –	
	Arc welding – Spray painting – Assembling – Finishing-AGV-RGV.	
IV	Introduction and Design for Additive Manufacturing	
	Introduction to Additive Manufacturing	9
	Additive Manufacturing - 3D Printing - Rapid prototyping -	
	Overview - Need - Additive manufacturing Vs CNC Machining -	
	Development of Additive Manufacturing Technology – Principle of	
	AM Process – Generalised Additive Manufacturing Process Chain	
	- Classification - Benefits - Direct and Indirect process,	
	Prototyping, Manufacturing and Tooling	

Design for Additive manufacturing	9
Design tools: Data processing - CAD model preparation – STL file	
- Part orientation and support structure generation - Model slicing	
- Tool path generation. Design for Additive Manufacturing:	
Concepts and objectives - AM unique capabilities - DFAM for part	
quality improvement – strategies – Design Rules – Quality	
aspects – Software for AM – MIMICS, etc.	
V Additive Manufacturing Processes	
Photo polymerization and Powder Bed Fusion Processes	7
Photo polymerization: SLA - Photo curable materials - Process -	
reaction rates – scan patterns - Advantages and Applications.	
Powder Bed Fusion: SLS - Process description - powder fusion	
mechanism – material feed system - Process Parameters -	
Materials and Applications. Electron Beam Melting	
Extrusion Based And Sheet Lamination Processes	5
Extrusion Based System: FDM – Introduction - Basic Principle –	
plotting and path control - Materials - Applications and Limitations	
- Bio-extrusion. Sheet Lamination Process: LOM – Materials -	
Gluing or Adhesive bonding - Thermal bonding – Ultrasonic AM.	
Printing Processes And Beam Deposition Processes	7
Droplet formation technologies - Continuous mode - Drop on	
Demand mode - Three Dimensional Printing – Advantages – Bio-	
plotter - Beam Deposition Process: LENS- Process description -	
Material delivery - Process parameters – Materials –	
Benefits.Applications of AM technologies in Automotive,	
Manufacturing, Architectural, Healthcare, and Consumer products.	

Reference Books:

- Industrial Robotics Technology, Programming and Applications, P.Groover, MCGraw Hill, 2001
- 2. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.

- Ian Gibson, David W. Rosen, Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer, 2010.
- Robotics Control, Sensing, Vision and Intelligence, Fu.K.S.Gonzalz.R.C., and Lee C.S.G, McGraw-Hill Book Co., 1987
- 5. Robotics for Engineers, Yoram Koren, McGraw-Hill Book Co., 1992
- 6. Robotics and Image Processing, Janakiraman.P.A, Tata McGraw-Hill, 1995
- 7. Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing" Hanser Gardner Publication 2011.
- 8. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 9. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.
- 10. Tom Page, "Design for Additive Manufacturing" LAP Lambert Academic Publishing, 2012.
- 11. Amit Bandyopadhyay, and Susmita Bose, "Additive Manufacturing", CRC Press.
- 12. John O Milewski., "Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewellery", Springer Series in Materials Science
- 13. Sabrie Soloman. "Additive Manufacturing: Advanced Manufacturing Technology in 3d Print Deposit"
- 14. David Ian Wimpenny and Pulak M Pandey, "Advances in 3D Printing and Additive Manufacturing Technologies"
- 15. Andreas Gebhardt, Hanser, "Understanding Additive Manufacturing"

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020632
- Semester : VI

Subject Title : Refrigeration and Air-Conditioning

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions		Examinatio	n	
4020632	Houro	Houro /		Marks		
Refrigeration and Air-Conditioning	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Refrigeration System And Refrigeration Equipments	15
II	Vapour Compression Refrigeration System And Vapour Absorption Refrigeration System	15
	Refrigerant Flow Controls, Refrigerants And	15
	Lubricants, Applications Of Refrigeration	
IV	Psychrometry And Comfort Air Conditioning	14
V	Air Conditioning Systems And Cooling Load Calculations	14
	Test and Model Exam	7
	TOTAL	80

RATIONALE:

Requirement of human comfort, maintenance of machines and preserving Perishables through air conditioning is very essential. Hence learning the study of refrigeration principles, refrigeration system, Concept of air-conditioning and methods of facilitates quality design of air conditioners are essential.

OBJECTIVES:

- \circ Explain the working of open and closed air system of refrigeration.
- Describe the working and construction of compressors used for airconditioning
- Explain the vapour compression refrigeration system.
- Explain the vapour absorption refrigeration system.
- Compare the properties and applications of various refrigerants.
- Define the parameters used for air conditioning.
- To Use the psychometric chart.
- Estimate the cooling load for the given requirement.
- Explain the industrial application of refrigeration.

4020632 REFRIGERATION AND AIR-CONDITIONING DETAILLED SYLLABUS

Unit	Name Of The Topic	Hours
I	REFRIGERATION SYSTEM	15
	Thermodynamic state of a pure substances - modes of heat	
	transfer – laws of heat transfer – mechanisms of production of cold	
	- unit of refrigeration - types of refrigeration - reversed Carnot	
	cycle-C.O.P of heat engine-heat pump- refrigerating machine -	
	principle of working of open and closed air system of refrigeration –	
	Advantages and disadvantages – problems.	
	REFRIGERATION EQUIPMENTS	
	Compressor - principle of working and constructional details of	
	reciprocating and rotary compressors, hermetically and	
	semihermetically sealed compressors - condensers - principle of	
	working and constructional details of air cooled and water cooled	

	Condensers, evaporative condensers - advantages and	
	disadvantages - natural and forced draught cooling towers.	
	Evaporators - natural circulation and forced circulation type -	
	principle of working constructional details.	
11	VAPOUR COMPRESSION REFRIGERATION SYSTEM	15
	Principle of working of vapour compression system - analysis of	
	vapour compression cycle using T-s diagram and p-H diagram-	
	refrigerating effect - compression work - C.O.P - effect	
	ofsuperheating and under cooling - problems - effect of	
	evaporative	
	pressure - condenser pressure - liquid - vapour refrigeration	
	heatexchangers – advantages and disadvantages of superheating	
	and Under cooling – use of flash chamber and accumulator.	
	VAPOUR ABSORPTION REFRIGERATION SYSTEM	
	Simple absorption system – Electrolux system – Solar absorption	
	system - absorption system comparison with Mechanical	
	(Compression) refrigeration system.	
	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator –	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12,	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics.	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve - thermostatic expansion valve - solenoid valve - evaporator pressure regulator - suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 - lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing - quick freezing - cold storage - frozen storage freeze drying - dairy refrigeration - ice cream cabinets - ice making - Water cooler, milk cooler, bottle cooler - frost free	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice making – Water cooler, milk cooler, bottle cooler – frost free refrigeration.	15
III IV	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice making – Water cooler, milk cooler, bottle cooler – frost free refrigeration. PSYCHROMETRY AND COMFORT AIR CONDITIONING	15
III IV	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice making – Water cooler, milk cooler, bottle cooler – frost free refrigeration. PSYCHROMETRY AND COMFORT AIR CONDITIONING Definitions of dry air, moist air, water vapour, Avogadro's law,	15
	dew point - humidity - specific and absolute - relative humidity -	
---	--	----
	degree of saturation – enthalpy of moist air - adiabatic saturation of	
	air by evaporation of water - psychometric chart and its uses -	
	psychometric processes - sensible heating and cooling -	
	humidifying and heating – dehumidifying and cooling – adiabatic	
	cooling with humidification – total heating or cooling processes –	
	sensible heat factor – by pass factor with simple problems –	
	Governing optimum effective temperature - comfort chart - design	
	consideration.	
V	AIR CONDITIONING SYSTEMS	14
	Equipment for air conditioning and insulation factors -	
	airpurification - temperature control - humidity control - dry and	
	wet filters - centrifugal dust collector - air washer humidifier -	
	dehumidifier – fans and blowers – grills and registers – summerand	
	winter air conditioning, window type air conditioner - split type air	
	conditioner system - properties of ideal insulator, types of	
	insulating materials – air distribution and duct systems – tools and	
	Installation, servicing and maintenance of R & AC systems.	
	COOLING LOAD CALCULATIONS	
	Different heat sources - conduction heat load - radiationLoad of	
	sun - occupants load - equipment load - infiltration air load-	
	miscellaneous heat sources – fresh air load – simple problems.	

Reference books:

- Refrigeration and air conditioning, P.L. Ballaney, Khanna Publishers, 2B,North Market, Naisarak, New Delhi 110 006.
- 2. Refrigeration and air conditioning, V.K. Jain,
- 3. Industrial Refrigeration Hand Book, Wilbert F. Steocker
- 4. A course in refrigeration and air conditioning, Domkundwar,
- 5. Principles of refrigeration, Dossat,
- Home refrigeration and air conditioning, Audels, Theo.Audel & Co. publisher,199 Edn.49, West 23rd Street, New York. – 1998
- 7. Refrigeration and air conditioning, C.P Arora,
- 8. Cryogenic systems Randell Fd Barron.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

(To be implemented for the students admitted from the year 2020 – 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020633
- Semester : VI
- Subject Title : Automobile Technology

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examinatio	n	
	Houro	Hours /		Marks		
4020633 Automobile	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
rechnology	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours	
I	Automobile Engines	14	
II	Fuel Feed Systems and Alternativefuels	14	
- 111	Transmission and Power Trains	15	
IV	Automobile Chassis	15	
V	Electrical Equipment & Hybrid Electric Vehicles	15	
Test and Model Exam			
	Total	80	

RATIONALE:

Automobile is one of the key areas of development in India facilitated by Multinational Companies. As Automobile is the Major sources of employing man power a thorough knowledge on Automobile Engine construction and its functioning is required with due consideration on pollution control.

OBJECTIVES:

- Explain about the constructional details of an Automobile engine including cooling and lubrication system.
- Describe fuel feed systems for petrol and diesel engines with all devices involved in it.
- Explain the construction and functional features of the power transmission systems and various parts involved in it.
- Explain the functions of different types of steering, suspension and brake systems.
- Describe the different types of chassis and their functions.
- Familiarize electrical and electronic equipments used in automobile.
- To understand the emerging trends of electric vehicles, hybrid electric vehicles and solar vehicles.
- To know the automobile emissions and its effects on environment.

4020633 AUTOMOBILE TECHNOLOGY DETAILED SYLLABUS

Contents: Theory

Unit	Name Of The Topic	Hours
I	Automobile Engines	
	Basic Engine Components - Functions, types, materials and	14
	construction of -Cylinder block - Crankcase - oil pan - Cylinder	
	head – Gaskets – cylinder liners– Comparison of liners – Piston –	
	piston rings - types of compression rings and oil control rings -	
	piston pin - Connecting rod - methods of connecting piston and	
	Connecting rod – Crankshaft – flywheel – Cam shaft – Valve and	
	Valve mechanism – L-I-F-T.Cooling systems – purpose – types –	

	air and water cooling systems - merits and demerits -pump	
	assisted water cooling systems -components - water pump, fan -	
	thermostat - types - radiator -types -pressure cap - troubles in	
	cooling system. Lubrication systems - purpose - types of	
	lubricants - additives - Service rating of oil - types of lubricating	
	systems - Full pressure system – techniques of cylinder and piston	
	lubrication - oil filters - full flow and bypass filter systems -	
	Troubles in lubrication system.	
II	Fuel Feed Systems And Alternative fuels	
	Requirements of good fuel-Types of fuel feed systems- S.U.	12
	Electrical fuel pump - fuel filter - Air cleaners - types- petrol	
	injection –merits and demerits – DTSI – VTI – CCVTI – PGMFI –	
	MPFI system. Layout of diesel and petrol fuel feed system - single	
	acting fuel feed pump - fuel injection pumps - Construction and	
	working of distributor type pump – CRDI system - fuel injectors –	
	types - Single & Multi hole - pintle and pintaux - fuel filters -	
	primary and secondary filters.	
	Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum	3
	Gas and Bio Diesel - Properties, Suitability, Merits and Demerits -	
	Engine Modifications	
	Transmission And Power Trains	
	General arrangement of power transmission system -	5
	Arrangement of front engine rear drive - rear engine rear drive -	
	front engine front drive - four wheel drive - applications - clutch -	
	function - Components - Types - Single plate ,multi plate and	
	diaphragm spring clutch – fluid coupling – Clutch troubles and their	
	causes.	
	Gear box – purpose – various resistance to motion – types of gear	3
	boxesconstant mesh and synchromesh-gear box troubles and	
	their causes.	
	Drive line – propeller shaft – Universal joint – Cross type only – slip	7
	ioint – final drive – function – types of gear arrangement – straight	
	Joint mai arres fanotion types of gear analigement of algin	

	and application – Hotch kiss drive – Torque tube drive – radius rod.	
	Differential – purpose – Construction and operation – Self locking	
	and non slip differential – Differential troubles and their Causes –	
	Semi floating, three quarter floating and full floating rear axles.	
IV	Automobile Chassis	
	Front axle - Types - Stub axle - Types - Steering system -	7
	Ackermann Principle of Steering – Wheel alignment – Factors –	
	Camber , Caster , King pin inclination , Toe in and Toe out on turns	
	- Steering linkages – Steering gears –Cam and double roller	
	,recirculating ball type , Rack and Pinion – Steering troubles and	
	causes – power steering – Necessity – types – Layout of any one	
	type – Collapsible Steering system.	
	Suspension system – Functions – Type of springs – Leaf , coil and	3
	Torsion bar- Front suspension systems - independent front	
	suspension -merits and demerits - types - rear end suspension -	
	Air suspension - shock absorberpurpose telescopic type	
	construction and working.	
	Brake system – functions – classification of brakes – drum brakes	3
	- leading shoe and trailing shoe - Self energizing action -	
	hydraulic brake – brake bleeding - Air assisted hydraulic brakes –	
	Air brake - layout, functions of each component and application	
	only – disc brakes – construction and working – comparison of disc	
	and drum type – brake troubles and their causes – anti lock Brake	
	system.	
	Wheels - types of wheels - brief description and applications -	2
	tyres – function– construction of tyres – cross and radial ply tyres –	
	comparison.	

V	Electrical Equipment & Hybrid Electric Vehicles	
	Battery – lead acid battery – Nickel alkaline battery – construction –	6
	battery rating - charging - testing - starting circuit - construction	
	and operation of starter motor - starting motor drives - over	
	running clutch and Bendix drive – construction and operation –	
	solenoid switch - Charging circuit - alternator construction and	
	operation – regulators – Dynamo.	
	Ignition system – Types – High tension magneto – electronic	5
	ignition – Ignition system troubles and remedies. Lighting system –	
	circuit – Head light – Aiming and adjustment – sealed beam head	
	lights – directional signal circuits – fluorescent lamp - Horn circuits	
	– Wind screen wiper.	
	Introduction: Concept and environmental importance of EVs, HEVs	4
	and solar vehicles. Electric vehicles: Layout, construction and	
	working. Hybrid electric vehicles: Types, layout, hybridization	
	factor, plug in hybrid electric vehicles, fuel efficiency analysis.	
	Challenges and future scope of EVs and HEVs. EMISSION	
	STANDARDS: Euro I, II, III and IV norms, Bharat Stage II, III, IV	
	norms. Motor Vehicle Act.	

Reference Books:

- 1. Automobile Engineering, G.B.S.Narang, Khanna Publishers, NewDelhi.
- AutomotiveMechanics,William H.crouse and Donald .L. Anglin, Tata McGraw– Hill Publishing CompanyLtd, NewDelhi.
- 3. The Automobile, Harbans Singh Reyat, S.Chand &Co Ltd, NewDelhi
- 4. Vehicle and Engine technology. Vol. I, HeinzHeisler, , ELBS
- 5. Automotive Mechanics, Joseph Heitner, East-west Press (P) Ltd, NewDelhi
- Internal Combustion engines, M.L.Mathur &R.P.Sharma, Dhanpat Rai & Sons,
- 7. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York
- 8. Electric & hybrid Vehicle, A.K.babu, Khanna Publications, New delhi.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020640
- Semester : VI
- Subject Title : Solid Modelling Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examinatio	n	
	Houro	Houro /		Marks		
4020640 Solid Modelling Practical	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
FIAULUAI	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

A Mechanical Engineering Diploma Engineer is expected to possess a thorough understanding of drawing, which includes clear visualization and proficiency in reading and interpreting a wide variety of production drawing. The market driven economy demands frequent changes in product design to suit the customer requirements. The introduction of this subject is to provide hands on experience in sketching and modeling of the industrial components using any one of the Computer Aided Design and Modelling packages. The aim of this subject is to help the student to attain the industry identified competency through practice in CAD software.

OBJECTIVES:

- Prepare 2D Drawing using sketcher or part modelling of any parametric CAD software.
- Generate 3D Solid models from 2D sketch or part modelling of any parametric CAD software.
- Prepare assembly of part models using assembly of any parametric CAD software.
- Generate orthographic views of 3D solid models/assemblies using drafting of any parametric software.
- Plot a drawing for given part model/assembly.

DETAILED SYLLABUS

Contents: Practical

Introduction

Parametric CAD software – sketch – elements – entities: line – circle – arc – ellipse – polygon – text – dimensions – sketch tools – fillet – chamfer – offset – trim – extend – mirror – rotate – block. Partmodelling– reference planes – reference point – reference axes – co-ordinate system – extrude – revolve – swept – helix and spiral – lofts – dome – shell – draft – rib – wrap – intersect – holes – patterns. Assembly – approaches – mate – coincident – sub assembly –rebuild – isolate. Drawing views – Save – Plot – model view – exploded view – projected view – section view – import – export – Appearance – rendering.

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

- 1. Model 1
- 2. Model 2
- 3. Model 3
- 4. Model 4
- 5. Model 5
- 6. Model 6

PART B: Draw the part models and assemble the components using 3D modelling.

1. Revolving Centre

- 2. Tail stock
- 3. Machine Vice
- 4. Crane hook
- 5. Petrol Engine Connecting Rod
- 6. Pipe Vice

Board Examination

Note: All the exercises should be completed All the exercises should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Record note book should be submitted during examination.

Two exercises will be given for examination by selecting one exercise in each PART. The printout of exercises of the student work should be submitted with answer paper and the same have to be evaluated as per the allocation.

SI. No.	Performance Indicator	Marks				
Part A –	Part A – 3D Component Modelling					
1	Sketching	15				
2	3D Modelling	15				
Part B –	Assemble Drawing Modelling					
3	Sketching / Part modelling	20				
4	Assembly	30				
5	Solid Model / Views	10				
6	Viva voce	10				
	Total	100				

DETAILLED ALLOCATION OF MARKS

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

LIST OF EQUIPMENTS

- Personal computer : 30 Nos.
- Laser Printer : 1 No.
- Software : GUI System Software
 - : Modelling package Sufficient to the strength.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(To be implemented for the students admitted from the year 2020 – 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020651
- Semester : VI

Subject Title : Industrial Robotics and 3D Printing Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examinatio	n	
4020651	Hours	Hours /		Marks		
Industrial Robotics and 3D	dustrial / Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Printing Practical	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Objectives

- Study of Robot / Study of robot simulation software
- To study the components required.
- To study the techniques of programming for various industrial manufacturing applications.
- Prepare a record of work done.
- Acquire knowledge in the field of Additive Manufacturing
- Explain the various concepts of Solid Modelling
- Create STL files to manufacture components using 3D Printer

4020651 INDUSTRIAL ROBOTICS AND 3D PRINTING PRACTICAL DETAILED SYLLABUS

Contents:

3D Printing : Getting to know the User Interface of the Modelling software – Home Screen – Navigating the main Screen – Options Bar – Application Menu & Quick Access Toolbar – Describe the function of a sketch - Describe the various types of sketches. Create sketches of 3D models. Basic Modelling Considerations – Describe part creation within the design process. Add placed features to existing parts. Create complex shapes by sweeping or lofting profiles. Assemblies - Managing the assemblies - Assemble a mechanical piece of equipment using constraints. STL files – introduction – conversion of parts from other file formats to STL file – Additive Manufacturing – types of 3D Printers – orientation and positioning of parts producing 3D working models using 3D Printers.

Exercises

PART A - Robot Programming

- 1. Position recording using Cartesian co-ordinate system (No. of positions 9)
- 2. Position recording using Polar co-ordinate system (No. of positions 9)
- 3. Pick and place the objects No. of objects 6)
- 4. Pick and stack the objects (No. of objects 6)
- 5. Spray painting practice (Area 300mm x 300mm)
- 6. Spot welding practice (No. of spots 9)
- 7. Arc welding practice (Length of weld 50 mm)
- 8. Assembling practice (Minimum 3 Components)
- 9. Profile cutting practice (Complicated profile combination of lines and arcs)

PART B - 3D Printing

- 1. Create the model and produce the Gear Train in 3D printing.
- 2. Create the model and produce the Geneva Gear & Ratchet mechanism.

3. Create the model and produce the Slide-crank mechanism.

<u>Note:</u> Every student is asked to design and produce only one component of an assembly. After the completion of the product, individual parts are checked for its precision and matting in the assembly. Hence group exercises can be given. The models can be scaled according to the print area of the 3D Printer.

Board Examination

Note: All the exercises should be completed All the exercises should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Record note book should be submitted during examination.

Two exercises will be given for examination by selecting one exercise in each PART.

SI. No.	Performance Indicator	Marks				
Part A –	Part A – Robot Programming					
1	Robot Program	20				
2	Simulate / Execution	30				
3	Result	10				
Part B –	3D Prinitng					
4	CAD - Modelling	15				
5	3D Printing	15				
6	Viva voce	10				
	Total	100				

DETAILLED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (For 30 students)

Personal computer	:	10 Nos.
6 Axis Robot	:	1 No.
3D Printer	:	1 No.
Software	:	GUI System Software
	:	Modelling package / 3D Printer
		Sufficient to the strength.

Blank Page

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020652
- Semester : VI

Subject Title : Refrigeration and Air-Conditioning Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020652	Hours	Hours /		Marks		
Refrigeration and Air-Conditioning	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Practical	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify the various tools used in R & AC
- Demonstrate the construction and working of window air conditioner
- Demonstrate the construction and working of split type air conditioner
- Set parameters for comfortable operation of an air conditioner.
- Determine the C.O.P of air conditioner.
- Determine the capacity of window air conditioner.
- Describe the wiring of refrigerator and coolers.
- Perform servicing on air conditioner.

Experiments:

PART A

- Determine the refrigerating effect, C.O.P and the compressor capacity of a open type system with any one expansion device. (Thermostatic expansion valve / Capillary tube / Automatic Expansion Valve)
- 2. Determine the C.O.P of sealed system by using electrical measurements.
- 3. Determine the capacity of a window air conditioner.
- 4. Determine the efficiency of a cooling tower.
- 5. Conduct Leak tests in a split air conditioning system, detect the failures and suggest the remedies. Conduct the Refrigerant Charge Test.
- 6. Conduct the flush test to remove the contaminants of refrigeration system and recharge.

PART- B

- 1. Study the various sizes of copper and steel tubing. To study the various tools used for operations.
- 2. Study and carry out the various operations on copper and steel tubing– Flaring, Swaging and Soldering methods used in R& A.C.
- Study the methods to set and adjust the following a) Thermostats, b) Low pressure and high pressure cut-outs c) Thermostatic expansion valve d) Automatic Expansion Valve.
- 4. Conduct the service to change refrigerant into service cylinder from storage cylinder.
- 5. Conduct the service to pump down the system and to purge air from the system.
- 6. Conduct the service to check the oil level in the compressor and trace the common faults in R & A.C units and their remedies.

BOARD EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one from PART A and one from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- 3. All regular students appearing for first attempt should submit record notebook for the examination.
- 4. The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- 5. The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Detailled Allocation of Marks

PART A

Procedure	-	10
Formulae / Observat	ion -	20
Calculation / Result	-	20
PART B		
Description / Proced	ure -	15
Tool handling	-	15
Conclusion / Report	-	10
Viva voce	-	10
TOTAL	-	100

LIST OF EQUIPMENTS (For 30 students)

WORKING MODELS OF THE FOLLOWING WITH ARRANGEMENTS FOR CONDUCTING TESTS

- 1. Refrigerator with test rig
- 2.Water cooler
- 3. Window A/C with test rig
- 4. Split A/C
- 5. Cooling tower

WORKING MODEL OF THE FOLLOWING TO CONDUCT EXPERIMENTS

- 1. Thermostat units
- 2. Cut off units
- 3. Thermostatic expansion valve unit
- 4. Automatic expansion valve unit
- 5. Sealed compressor with experimental setup

TOOLS:

- 1. Mechanics tool set
- 2. Tube cutter
- 3. Tube bender type
- 4. Tube bender spring
- 5. Swaging tool
- 6. Flaring block
- 7. Flaring nut
- 8. Pinching tool
- 9. Capillary tube testing gauge
- 10. Blow Lamp

SERVICE TOOLS:

- 1. Gas cylinder with receiver valve and key
- 2. Charging System
- 3. Blow lamp
- 4. Stem key
- 5. Spring remover
- 6. Service valve
- 7. 't' connector
- 8. High pressure gauge
- 9. Compound gauge
- 10. Leak detector
- 11. Soldering and Brazing kit.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020653
- Semester : VI

Subject Title : Automobile Technology Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination		
4020653	Hours		Marks			
Automobile Technology	/ Week	Hours / Semester	Internal Assessment	Board Examinations	Total	Duration
Practical	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify the various tools and their applications used in Automobile.
- Dismantle and assemble parts of petrol engine.
- Dismantle and assemble parts of diesel engine.
- Service AC fuel pump, oil pump and water pump.
- Dismantle and assemble fuel injection pump..
- Dismantle and assemble steering gear box.
- Testing and charging of batteries.
- Overhauling of starter motor, alternator.
- Troubleshoot the electrical circuits in automobile.

Exercises

PART-A

- Dismantling and assembling of four stroke petrol engine and identification of parts.
- 2. Removing camshaft, replacing timing gears, removing valves, lapping and adjusting valve clearance.
- 3. Removing, servicing and replacing of fuel pump, oil pump & water pump.
- 4. Removing, servicing & replacing MPFI system.
- 5. Dismantling and assembling of inline fuel injection pump / CRDI system.
- Test a battery with specific gravity test and charge the battery with constant amperage / voltage method.

PART-B

- 1. Removing and replacing of pressure plate and clutch plate, fingers adjustment
- 2. Dismantling, inspecting and assembling of constant mesh gear box and find out the gear ratios.
- 3. Dismantling, assembling and adjusting of steering gear box.
- 4. Dismantling, overhauling and assembling of starter motor / alternator
- 5. Trace the automobile electrical system with respect to battery coil ignition system
- Trace the automobile electrical system with respect to (i) horn relay circuit, (ii)
 Wiper circuit & explain with neat circuit diagram.

BOARD EXAMINATION

Note:

- 1. All the exercises in both sections should be completed. Two expercises will be given for examination by selecting one from PART A and one from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or question paper issued from the DOTE should be followed.
- 3. All regular students appearing for first attempt should submit record notebook for the examination.
- 4. The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- 5. The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Detailled Allocation of Marks

PART A

	Dismantling Procedure	-	20
	Tools handling methods	-	15
	Assembly / Report	-	10
PART	В		
	Dismantling Procedure	-	20
	Tools handling methods	-	15
	Assembly / Report	-	10
Viva v	roce	-	10
ΤΟΤΑ	L	-	100

LIST OF EQUIPMENTS (Sufficient for 30 students)

- 1. Automobile Mechanic's tools-Complete Set
- 2. Internal circlip plier, bearing puller
- 3. Feeler gauge to check valve clearance, hammer and accessories
- 4. Compressor to supply high pressure air to clean oil and water filters.
- 5. 4 stroke petrol engine with all accessories
- 6. 4 stroke Diesel engine with all accessories
- 7. Engine cylinder with liner and cylinder bore dial gauge
- 8. Oil pump and water pump.
- 9. MPFI.
- 10. Inline Fuel Injection Pump
- 11. CRDI
- 12. Injectors.
- 13. Clutch set arrangement with tools
- 14. Complete gear box with tools
- 15. Complete steering arrangement
- 16. Battery and charging set up.
- 17. Measuring instruments
- 18. Consumables

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020660
- Semester : VI
- Subject Title : Project Work and Internship

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Houro	Hours /		Marks		
4020660 Project Work and	/ Week	Hours / Semester	Internal Assessment	Board Examinations	Total	Duration
internship	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE: This subject 'Project Work and Internship" is the continuation of the previuos semester subjects. The students are to implement the detailed project plan, which they have prepared. This project are generally an integration of the various types of skills acquired during their course of study. Hence it is essential that students are given opportunity to develop and integrate the highly essential industry oriented competencies and skills. This subject build up greater confidence to face in the world of work.

OBJECTIVES:

- Implement the theoreticaland practical knowledge gained through the curriculuminto an application suitable for a real practicalworking environment preferablyin an industrialenvironment.
- Implement the planned activity as a team.
- Take appropriate decisions on collected information.

 Carryout cooperativelearning through synchronousguided discussionswithin theclassinkey dates, asynchronousdocumentsharing and discussions, as well as to prepare collaborative edition of the final project report.

Project Work and Internship:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work and Internship:

Project Review I	 10 marks
Project Review II	 10 marks
Attendance	 05 marks (Award of marks same as
	theory subject

pattern)

Total	25 marks	

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work and Internship in Board Examinations:

Total	100* marks	
Internship Report	20 marks	
Viva Voce	30 marks	
Report	25 marks	
Demonstration/Presentation	25 marks	

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work and Internship Board examination.

SANDWICH DIPLOMA COURSE - INDUSTRIAL TRAINING

4020480 Industrial Training I4020720 Industrial Training II

1. Introduction

The main objective of the sandwich Diploma course is to mould a well-rounded technician acclimated with industrial environment while being a student in the institution.

The Sandwich Diploma Course study is pursued by students, in 7 Semesters of 3 ¹/₂ years duration, the subjects of 3years-Full Time Diploma Course being regrouped for academic convenience.

While in the 4th semester students under Industrial Training for 6 months (December through May). They also do course work in the institution for one day in a week, While in the 7th semester they undergo another spell of 6 months (June through November) Industrial training.

The Apprenticeship (Amendment) Act 1973 is followed in regulating the Industrial training procedure for Sandwich Course.

2. Attendance Certification

Every month students have to get their attendance certified by industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution supervisor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.

3. Training Reports

The students have to prepare two types of reports:

- Weekly report in the form of diary to be submitted to the concerned staff incharge of the institution. This will be reviewed while awarding Internal Assessment marks.
- Comprehensive report at the end of each spell which will be used for Board Examination.

3.1 Industrial Training Diary

Students are required to maintain the record of day-to-day work done. Such record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc.). The concern Industrial supervisor is to check periodically these progress reports.

3.2 Comprehensive Training Report

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should be incorporating study of plant/product/process/construction along with intensive in-depth study on any one of the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training. Any data, drawings etc. should be incorporated with the consent of the Organisation.

a. Scheme of Evaluation

1.1 Internal Assessment Marks

First Review (during 3 rd month)	: 10 marks
Second Review (during 5 th month)	: 10 marks
Attendance *	: 05 marks
	(Awarded same as in Theory)
Total	: 25 marks

1.2 Board Examination

Presentation about Industrial Training	: 20 marks
Comprehensive Training Report	: 30 marks
Viva-voce	: 25 marks
Total	: 75 marks

* For awarding marks to attendance, the Industrial Training attendance has to be considered.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 2020 Diploma in Mechanical Engineering (Sandwitch)

Subject Code : 4020710

Semester : VII

Subject Title : Project Work

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examinatio	n	
	Houro	Houro /		Marks		
4020710 Project Work	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

This subject 'Project Work" is the continuation of the previuos semester subjects. The students are to implement the detailed project plan, which they have prepared. This project are generally an integration of the various types of skills acquired during their course of study. Hence it is essential that students are given opportunity to develop and integrate the highly essential industry oriented competencies and skills. This subject build up greater confidence to face in the world of work.

OBJECTIVES:

- Implement the theoretical and practical knowledge gained through the curriculum into an application suitable for a real practical working environment preferably in an industrial environment.
- Implement the planned activity as a team.
- Take appropriate decisions on collected information.

 Carryout cooperative learning through synchronous guided discussions within the class in key dates, asynchronous document sharing and discussions, as well as to prepare collaborative edition of the final project report.

Project Work:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work:

Total	 25 marks
	theory subject pattern)
Attendance	 05 marks (Award of marks same as
Project Review II	 10 marks
Project Review I	 10 marks

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work and Internship in Board **Examinations:**

Total	100* marl
Viva Voce	30 marks
Project Report	30 marks
Demonstration/Presentation	40 marks

otal	100* marks
otal	100* marks

*Examination will be conducted for 100 marks and will be converted to 75 marks.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work Board examination.

DIPLOMA IN ENGINEERING AND TECHNOLOGY

(1030,2030,3030) DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER PATTERN

N – SCHEME

IMPLEMENTED FROM 2020 - 2021

CURRICULAM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICALEDUCATION, CHENNAI – 600025, TAMILNADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS (II / III YEAR)

Chairperson

<u>N Scheme</u>

(Implemented from Academic Year 2020-21 onwards)

Tmt. G. LAXMI PRIYA, I.A.S

Director, Directorate of Technical Education, Chennai 600 025.

Co-Ordinator

Tmt. J. Rama, Principal, Government Polytechnic College,

R.K.Nagar, Chennai-81. Mobile number: 9444748513.

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (1030,2030,3030)		
Convener		
Dr. A. Sankara Subramanian, Principal, GRG Polytechnic College, Coimbatore 641 107.		
Members		
Dr.P.Venkatesh Professor, Department of Electrical and Electronics Engineering, Thiyagaraja College of Engineering, Madurai.	Mr.A.Ponnambalam Principal, P.A. Polytechnic College, Puliampatti, Palladam Road, Pollachi, Coimbatore.	
Mr. R. Subramanian, Head of the Department, Electrical and ElectronicsEngineering, N.P.A. Centenary Polytechnic College, Sakthi Hills, Kotagiri.	Mr.M.A.Suresh Babu, Lecturer (Sr.Gr) Electrical and Electronics Engineering, Thiagarajar Polytechnic College, Salem.	
Dr.K.Mareesan, Lecturer (Sr.Gr – I) Electrical and Electronics Engineering, VSVN Polytechnic College, Virudhunagar.	Er.S.Arumugam, Senior Section Engineer, Dy CSTE/Projects, Southern Railways, Podanur, Coimbatore.	
Mr.Chidhambaram Lecturer (Sr.Gr) Electrical and ElectronicsEngineering, Alagappa Polytechnic College, Karaikudi	Er.P.S.Sundaram, Executive Vice President, MAK Controls Private Limited, Coimbatore.	

DIPLOMA COURSES IN ENGINEERING / TECHNOLOGY

(SEMESTER SYSTEM)

(Implemented from 2020 - 2021)

N – SCHEME

<u>REGULATIONS</u>*

*Applicable to the Diploma Courses other than Diploma in Hotel Management & Catering Technology.

1. Description of the Course:

a. Full Time (3 years)

The Course for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 semesters* and the First Year is common to all Engineering Branches.

b. Sandwich (3¹/₂ years)

The Course for the Sandwich Diploma in Engineering shall extend over a period of three and half academic years, consisting of 7 semesters* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience.

During 4thand/or during 7thsemester the students undergo industrial training for six months/ one year. Industrial training examination will be conducted after completion of every 6 months of industrial training.

c. Part Time (4 years)

The course for the Part Time Diploma in Engineering shall extend over a period of 4 academic years containing of 8 semesters*, the subjects of 3-year full time diploma courses being regrouped for academic convenience.

* Each Semester will have 16 weeks duration of study with 35 hrs. / Week for Regular Diploma Course and 18 hrs. / Week for Part-Time Diploma Course.

The Curriculum for all the 6 Semesters of Diploma courses (Engineering & Special Diploma Courses viz. Textile Technology, Leather Technology, Printing Technology, Chemical Technology etc.) have been revised and revised curriculum is applicable for the candidates admitted from 2020 — 2021 academic years onwards.
2. Condition for Admission:

Condition for admission to the Diploma courses shall be required to have passed in the S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.

(OR)

The Anglo-Indian High School Examination with eligibility for Higher Secondary Course in Tamil Nadu.

(OR)

The Matriculation Examination of Tamil Nadu.

(OR)

Any other Examinations recognized as equivalent to the above by the Board of

Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certainminimum requirements, which may be prescribed from time to time.

3. Admission to Second year (Lateral Entry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for university Courses of study or equivalent examination& should have studied the following subjects.

A pass in 2 Years ITI with appropriate Trade or Equivalent examination.

SI.	Courses	H.SC Academic Courses		H.SC Vocational Subjects Studied		
No		Subjects Studied	Related	Vocation	Courses	
			subjects	al		
				subjects		
1.	All the	Physics and	Mathematics /	Related	2 years	
		Chemistry as	Physics	Vocation	course to	
	Regular and	compulsory along	/ Chemistry	al	be passed	
	Sandwich	with Mathematics /		Subjects	with	
	Diploma	Biology		Theory&	appropriate	
	Courses			Practical	e Trade	

2.	Diploma	English &	English &	Accountancy &
	Course in	Accountancy	Accountancy,	Auditing,
	Modern			
	Office			
	Practice	English &	English &	Banking,
		Elements of	Elements of	
		Economics	Economics,	
				Business
				Management,
		English &	English &	
		Elements of	Management	Co-operative
		Commerce	Principles&	Management
			Techniques,	Management,
			English &	International
			Typewriting	Trade,
			51 - 5	Marketing
				&Salesmanship,
				Insurance&
				Material
				Management,
				Office Secretary
				ship.

- For the Diploma Courses related with Engineering/Technology, the related / equivalent subjects prescribed along with Practicals may also be taken for arriving the eligibility.
- Branch will be allotted according to merit through counseling by the respective Principal as per communal reservation.
- For admission to the Textile Technology, Leather Technology, Printing Technology, Chemical Technology and Modern Office Practice Diploma courses the candidates studied the related subjects will be given first preference.
- Candidates who have studied Commerce Subjects are not eligible for Engineering Diploma Courses.
- 4. Age Limit : No Age limit.
- 5. Medium of Instruction: English

6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3 academic years in any institution affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and two years if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Courses is as givenbelow:

Diploma Courso	Minimum	Maximum
Dipionia Course	Period	Period
Full Time	3 Years	6 Years
Full Time	2 Years	5 Years
(Lateral Entry)		
Sandwich	3½ Years	6½ Years
Part Time	4 Years	7 Years

This will come into effect from N Scheme onwards i.e., from the academic year 2020-2021.

7. Subjects of Study and Curriculum outline:

The subjects of study shall be in accordance with the syllabus prescribed from time totime, both in theory and practical subjects.

The curriculum outline is given in Annexure- I.

8. Examinations:

Board Examinations in all subjects of all the semesters under the scheme of examinations will be conducted at the end of each semester.

The internal assessment marks for all the subjects will be awarded on the basis of continuous internal assessment earned during the semester concerned. For each subject 25 marks are allotted for internal assessment. Board Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks

9. Continuous Internal Assessment:

For Theory Subjects:

The Internal Assessment marks for a total of 25 marks, which are to be distributed asfollows:

i) Subject Attendance 5 Marks

(Award of marks for subject attendance to each subject Theory/Practical will be as perthe range given below)

80%	-	83%	1 Mark
84%	-	87%	2 Marks
88%	-	91%	3 Marks
92%	-	95%	4 Marks
96%	-	100%	5 Marks

ii) Test Marks

2 Tests each of 2 hours duration for a total of 50 marks areto be conducted. Average of these two test marks will be taken and the marks to be reduced to:

The Test – III is to be the Model Examination covering all the five units and the marks obtained will be reduced to: 05 Marks

TEST	UNITS	WHEN TO CONDUCT	MARKS	DURATION
Test I	Unit – I & II	End of 6 th week	50	2 Hours
Test II	Unit – III & IV	End of 12 th week	50	2 Hours
Test III	Model Examination: Covering all the5 Units. (Board Examinations- question paper-	End of 16 th week	100	3 Hours

From the Academic Year 2020 – 2021 onwards.

Question Paper Pattern for the Test -I and Test-II is as follows. The tests should be conducted by proper schedule. Retest marks should not be considered for internal assessment.

10 Marks

05 Marks

Without Choice:

<u>iii) Assignment</u>		5 Marks
	Total	50 marks
Part C Type questions:	2 Questions ×15 marks	30 marks
Part B Type questions:	7Questions ×2marks	14 marks
Part A Type questions:	6 Questions ×1 mark	06 marks

For each subject Three Assignments are to be given each for 20 marks and theaverage marks scored should be reduced for 5 marks.

iv) Seminar Presentation

5 Marks

The students have to select the topics either from their subjects or general subjects which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation. For the Third Year, the students should present the seminar individually.) The seminar presentation is mandatory for all theory subjects and carries 5 marks for each theory subject. The respective subject faculty may suggest topics to the students and will evaluate the submitted materials and seminar presentation. (2½ marks for the material submitted in writing and 2 ½ marks for the seminar presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 5 marks.

All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for one semester after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection/verification.

A. For Practical Subjects:

The Internal Assessment mark for a total of 25 marks which are to be distributed as follows:

a) Attendance	:5Marks
(Award of b) Procedure/ observation and tabula	marks same as theory subjects) tion/
Other Practical related Work c) Record writing	: 10Marks : 10Marks
TOTAL	: 25Marks

- * All the Experiments/Exercises indicated in the syllabus should be completed and the same to be given for final Board examinations.
- * The observation notebook / manual should be maintained for 10 marks. The observation notebook / manual with sketches, circuits, program, reading and calculation written by the students manually depends upon the practical subject during practical classes should be evaluated properly during the practical class hours with date.
- * The Record work for every completed exercise should be submitted in the subsequent practical classes and marks should be awarded for 10 marks for each exercise as per the above allocation.
- * At the end of the Semester, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)
- * Only regular students, appearing first time must submit the duly signed bonafied record notebook/file during the Practical Board Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Logbook of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Logbook of the staff, who is handling the practical subject.

10. Communication Skill Practical, Computer Application Practical and Physical

Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase theCommunication skill and ICT skill of students.

As per the recommendation of MHRD and under Fit India scheme, the Physical education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

11. Project Work and Internship:

The students of all the Diploma Courses must do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. To encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e., institution wise, region wise and state wise. **The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.**

a) Internal assessment mark for Project Work & Internship:

Total	25 marks
	theory subject pattern)
Attendance	 05 marks (Award of marks same as
Project Review II	 10 marks
Project Review I	 10 marks

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

Total	100* marks				
Internship Report	20 marks				
Viva Voce	30 marks				
Report	25 marks				
Demonstration/Presentation	25 marks				
b) Allocation of Marks for Pro	b) Allocation of Marks for Project Work &Internship in Board Examinations:				

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centers / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format must be submitted by individual student during the Project Work &Internship Board examination.

12. Scheme of Examinations:

The Scheme of examinations for subjects is given in Annexure - II.

13. Criteria for Pass:

- No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
- 2. A candidate shall be declared to have passed the examination in a subject if he/she secures not less than 40% in theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Board Examinations marks put together, subject to the condition that he/she secures at least

3. a minimum of 40 marks out of 100 marks in the Board Theory Examinations and a minimum of 50 marks out of 100 marks in the Board Practical Examinations.

14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2023onwards (Joined first year in 2020 -2021) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the subjects and passes all the semesters in the first appearance itself and passes all subjects within the stipulated period of study 2 / $3/3\frac{1}{2}$ 4 years [Full time (lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate marks in all the semesters put together and passes all the semesters except the I and II semester in the first appearance itself and passes all subjects within the stipulated period of study 2 / $3/3\frac{1}{2}$ / 4 years [Full time (lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class:

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all the semesters put together and passes all the subjects within the stipulated period of study $2 / 3/ 3\frac{1}{2}/ 4$ years [Full time (lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

Second Class:

All other successful candidates will be declared to have passed in Second Class.

The above classifications are also applicable for the Sandwich / Part-Time students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 - 2021)

15. Duration of a period in the Class Timetable:

The duration of each period of instruction is1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N - SCHEME

$\mathsf{ANNEXURE} - \mathsf{I}$

CURRICULUM OUTLINE

1030 DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (FULL TIME)

III Semester

Subject		HOURS PER WEEK			
Code	SUBJECT	Theory	Drawing	Practical	Total
Code		hours	hours	hours	hours
4040310	Electronic Devices and Circuits	5	-	-	5
4030320	Electrical Circuit Theory	6	-	-	6
4030330	Electrical Machines -1	5	-	-	5
4040340	Electronic Devices and Circuits			1	4
	Practical	-	-	4	4
4030350	Electrical Circuits and Machines	_	_	1	Δ
	Practical			т	-
4030360	Electrical Workshop Practical	-	-	4	4
4030370	Wiring & Winding Practical	-	-	4	4
		16	-	16	32
	Extra / Co-Curric	ular activiti	es		
Library		-	-	-	1
Physical Education		-	-	-	2
	TOTAL				35

IV Semester

Subject		HOURS PER WEEK				
Codo	SUBJECT	Theory	Drawing	Practical	Total	
Code		hours	hours	hours	hours	
4030410	Electrical Machines -II	5	-	-	5	
4030420	Measurements, Instruments and Transducers	5	-	-	5	
4040430	Analog and Digital Electronics	4	-	-	4	
4020440	E-Vehicle Technology and Policy	4	-	-	4	
4030450	Electrical Machines and Instrumentation Practical	-	-	5	5	
4040460	Analog and Digital Electronics Practical	-	-	5	5	
4030470	Electrical Circuits and Simulation Practical	-	-	4	4	
		18	-	14	32	
	Extra / Co-Curri	icular activ	/ities			
Library		-	-	-	1	
Physical E	Physical Education		-	-	2	
	TOTAL				35	

V Semester

Outling(HOURS PER WEEK			
Subject Code	SUBJECT	Theory	Drawing	Practical	Total
0040		hours	hours	hours	hours
4020510	Concretion Transmission and				
4030510	Switchgear	5	-	-	5
4040520	Micro Controller and its	5	-	-	5
Elective I	Theory				
4030511	Control of Electrical Machines	5	_	-	
4030512	Programmable Logic Controllers	5	-	-	
4030513	Renewable Energy Sources	5	-	-	5
Elective I	Practical				
4030514	Control of Electrical Machines Practical	-	-	5	
4030515	Programmable Logic Controller Practical	-	-	5	5
4030516	Renewable Energy Sources Practical	-	-	5	
4030540	Computer Aided Electrical Drawing Practical	-	-	4	4
4040550	Microcontroller and its Applications Practical	-	-	4	4
4040570	Entrepreneurship and Startups	-	-	4	4
		15	-	17	32
	Extra / Co-Curricu	lar activitie	S	1	1
Library		-	-	-	1
Physical E	ducation	-	-	-	2
	TOTAL				35

Common to all Departments

VI Semester

Subject			HOURS P	ER WEEK	
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4030610	Distribution and Utilization	6	-	-	6
4030630	Energy Conservation and Audit	4	-	-	4
Elective II	Theory				
4030621	Power Electronics	5	-	-	
4030622	Bio-Medical Instrumentation	5	-	-	5
4030623	Computer Hardware and Networks	5	-	-	Ū
4030640	Electrical Estimation and Costing Practical	-	-	5	5
Elective II	Practical				
4030624	Power Electronics Practical	-	-	6	
4030625	Bio-Medical Instrumentation Practical	-	-	6	6
4030626	Computer Hardware and Networks Practical	-	-	6	
4020660	Project Work and Internship	-	-	6	6
		15	-	17	32
	Extra / Co-Curricular	activities	I	I	
	Library	-	-	-	1
	Physical Education	-	-	-	2
	TOTAL				35

ANNEXURE-II

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

SCHEME OF EXAMINATION

1030 DIPLOMA IN ELETRICAL AND ELETRONICS ENGINEERING (FULL TIME) THIRD SEMESTER

		EXAMIN	ATION M	ARKS		
Subject Code	SUBJECT	Internal Assessment Marks	Board Exam Marks	Total Marks	Min. Marks for PASS	Exam Hours
4040310	Electronic Devices and Circuits	25	75	100	40	3
4030320	Electrical Circuit Theory	25	75	100	40	3
4030330	Electrical Machines - I	25	75	100	40	3
4040340	Electronic Devices and Circuits Practical	25	75	100	50	3
4030350	Electrical Circuits and Machines Practical	25	75	100	50	3
4030360	Electrical Workshop Practical	25	75	100	50	3
4030370	Wiring & Winding Practical	25	75	100	50	3

1030 DIPLOMA IN ELETRICAL AND ELETRONICS ENGINEERING (FULL TIME)

III Semester

Subject			HOURS PE	ER WEEK	
Codo	SUBJECT	Theory	Drawing	Practical	Total
Code		hours	hours	hours	hours
4040310	Electronic Devices and Circuits	5	-	-	5
4030320	Electrical Circuit Theory	6	-	-	6
4030330	Electrical Machines -1	5	-	-	5
4040340	Electronic Devices and Circuits Practical	-	-	4	4
4030350	Electrical Circuits and Machines Practical	-	-	4	4
4030360	Electrical Workshop Practical	-	-	4	4
4030370	Wiring & Winding Practical	-	-	4	4
		16	-	16	32
	Extra / Co-Curric	ular activiti	es		
Library		-	-	-	1
Physical E	ducation	-	-	-	2
	TOTAL				35

Subject		HOURS PER WEEK					
Code	SUBJECT	Theory hours	Drawing hours	Practical hours	Total hours		
4030410	Electrical Machines -II	5	-	-	5		
4030420	Measurements, Instruments and Transducers	5	-	-	5		
4040430	Analog and Digital Electronics	4	-	-	4		
4020440	E-Vehicle Technology and Policy	4	-	-	4		
4030450	Electrical Machines and Instrumentation Practical	-	-	5	5		
4040460	Analog and Digital Electronics Practical	-	-	5	5		
4030470	Electrical Circuits and Simulation Practical	-	-	4	4		
		18	-	14	32		
	Extra / Co-Curri	cular activ	/ities	II			
Library		-	-	-	1		
Physical E	ducation	-	-	-	2		
TOTAL							

V Semester

Subject			HOURS PE	R WEEK	
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4030510	Generation Transmission and Switchgear	5	-	-	5
4040520	Micro Controller and its Applications	5	-	-	5
Elective I	Theory				
4030511	Control of Electrical Machines	5	-	-	
4030512	Programmable Logic Controllers	5	-	-	_
4030513	Renewable Energy Sources	5	-	-	5
Elective I	Practical				
4030514	Control of Electrical Machines Practical	-	-	5	
4030515	Programmable Logic Controller Practical	-	-	5	5
4030516	Renewable Energy Sources Practical	-	-	5	
4030540	Computer Aided Electrical Drawing Practical	-	-	4	4
4040550	Microcontroller Practical	-	-	4	4
4040570	Entrepreneurship and Startups	-	-	4	4
		15	-	17	32
	Extra / Co-Curricu	lar activitie	S		
Library		-	-	-	1
Physical E	ducation	-	-	-	2
	TOTAL				35

Common to all Departments

VI Semester

Subject			HOURS PI	ER WEEK	
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4030610	Distribution and Utilization	6	-	-	6
4030630	Energy Conservation and Audit	4	-	-	4
Elective II	Theory				
4030621	Power Electronics	5	-	-	
4030622	Bio-Medical Instrumentation	5	-	-	Б
4030623	Computer Hardware and Networks	5	-	-	5
4030640	Electrical Estimation and Costing Practical	-	-	5	5
Elective II	Practical				
4030624	Power Electronics Practical	-	-	6	
4030625	Bio-Medical Instrumentation Practical	-	-	6	6
4030626	Computer Hardware and Networks Practical	-	-	6	0
4020660	Project Work and Internship	-	-	6	6
		15	-	17	32
	Extra / Co-Curricular	activities	1	I	
	Library	-	-	-	1
	Physical Education	-	-	-	2
	TOTAL				35

DEPARTMENT OF ELETRICAL AND ELETRONICS ENGINEERING

LIST OF ELECTIVE SUBJECTS

Note: Select the Elective Theory and Related Practical subjects.

V Semester

Elective I Theory								
4030511	Control of Electrical Machines	5	-	-				
4030512	Programmable Logic Controllers	5	-	-	_			
4030513	Renewable Energy Sources	5	-	-	5			
	Elective I Practical							
4030514	Control of Electrical Machines							
	Practical	-	-	5				
4030515	Programmable Logic Controller							
	Practical	-	-	5	5			
4030516	Renewable Energy Sources	_	_	5				
	Practical	-	-	5				

VI Semester

Elective II Theory								
4030621	Power Electronics	5	-	-				
4030622	Bio-Medical Instrumentation	5	-	-	5			
4030623	Computer Hardware and Networks	5	-	-				
Elective II Practical								
4030624	Power Electronics Practical	-	-	6				
4030625	Bio-Medical Instrumentation Practical	-	-	6	6			
4030626	Computer Hardware and Networks Practical	-	-	6				

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

ANNEXURE – I

CURRICULUM OUTLINE

3030: DIPLOMA IN ELETRICAL AND ELETRONICS ENGINEERING (PART TIME)

THIRD SEMESTER

Subject	Subject	HOURS PERWEEK				
Code		Theory	Tutorial/			
			Drawing	Practical	Total	
4040310	Electronic Devices and Circuits	4	-	-	4	
4030320	Electrical Circuit Theory	4	-	-	4	
40015	Engineering Graphics - I	-	4	-	4	
40001	Communication Skill Practical	-	-	3	3	
4040340	Electronic Devices and Circuits Practical	-	-	3	3	
	TOTAL	8	4	6	18	

FOURTH SEMESTER

Subject	Subject Subject HOURS PERW				
, Cada		Theory	Tutorial/		
Code			Drawing	Practical	Total
4030330	Electrical Machines -1	4	-	-	4
4030350	Electrical Circuits and Machines Practical	4	-	-	4
40025	Engineering Graphics - II	-	4	-	4
40002	Computer Application Practical	-	-	3	3
4030360	Electrical Workshop Practical	-	-	3	3
	TOTAL	8	4	6	18

FIFTH SEMESTER

Subject	Subject	HOURS PERWEEK				
-			Tutorial/			
Code						
		Theory	Drawing	Practical	Total	
4030410	Electrical Machines -II	4	-	-	4	
4030420	Measurements, Instruments and	3	-	-	3	
	Transducers					
4030510	Generation Transmission and	4	-	-	4	
	Switchgear					
4030450	Electrical Machines and	-	-	4	4	
	Instrumentation Practical					
4030370	Wiring & Winding Practical	-	-	3	3	
	TOTAL	11	-	7	18	

SIXTH SEMESTER

Subject	Subject	HOURS PERWEEK			
-		Theory	Tutorial/	Practical	Total
Code			Drawing		
4040430	Analog and Digital Electronics	4	-	-	4
4030610	Distribution and Utilization	4	-	-	4
4030630	Energy Conservation and Audit	4	-	-	4
4040460	Analog and Digital Electronics Practical	-	-	3	3
4030470	Electrical Circuits and Simulation Practical	-		3	3
	TOTAL	12	-	6	18

SEVENTH SEMESTER

Subject	Subject	HOURS PERWEEK				
Code		Theory	Tutorial/	Practical	Total	
			Drawing			
4040520	Micro Controller and its Applications	4	-	-	4	
Elective-I T	heory					
4030511	Control of Electrical Machines	3			3	
4030512	Programmable Logic Controllers	-				
4030513	Renewable Energy Sources					
4030540	Computer Aided Electrical Drawing Practical	-	-	3	3	
4040550	Microcontroller Practical	-	-	3	3	
Elective-I P	ractical		1	<u> </u>		
4030514	Control of Electrical Machines Practical			3	3	
4030515	Programmable Logic Controller Practical					
4030516	Renewable Energy Sources Practical					
4040570	Entrepreneurship & Startups	-	-	2	2	
	TOTAL	7	-	11	18	

EIGHTH SEMESTER

Subject	Subject	HOURS PERWEEK			
-	-	Theory	Tutorial/	Practical	Total
Code					
			Drawing		
4020440	E-Vehicle Technology and Policy	4			4
Elective-II	Theory	4			4
4030621	Power Electropics	-			
4030021		-			
4030622	Bio-Medical Instrumentation				
4030623	Computer Hardware and				
	Networks				
4030640	Electrical Estimation and Costing			4	4
	Practical				
Elective-II	Practical			3	3
4030624	Power Electronics Practical				
4030625	Bio-Medical Instrumentation				
	Practical				
4030626	Computer Hardware and				
	Networks Practical				
4020660	Project Work and Internship			3	3
	-				
	TOTAL	8	-	10	18

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

ANNEXURE – I

CURRICULUM OUTLINE

2020 DIPLOMA IN MECHANICAL ENGINEERING (SANDWICH)

III Semester

Subject			HOURS PE	ER WEEK	
Codo	SUBJECT	Theory	Drawing	Practical	Total
Code		hours	hours	hours	hours
4040310	Electronic Devices and Circuits	5	-	-	5
4030320	Electrical Circuit Theory	6	-	-	6
4030330	Electrical Machines -1	5	-	-	5
4040340	Electronic Devices and Circuits Practical	-	-	4	4
4030350	Electrical Circuits and Machines Practical	-	-	4	4
4030360	Electrical Workshop Practical	-	-	4	4
4030370	Wiring & Winding Practical	-	-	4	4
		16	-	16	32
	Extra / Co-Currio	cular activit	ies	I	
	Library	-	-	-	1
	Physical Education	-	-	-	2
	TOTAL				35

IV Semester

Subject		HOURS PER WEEK						
Codo	SUBJECT	Theory	Drawing	Practical	Total			
Code		hours	hours	hours	hours			
4030410	Electrical Machines -II	4	-	-	4			
4030450	Electrical Machines and Instrumentation Practical	-	-	3	3			
4020491	Industrial Training - I	-	-	-	NA			
		4		3	7			
Extra / Co-C	Curricular activities							
	Library	-	-	-	-			
TOTAL								

V Semester

Subject		HOURS PER WEEK				
Codo	SUBJECT	Theory	Drawing	Practical	Total	
Code		hours	hours	hours	hours	
4030420	Measurements, Instruments and Transducers	4			4	
4040430	Analog and Digital Electronics	4			4	
4020440	E Vehicle Technology and Policy	4			4	
4030510	Generation Transmission and Switchgear	4			4	
	Elective Theory I	4			4	
4030450	Electrical Machines and Instrumentation Practical			3	3	
4040460	Analog and Digital Electronics Practical			3	3	
4030470	Electrical Circuits and Simulation Practical			3	3	
	Elective Practical I			3	3	
		20		12	32	
Extra / Co-	Curricular activities					
Library		-	-	-	1	
Physical E	ducation*	-	-	-	2*	
	TOTAL		·		35	

• Physical Education hour will be allocated after regular working hour.

			HOURS P	ER WEEK	
Subject	SUBJECT	Theory	Drawing	Practical	Total
Code		hours	hours	hours	hours
4030440	Energy Conservation and Audit	4			4
4040520	Micro Controller and its	5			5
	Applications	5			5
4030610	Distribution and Utilization	5			5
	Elective Theory II	4			4
4030540	Computer Aided Electrical Drawing			2	2
	Practical			5	5
4040550	Microcontroller Practical			3	3
	Elective Practical II			4	4
4040570	Entrepreneurship and startups			4	4
		18		14	32
Extra / Co-	Curricular activities		I	I	
Library		-	-	-	1
Physical E	ducation*	-	-	-	2*
	TOTAL		1	I	35

• Physical education hour will be allocated after regular working hour.

VII Semester

Subject		HOURS PER WEEK					
Codo	SUBJECT	Theory	Drawing	Practical	Total		
Code		hours	hours	hours	hours		
4020660	Project Work and Internship			6	6		
4020791	Industrial Training II				NA		
Extra / Co-	Curricular activities						
Library		-	-	-	1		
TOTAL							

DEPARTMENT OF ELECTRICAL AND ELCTRONICS ENGINEERING

LIST OF ELECTIVE SUBJECTS

Note: Select the Elective Theory and Related Practical subjects.

V Semester

	Elective I T	heory			
4030511	Control of Electrical Machines	4	-	-	
4030512	Programmable Logic Controllers	4	-	-	4
4030513	Renewable Energy Sources	4	-	-	
	Elective I Pra	actical			
4030514	Control of Electrical Machines Practical	-	-	3	
4030515	Programmable Logic Controller Practical	-	-	3	3
4030516	Renewable Energy Sources Practical	-	-	3	

VI Semester

	Elective II The	eory			
4030621	Power Electronics	4	-	-	
4030622	Bio-Medical Instrumentation	4	-	-	4
4030623	Computer Hardware and Networks	4	-	-	
	Elective II Prac	tical			
4030624	Power Electronics Practical	-	-	4	
4030625	Bio-Medical Instrumentation Practical	-	-	4	4
4030626	Computer Hardware and Networks Practical	-	-	4	

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS

N SCHEME

(To be Implemented for the Students admitted from the year 2020 - 2021 onwards)

Course Name : All Branches of Diploma in Engineering and Technology

Subject Code : 4040310

Semester : III Semester

Subject title : ELECTRONIC DEVICES AND CIRCUITS

TEACHING AND SCHEME OF EXAMINATION

No of weeks/ semester: 16weeks

	Instruction		Examination				
Subject	Hours Hours		Marks				
-	/Week	/Semester	Internal	Board	Total	Duration	
			Assessment	Examination	Total		
ELECTRONIC DEVICES AND CIRCUITS	5	80	25	100*	100	3 Hrs	

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS AND ALLOCATION OF HOURS

UNIT	TOPIC	Hrs
I	Filters, Zener diode and Opto-electronic devices	14
II	Bipolar Junction Transistor, Field Effect Transistor and UJT	16
	Feedback, Amplifiers and Oscillators	16
IV	Special Semiconducting Devices (SCR, DIAC AND TRIAC)	14
V	Wave shaping Circuits	13
	Tests and Model Exam	7
	Total	80

RATIONALE:

Every Electronics Engineer should have sound knowledge about the components used in Electronics Industry. This is vital in R&D Department for chip level troubleshooting. To meet the industrial needs, diploma holders must be taught about the most fundamental subject, Electronic Devices and Circuits. By studying this subject, they will be skilled in handling all types of electronic devices and able to apply the skill in electronics system.

OBJECTIVES:

On completion of the following units of syllabus contents, the students must be able to:

- Know the importance of Filters
- > Know the construction, working principle and applications of Zener diode
- > Know the construction, working principle and applications of Optoelectronic devices
- > Know the biasing methods of Transistors and their applications
- Study the performance of special devices like UJT, FET
- Study the Concept of Feedback, different types of Negative feedback connections
- > Know the Types of Transistor amplifiers, Transistor oscillators and their applications
- Study the performance of Special semiconducting devices like SCR, DIAC, and TRIAC
- Explain the concept of wave shaping circuits, Bistable Multivibrator and Schmitt trigger
- Study the working principle of Clippers, Clampers, Voltage Multipliers and their applications

DETAILED SYLLABUS

Unit	Name of the topics	Hours
Ι	FILTERS, ZENER DIODES AND OPTO-ELECTRONIC DEVICES	
	1.1: FILTERS	5
	Definition - Types - Capacitor filter - Inductor filter - L section filter - Pi section	
	and RC filter - Comparison and Applications of Filters	
	1.2: ZENER DIODE	5
	Construction, Working principle and Characteristics of Zener Diodes- Zener	5
	Breakdown-Avalanche breakdown- Zener diode as a Voltage regulator.	
II	BIPOLAR JUNCTION TRANSISTOR (BJT), FIELD EFFECT TRANSISTOR	
	(FET) AND UNI JUNCTION TRANSISTOR (UJT)	
	2.1: BIPOLAR JUNCTION TRANSISTOR	7
	Transistor biasing: Need for biasing - Types- Fixed bias, Collector to base bias	
	and Self bias (Operation only, no derivation of circuit elements and	
	parameters)- Define: Stability factor - Operation of Common Emitter Transistor	
	as an Amplifier and as a switch.	
	2.2: FIELD EFFECT TRANSISTOR (FET)	
	Construction – Working principle–Classification - Drain and Transfer	5
	Characteristics - Applications - Comparison between FET and BJT - FET	
	amplifier (common source amplifier).	
	2.3: UNIJUNCTION TRANSISTOR (UJT)	
	Construction-Equivalent Circuit-Operation-Characteristics-UJT as a relaxation	4
	oscillator.	
	FEEDBACK, AMPLIFIERS AND OSCILLATORS	
	3.1: FEEDBACK	6
	Concept - effects of negative feedback-Types of negative feedback connections	
	- Applications	
	3.2: AMPLIFIERS	6
	Transistor amplifiers - Types - RC coupled amplifier - Working and Frequency	,
	response characteristics –Working of Common Collector Amplifier (Emitter	
	follower)	
	3.3: OSCILLATORS	4
	Transistor oscillators –Conditions for oscillation (Barkhausen criterion)-	

	Classifications- Hartley Oscillator- Colpitts Oscillator - RC Phase shift oscillator.	
IV	SPECIAL SEMICONDUCTING DEVICES (SCR, DIAC AND TRIAC)	
	4.1:SCR (SILICON CONTROLLED RECTIFIER)	-
	Symbol – Layered Structure – Transistor analogy - Working–VI characteristics–	5
	Applications - Comparison between SCR and Transistor	
	4.2: DIAC (Diode for Alternating Current)	5
	Symbol – Layered structure - Working – VI characteristics- Applications	
	4.3: TRIAC (Triode for Alternating Current)	4
	Symbol – Layered structure - Working – VI characteristics- Applications	
V	WAVE SHAPING CIRCUITS	
	5.1: CLIPPERSAND CLAMPERS	_
	Construction and working of Positive, Negative and biased Clippers -	5
	Construction and working of Positive and Negative Clamper	
	5.2: Voltage Multipliers	
	Construction and working of Voltage Doubler and Tripler.	3
	5.3: Multivibrator and Schmitt Trigger	
	Construction – Working – Waveform of Astable and Monostable Multivibrator	
	using Transistors and Schmitt Trigger using Transistors.	5

TEXT BOOKS:

- Electronics Devices & Circuits by Salivahanan S,N.Suresh Kumar, A.Vallavaraj Tata McGraw Publication 3rdEdition 2016
- Electronics Devices & Circuits by Jacob Millman and Halkias 3rd Edition, 2010, Tata McGraw
 – Hill publication

REFERENCE BOOKS:

- Electronics Devices & Circuits by Salivahanan S,N.Suresh Kumar, A.Vallavaraj Tata McGraw Publication 3rdEdition 2016
- Electronics Devices and circuit theory by Boyestad & Nashelsky, PHI, New Delhi 2009
- 3. Electronic Principles by Malvino, -Tata McGraw Hill Publication 2010.
- 4. Optical Fiber Communication by Gerd Keiser 5th Edition, Tata McGraw– Hill.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030320

: 111

- Semester
- Subject Title : ELECTRICAL CIRCUIT THEORY

TEACHING AND SCHEME OF EXAMINATION

No of weeks per Semester: 16 weeks

	Instructions		Examination			
Subject	Hours	Hours / Semester	Marks			
Subject	/ Week		Internal Assessment	Board Examinations	Total	Duration
ELECTRICAL CIRCUIT THEORY	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 Marks, and it will be reduced to 75 Marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	DC Circuits	18
Π	Circuit Theorems	18
	Single Phase Circuits	18
IV	Three phase Circuits	18
V	Storage Batteries	17
Test & Model Exam		
	Total	96

RATIONALE:

- Electric circuit analysis is the process of finding the voltages across, and the currents through the components in the network. Many Techniques are available for calculating these values.
- Part of the course is deal with basics of Network Analysis, introduction to network elements and explains methods for finding voltage and current across any network Component with DC Source, Single Phase AC and Three Phase AC Sources.
- This Course aims at making the student to conversant with different techniques of solving the problems in the field of Electric Circuits and Analysis.

OBJECTIVES:

The students should be able to:

- Explain the concept of Resistance, Capacitance and analyze different Circuit Elements, Energy Sources and analysis of Networks by Kirchhoff's Laws.
- Analyze the concepts of Nodal and Mesh Analysis and Analyze different Theorems for DC Circuits.
- Analyze Single Phase Circuits using Resistor, Inductor & Capacitor Elements.
- Analyze Balanced Three Phase AC Circuits and perform the Three Phase Power Measurement Calculations.
- Explain the Concept of storage batteries, care, maintenance and applications.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
	DC CIRCUITS	
	Basic Concepts of Current, EMF, Potential Difference, Resistance	
	and Resistivity– Ohm's Law –Work, Power, Energy- Resistance in	
I	Series, Parallel and Series - Parallel Circuits — Kirchhoff's Laws	18
	- Concept of Capacitance - Capacitors in Series and in Parallel -	
	Problems in the above Topics.	
	CIRCUIT THEOREMS	
	Definitions of Node, Branch and Network – Mesh Equations–Nodal	
	Equations–Star / Delta Transformations – Superposition Theorem	
11	– Thevenin's Theorem –Norton's Theorem – Maximum Power	18
	Transfer Theorem. (Problems in DC Circuits only)	
	SINGLE PHASE CIRCUITS	
	Definitions of Sinusoidal Voltage and Current- Instantaneous, Peak,	
	Average and Effective Values – Form Factor and Peak Factor	
III	(Derivation for Sine Wave) – Pure Resistive, Inductive and	10
	Capacitive Circuits – RL, RC, RLC Series Circuits – Impedance	
	– Phase Angle – Use of 'J' Notations–Rectangular and Polar	
	Coordinates - Phasor Diagram	
	Power and Power Factor – Power Triangle – Apparent Power,	
	Active and Reactive Power- Parallel Circuits (Two Branches	
	Only)- Conductance, Susceptance and Admittance–Problems in	
	Concept of Series Resonance — Parallel Resonance (P. J. 9. C)	
	Applications (No Problems)	8

	THREE PHASE AC CIRCUITS		
	Three Phase AC Systems-Phase Sequence –Necessity of Three		
	Phase System-Concept of Balanced and Unbalanced Load -		
	Balanced Star & Delta Connected Loads-Relation between Line		
IV	andPhase Voltages and Currents — Phasor Diagram		
	Three Phase Power — Power Factor — Three Phase Power and		
	Power Factor Measurement by Single Wattmeter and Two	10	
	Wattmeter Methods–Problems in all Topics.		
	STORAGE BATTERIES		
	Classification of cells – Construction, Chemical action and physical		
	changes during charging and discharging of Lead Acid, Nickel Iron		
	and Nickel Cadmium Cells – Advantages and Disadvantages of		
v	Nickel Ion and Nickel Cadmium Cells over Lead Acid Cell -		
•	indication of fully charged and discharged battery - defects and	17	
	their remedies – capacity - AH efficiency and WH efficiency (no		
	problems) – methods of charging - care and maintenance –		
	applications – maintenance free batteries – Lithium Cells, Lithium -		
	Ion Cells and Mercury Cells – Concept of Recharged Cell.		

ТЕХТВООК

S.No	Name of the Book	Author	Publisher
1.	Electric Circuit Theory	Dr.M.Arumugam	Khanna Publishers

REFERENCE BOOKS

S.No	Name of the Book	Author	Publisher
1.	Circuits and Networks Analysis and Synthesis	A Sudhakar Shyammohan S Palli	Tata McGraw Hill Education Private
2.	Electric Circuits	Mahamood Nahvi Joseph A Edminister	Schaum Publishing Company, Newyork
STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030330
- Semester : III Semester
- Subject Title : ELECTRICAL MACHINES-I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours /	Marks			
	Week Semeste	Semester	Internal Assessment	Board Examinations	Total	Duration
ELECTRICAL MACHINES-I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks, and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.	
I	DC Generators	15	
II	DC Motors	15	
	Single Phase Transformer	15	
IV	Three Phase Transformer	15	
V	Maintenance of DC Machines and Transformers	13	
Test & Model Exam			
	Total	80	

RATIONALE

- This subject is classified under core technology group which intends to teach the facts, concepts, principles of electrical machines, such as DC generators, DC motors, Brushless DC motor, Single & Three Phase Transformers and DC Electrical Source (battery).
- Students will be able to analyze the characteristics of DC Generators and Motors, Brushless Dc Motor, Single & Three Phase Transformer, Battery & Qualitative Parameters of these Static and Dynamic Machines. These Machines are used in Transmission, Distribution and Utilization Systems.
- Knowledge gained by students will be helpful in the study of advanced subjects like Utilization of Electrical Energy, Switchgear & Protection, Manufacturing Processes and Maintenance of Electrical Machines.

OBJECTIVES

Students will be able to:

- 1. Explain the concept Electromagnetism and Principles.
- 2. Know the constructional details and working principles of DC Machines and Transformers.
- 3. Evaluate the performance of DC Generators, Motors and Transformers.
- 4. Study the applications of DC Generator, Motor and Transformer for specific fields.

Contents: Theory

Unit	Name of the Topics	Hours
	DC GENERATORS	
	Review of electromagnetic induction - Faraday's laws -Lenz's law -	
	Fleming's right hand rule - Principle of operation of D.C. generator -	
	Construction of D.C. generator – Types of armature windings(No Winding	
	diagram) – EMF equation(Simple problems) –Types of D.C. generators –	15
	No load and load characteristics of DC generators - Causes of failure to	
	build-up voltage and remedy - armature reaction - methods of	
	compensating armature reaction - process of commutation - methods of	
	improving commutation. Load characteristics of DC generators -	
	Applications of DC generators	
	DC MOTORS	
	Principle of operation of D.C. Motor – Fleming's left-hand rule –	
	Construction Back emf – Torque equation – Types of DC motors – Torque-	
	current, Speed-current, Speed- Torque characteristics of different DC	
П	motors – Speed control of DC motors– Field control and armature control –	15
	necessity of Starters- 3 Point and 4 Point starters -losses in D.C.	
	Machines – Testing of D.C. Machines – Predetermination of efficiency of	
	motor and generator by Swinburne's test – Problems in the above topics –	
	Applications of D.C. Motors.	
	SINGLE PHASE TRANSFORMER	
	Principle of operation - Constructional details of core and shell type	
	Transformers – EMF Equation – Voltage ratio – Transformer on No load –	
	Transformer Full load – Current ratio – Phasor diagram on no load and Full	
Ш	load at different power factors. O.C. test, S.C. test -Determination of	15
	equivalent circuit constants- Determination of voltage regulation and	
	efficiency - Condition for maximum efficiency- All day efficiency -	
	Problems on the above topics - polarity test-Parallel operation of Single	
	Phase transformers- Auto transformer -principle - Applications of	

	transformers - Energy Efficient Transformer - Dry Type Transformer &	
	Amorphous Core Transformer.	
	THREE PHASE TRANSFORMER	
	Three phase Transformer - construction, types of connections of	
	transformer. Parallel operation of three phase transformers – grouping of	
IV	transformers – Pairing of transformers - Load sharing of transformers with	15
	equal and unequal ratings –Cooling of transformers – Various cooling	
	arrangements – Transformer accessories – conservator, breather,	
	explosion vent, bucholz relay – ON load and OFF load tap changer.	
	MAINTENANCE OF DC MACHINES AND TRANSFORMERS	
	Maintenance – Importance, Preventive and Breakdown maintenance -	
	Advantages of preventive maintenance - Causes of Sparking in	
	Commutators – Defects in Commutators and Remedies – Resurfacing of	
V	Commutators and Brushes – Maintenance of Brush Holder – Staggering of	13
	Brushes, Brush Pressure - Defects in DC Armature winding – Maintenance	
	of Earthing of DC Machines.	
	Maintenance of Transformer Oil - Transformer oil tester – Acidity test, BDV	
	Test - Earthing – Measurement of earth resistance.	

TEXTBOOK

SI.No.	NAME OF THE BOOK	AUTHOR	PUBLISHER
1	A Textbook of Electrical	B.L. Theraja	S.Chand & Co.New
	Technology Volume II		Delhi
2	Electrical Technology	Edward Hughes	Addision – Wesley International
			Student Edition

REFERENCE BOOK

SI.No.	NAME OF THE BOOK	AUTHOR	PUBLISHER
1	Elements of Electrical Engineering	Maria Louis	Prentice - Hall of India Pvt
2	Electrical Machines	Nagarath	TMH Publications
3	Electrical Machines	Bhattacharya	TMH Publications

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : All Branches of Diploma in Engineering and Technology
- Subject code : 4040340
- Semester : III

Subject title : ELECTRONIC DEVICES AND CIRCUITS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No. of weeks/ Semester: 16weeks

	Instruction		Examination			
			Marks			
Subject	Hours Hours /week /semester	Internal Assessment	Board Examination	Total	Duration	
ELECTRONIC DEVICES AND CIRCUITS PRACTICAL	4	64	25	100*	100	3 Hours

*Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Every Electronics Engineer should have sound knowledge about the components used in Electronics Industry. This is vital in R&D Department for chip level troubleshooting. To meet the industrial needs, diploma holders must be taught about the most fundamental subject, electronic devices and Circuits Practical. By doing practical experiments in this, they will be skilled in handling all types of electronic circuits and able to apply the skill in electronic systems.

OBJECTIVES:

On completion of the following experiments, the students must be able to

- > Know the Cold Checking of Active and Passive Component
- > Find out the Unknown Resistance value of a Resistor using Colour Coding
- > Find out the Unknown Capacitance value of a Capacitor using Colour Coding

- > Find out the Unknown Inductance value of an Inductor using Colour Coding
- > Understand the concept, working principle and applications of PN Junction diode
- > Understand the concept, working principle and applications of Zener diode
- > Understand the concept, working principle and applications of BJT and FET
- > Understand the concept, working principle and applications of UJT
- Understand the concept, working principle and applications of SCR
- > Understand the concept, working principle and applications of DIAC and TRIAC
- > Understand the concept, working principle and applications of Clippers and Clampers
- Understand the concept, working principle and applications of various types of Negative feedback amplifiers
- > Understand the concept, working principle and applications of Astable Multivibrator

Contents: Practical

Exercises

Note: At least 5 experiments should be done using Soldering board / Bread board

- 1. Construct a circuit to test the forward and reverse bias characteristics of a PN Junction Silicon diode. Find the value of its cut-in voltage
- Construct a circuit to test the forward and reverse bias characteristics of a Zener diode. Find the value of its reverse breakdown voltage
- Construct a Full wave (center tapped) rectifier and test its input and output waveforms with and without Capacitor filter. Find its maximum voltage.
- Construct a Full wave (Bridge) rectifier and test its input and output waveforms with and without Capacitor filter. Find its maximum voltage.
- 5. Construct a Common Emitter Transistor circuit and test its input and output characteristic curves
- Construct a Common Source Field Effect Transistor circuit and test its drain and transfer characteristic curves.
- Construct a circuit to test the Turning on and Turning off characteristics of SCR and find out the forward break over voltage, the value of Latching and Holding currents.
- Construct a circuit to test the bidirectional characteristics of DIAC and plot its switching characteristics.

- 9. Construct a circuit to test the bidirectional characteristics of TRIAC and plot its switching characteristics.
- 10. Construct a Common emitter amplifier circuit and test its frequency response characteristics with and without Current series feedback introduced in it.
- 11. Construct a circuit to test the switching characteristics of Astable Multivibrator
- 12. Construct a circuit to test the negative resistance Characteristics of UJT.

DETAILED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1	CIRCUIT DIAGRAM	25
2	CONNECTIONS	25
3	EXECUTION AND HANDLING OF EQUIPMENT	25
4	OUTPUT / RESULT	15
5	VIVA VOCE	10
	TOTAL	100

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S.No	Name of the Equipment	Range	Required Quantity
1.	DC Regulated power supply	0-30V,1A	10
2.	High Voltage Power Supply	0-250V,1A	2
3.	Signal Generator	1MHz	4
4.	Dual trace CRO	20MHz/ 30MHz	5
5.	Digital Multimeter	-	10
6.	DC Voltmeter (Analog/Digital)	Different Ranges	15
7.	DC Ammeter (Analog/Digital)	Different Ranges	15

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030350

Semester : III Semester

Subject Title : ELECTRICAL CIRCUITS AND MACHINES PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks			Duration
			Internal	Board	Total	Duration
			Assessment	Examinations		
ELECTRICAL						
CIRCUITS AND			05	400*	400	0.11
MACHINES	4	64	25	100^	100	3 Hrs.
PRACTICAL						

* Examinations will be conducted for 100 marks, and it will be reduced to 75 marks. RATIONALE:

- To impart Practical Knowledge to the Diploma Students and Practical Subjects are introduced for every corresponding Theory Subject.
- This Practical Course supports the aim and objective of Electrical Machines- I and Electrical Circuit Theory Subjects.

OBJECTIVES

On completion of this Practical Subject, the Students will be able to:

- Make the various Circuit connections in Machines Laboratory.
- Practically prove all the Theorems and Principles which are dealing with DC Current.
- Understand the Characteristics of Electrical Machines and to determine the Efficiency of the Machines.

- Test the performance of Transformer to find its Efficiency, Voltage Regulation and Characteristics.
- Study the various Speed Control Methods of DC Motor.

ELECTRICAL CIRCUITS AND MACHINES PRACTICAL

LIST OF EXPERIMENTS:

CIRCUITS:

- 1. Verification of Super Position Theorem with two different DC Voltages for a common load.
- 2. Verification of Thevenin's Theorem with DC Supply
- 3. Measurement of Power
 - a. using Ammeter and Voltmeter
 - b. using Wattmeter for Single Phase Resistive Load.

MACHINES:

- 4. No load and FULL Load Characteristics of Self Excited DC Shunt Generator.
- 5. Load Characteristics of Self Excited DC Series Generator.
- 6. Load Test on DC Shunt Motor and Draw the Performance Curve.
- 7. Load Test on DC Series Motor and Draw the Performance Curve.
- 8. Predetermine the Efficiency of DC Machines by Swinburne's Test.
- 9. Speed Control of DC Shunt Motor by
 - a. Armature Control Method
 - b. Field Control Method
- 10. Load Test on Single Phase Transformer
- 11. Load Test on Three Phase Transformer
- 12. Predetermine the Efficiency and Regulation of Single-Phase Transformer by conducting O.C and S.C Tests
- 13. Find the Equivalent Circuit Constants of Single-Phase Transformer by conducting O.C and S.C Tests.
- 14. Connect two Single Phase Transformers for Parallel Operation.
- 15.a) Perform Breakdown Test And determine the Dielectric Strength of Transformer Oil
 - b) Conduct Acidity Test on Transformer Oil.

DETAILLED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1	CIRCUIT DIAGRAM	35
2	CONNECTIONS AND PROCEEDING THE EXPERIMENT	30
3	READING/CALCULATION/GRAPH/RESULT	30
4	VIVA VOCE	05
5	TOTAL	100

LIST OF EQUIPMENTS (For a Batch of 30 Students)

S.No	LIST OF EQUIPMENTS	QUANTITY REQUIRED		
1	DC Shunt Motor 3/5 KW (or more) with Loading Arrangement	2		
2	DC Series Motor 3/5 KW (or more) with Loading Arrangement	1		
3	DC Compound Motor 3/5 KW (or more) with Loading Arrangement	1		
4	DC Shunt Generator 3/5 KW (or more) coupled with Prime Mover	1		
5	DC Series Generator 3/5 KW (or more) coupled with Prime Mover	1		
6	1 Phase Transformer 1KVA (or more) 220V/110V	3		
7	3 Phase Transformer 1KVA (or more) 440V/220V	1		
8	1 Phase Variac 15 amps	3		
9	3 Phase Variac 15 amps	1		
10	Dual Regulated Power Supply 0-30V/2A			
11	Single Regulated Power Supply 0-30V / 2A	2		
12	Single Phase Resistive Load 3/5 KW, 220V	2		
13	Three Phase Resistive Load 3KW,415V	2		
14	Tachometer Analog type	3		
15	Rheostat – various ranges $50\Omega/5A,100 \Omega/5A, 300 \Omega/2A, 600 \Omega/2A$ (or equivalent)	4		
16	AC Ammeter – various ranges 0-500mA, 0-1/2A, 0-5/10A,0-10/20A (or equivalent)	8		

17	DC Ammeter – various ranges 0-500mA, 0-2A,0-5A,0-10A,0- 15/30A (or equivalent)	8
18	DC Voltmeter – 0-5/10V, 0-30V, 0-300V	8
19	AC Voltmeter – 0-75V, 0-150V, 0-300V, 0-600V	8
20	Wattmeter – various ranges LPF 150/300/600V 2.5A/5A,1/2.5A	6
21	Wattmeter – various ranges UPF 75/150/300,5/10A	6
22	Wattmeter – various ranges UPF 150/300/600V 10/20A	6
23	Transformer oil tester kit, Acidity test kit	Each 1

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030360
- Semester : III Semester
- Subject Title : ELECTRICAL WORKSHOP PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per Semester: 16 weeks

	Instru	ctions	Examination			
Subject	Hours /	Hours /		Marks		
	Week	Semester	Internal Assessment	Board Examination	Total	Duration
ELECTRICAL						
WORKSHOP PRACTICAL	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks, and it will be reduced to 75 Marks. RATIONALE

- To impart practical knowledge to the Diploma Students for servicing of Domestic Appliances.
- This Subject is assigned to develop Skill on Assembling and test the Household ElectricalAppliances.

OBJECTIVES

At the end of the practical the students will be able to:

- ✓ Identify and use the tools used in servicing of Electrical Appliances.
- ✓ Assemble the various parts of Domestic Appliances.
- ✓ Make the Electrical Connections and test their performance.

LIST OF EXPERIMENTS:

- Familiarization of tools used for Electrical repair works and personal Protection Equipments.
- Dismantling of Electrical Iron Box, identifying the parts, checking theconditions, assembling, and testing.
- 3. Dismantling of Mixer Grinder, identifying the parts, checking the conditions, assembling and testing.
- 4. Dismantling of Wet Grinder, identifying the parts, checking the conditions, assembling, and testing.
- Assembling the accessories of Ceiling Fan, test the connections of winding& Capacitor and run the Fan with Speed Regulator.
- Connect the Battery and Inverter to supply partial load in a Domestic Wiring during Mains Failure.
- 7. Assembling and testing of 15watts LED Light.
- Battery Charging through Solar Panel. Connect Solar Panel to chargeBattery through Charge Controller.
- Dismantling of Induction Heater, identifying the parts, checking theconditions, assembling, and testing
- 10. Dismantling of Microwave Oven, identifying the parts, checking theconditions, assembling and testing.

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S No		QUANTITY
3.NU	LIST OF EQUIPMENTS	REQUIRED
	Tools: Screwdriver, Cutting pliers, Wire Stripper,	
1.	Hammer, Spanner set, Line Tester, Nose pliers.	Each2set
	Personal Protective Equipments: Safety helmet, Google,	
2.	Safety gloves, Nose mask, Ear plug, Safety Belt.	Each2Set
3.	Automatic Iron Box	2
4.	Wet Grinder	2
5.	Mixer Grinder	2
6.	Ceiling Fan	2
7.	LED Light, PCB, Driver Circuit and Outer Cover	10
8.	Lead Acid Battery	2
9.	Inverter	2
10.	Solar Photo Voltaic Module	2
11.	Charge controller	2
12.	Microwave oven	1
13.	Multi meter	8
14.	Induction Heater	1

DETAILED ALLOCATION OF MARKS

S.No.	NAMEOFTHE ACTIVITY	MARKS ALLOCATED
1.	Connection Diagram	25
2.	Tools Required	20
3.	Dismantling and Assembling Procedure	30
4.	Testing	20
5.	Viva Voce	05
	TOTAL	100

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name : Diploma in Electrical and Electronics Engineering

- Subject Code : 4030370
- Semester : III Semester

Subject Title : WIRING & WINDING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per Semester: 16 weeks

	InstructionsExaminationJbjectHours / Hours / WeekHours / SemesterMarksInternal AssessmentBoard ExaminationsTotalRING & NDING46425100*100					
Subject	Hours /	Hours /	Marks			
	Week	k Semester	Internal Assessment	Board Examinations	Total	Duration
WIRING & WINDING PRACTICAL	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks, and it will be reduced to 75 marks.

RATIONALE

To provide concept and hands on experience in Electrical Wiring and Winding including different Wiring Systems, Installation Methods and Basic Winding Preparation. Each topic in the syllabus serves as guide for students to deal with the process of connecting various accessories for the distribution of Electrical Energy from the Meter Board.

OBJECTIVES

At the end of this Practical Course the Students should be able to:

- Execute the Emergency Alarm Circuit
- Execute the wiring for Single Phase Service Connection with necessary items.
- Execute the wiring of Three Phase Supply using 3 Rotary Switches, MCB and DB tochange the Phases by connecting Single Phase Lamp Load
- Execute the wiring to controlling the intensity of Lamp by six places by using two 2-Way Switches and 4 Intermediate Switches.
- Execute the wiring to connect a Single-Phase Motor with Main Switch, D.O.L Starterand M.C.B
- Execute The Wiring to Connect A 3 Phase Induction Motor with Main Switch, Star / Delta Starter and E.L.C.B.
- Execute the wiring to control lamps (Sodium Vapor Lamp, Mercury Vapor Lamp, Fluorescent Lamp)
- Execute the wiring for Test Board with necessary items.
- Execute the Go down /Tunnel wiring
- Prepare winding for Transformer and No Volt Coil.
- Give end connections for 3 Phase Induction Motor Winding.
- Testing of faulty Ceiling Fan.

Contents: Practical

Name of the Topics:

WIRING

- 1. Emergency alarm wiring with 3 Bells and 3 Pushbuttons.
- 2. House Wiring for a Service Connection with Single Phase Digital Energy Meter Cutout, Main Switch, 4 Way D.B, Indicator Lamp.
- 3. Wiring and Testing of 3 Phase Supply using 3 Rotary Switches, MCB and DB to change the Phases by connecting Single Phase Lamp Load.
- Controlling a Lamp by Six Places by using Two, 2-Way Switches& Four Intermediate Switches.
- 5. Wiring of Single-Phase Motor using Single Phase Main Switch, D.O.L Starter and MCB
- Wiring of Three Phase Induction Motor with Main Switch, Star/Delta Starter and ELCB.
- 7. Wiring of Sodium Vapor and Mercury Vapor Lamp.
- 8. Wiring and troubleshooting the Fluorescent Tube light.
- Design and implement a Test Board with Indicator Lamp, FuseUnit to Test Electrical Appliances.
- 10. Go down / Tunnel wiring using 4 Lamps.

WINDING

- 1. Design, construct and test a 230/12-0-12 Volt, 500mA Transformer.
- 2. Design No Volt Coil for a 230/440 AC Contactor.
- Demonstrate the end connection for a 3 Phase Induction MotorWinding for a 2 Poles / 4Pole Operations.
- 4. Dismantling a faulty Ceiling Fan and identify the fault, run the fanafter rectifying the fault.

DETAILED ALLOCATION OF MARKS

S. No	NAME OF ACTIVITY	MARK ALLOCATION
1.	Wiring diagram / Design	30
2.	Execution	40
3.	Result	25
4.	Viva-voce	05
	Total Marks	100

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S.NO.	DESCRIPTION	SPECIFICATION	QTY
1	SPST Fluch Type Switch	250\//54	10
<u> </u>		250V/5A	10
<u> </u>	Retory Switches	200V/3A	10
3.	Three Dhase Control Danel Board	500V/32A	0
4.	Detter Lever Helder	500V/32A	2
5.	Batten Lamp Holder	-	10
6.		-	20
7.	Switch Board	20cm~15 cm	4
		10cm^10cm	15
8.	M.C.B.	250V/10A ,2 pole	6
		440V/32A	3
9.	Push Button Switch	250V/5A	5
10.	2 Plate Ceiling Rose	250V/5A	10
11.	Electric Bell	250V/5A	3
12	Single Phase D.P.I.C. Main Switch	250V/16A	3
13.	Single Phase D.O.L. Starter	250V/10A	1
14.	Three Phase T.P.I.C. Main Switch	500V/30A	2
15.	Star / Delta Starter	440V/5HP	1
16.	E.L.C.B.	30mA/100mA	1
17.	Single Phase, Digital Energy Meter	250V/15A,50HZ	1
18.	Cut out	16A	1
19.	Single Phase, 4 Way Distribution Box	250V/15A	2
20.	Mercury Vapor Lamp with accessories		1 Set
21.	Sodium Vapor Lamp with accessories		1 Set
	Fluorescent Tube Light with Electronic	40W	2 Set
22.	Choke and Holder		
23.	Two Way Flush Type Switch	250V/5A	15
24.	Wooden Box	30 cm*15cm	4
25.	PVC Pipe	³ ⁄4"/1″	Req.Qty
26.	Saddle Clips	³ / ₄ "/1 "	Req.Qty
	Copper Wire	2.5Sq.Mm,	Req.Qty
27.		1.5Sq.Mm	
28.	1" Junction Box	1 way,2way,3way	Req.Qty
29.	Screws		Req.Qty
30.	Bare Copper Wire	2.5 Sq.Mm	Req.Qty
31.	Lamps (C.F.L. or Incandescent)	Different ratings	Req.Qty

22	EI60 Type Stampings Of 0.35	-	55
32.	Mm Thickness		
33.	Readymade Bobbins (El60/21)	-	Req.Qty
		26SWG	Req.Qty
	Enameled Copper Wire	36SWG	
34.		37SWG	
		38SWG	
35.	Varnish	-	Req.Qty
36.	Winding Machine	-	1
37.	Ceiling Fan	-	2
38.	Single Phase Induction Motor	0.5 HP/50HZ,240V	1
20	Three Phase Squirrel Cage Induction	3HP, 500 V, 50 Hz	1
39.	Motor		
40.	Gauge Plate for Measurement of SWG	-	1
41.	Winding Study Motor (3Ф Squirrel Cage Type)	-	1

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030410
- Semester : IV
- Subject Title : Electrical Machines II

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject Hours Week	Instru	uctions	Examination			
	Hours /	Hours /	Marks			
	Week	ek Semester	Internal Assessment	Board Examinations	Total	Duration
ELECTRICAL MACHINES - II	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Alternator Principles and Construction	12
II	Alternator Performance and Testing	16
III	Three Phase Induction Motor	16
IV	Single Phase Induction Motor & Synchronous Motor	15
V	Maintenance of Induction Motors & Starters	14
	Test & Model Exam	7
	Total	80

RATIONALE

- This subject is classified under Core Technology group intended to teach Students about facts, concepts, Principles of Electrical Machines such as Induction Motor, Alternator and Synchronous Motor.
- Students will be able to analyze the characteristics and qualitative parameters of these Machines.
- These Machines are widely used in Industries and for generation of electricity.
- The knowledge gained by the student is useful in the study of Technological Subjects such as Utilization System, Manufacturing Processes and Testing and Maintenance of Electrical Machines.
- The knowledge and skills obtained will be helpful in discharging Technical Functions such as Supervision, Controlling and as R & D Technicians.

OBJECTIVES

. The students will be able to understand the concepts of:

- Alternator Principle, Construction and their Types, EMF Induced and Cooling Techniques of Machines
- Performance of an Alternator, Testing, Characteristics, Parallel Operation, Load Sharingetc.,
- Three Phase Induction Motor, Principle, Construction, Types, Characteristics and Applications, Starting Methods
- Single Phase Motor Types, Construction, Characteristics and Applications, Synchronous Motor, Starting, Construction, Characteristics and Applications
- Maintenance of Induction Motors and Starters.

Unit	Name of the Topics	Hours
	ALTERNATOR PRINCIPLES AND CONSTRUCTION	10
	Basic Principle of Alternators — Types of Alternators — Stationary	10
	Armature Rotating Field – Advantages of Rotating Field –	
	ConstructionDetails of Alternator — Salient Pole Rotor — Cylindrical	
	Type Rotor — Types of A.C. Armature Windings – Types of Slots –	
I	Full Pitch and ShortPitched Windings – Phase Spread Angle and Effect	
	of Distribution Factor – Pitch Factor – Relation between Frequency,	
	Speed and Number of Poles – EMF Equation – Problems	
	Methods of obtaining Sine Wave – Critical Speed of Rotor –	
	Ventilation of Turbo Alternators – Advantages of Hydrogen Cooling	2
	and its Precaution – Excitation and Exciters.	
	ALTERNATOR PERFORMANCE AND TESTING	
	Load Characteristics of Alternators – Reason for Change in Terminal	
	Voltage –Qualitative Treatment of Armature Reaction for various	10
	Power Factor Loads — Effective Resistance — Leakage Reactance	
	— Synchronous Reactance, Synchronous Impedance — Voltage	
	Regulation – Determination of Voltage Regulation of Alternator by	
II	Direct Load Test - Pre-Determination of Regulation of Alternator by	
	Indirect Method (EMF, MMF, and ZPF).	
	Necessity and conditions for Parallel Operation of Alternators –	0
	Synchronizing by Dark Lamp Method, Bright Lamp Method, Dark - Bright	0
	Lamp Method and Synchro scope Method– Synchronizing Current,	
	Synchronizing Power and Synchronizing Torque – Load Sharing of	
	Alternators –Infinite Bus Bar.	
	IHREE PHASE INDUCTION MOTOR Rotating Magnetic Field – Principle of Operation of Three Phase	10
	Induction Motors – Slip and Slip Frequency – Comparison between Cage	
	and Slip Ring Induction Motors – Development of Phasor Diagram –	
Ш	Expression for Torque in Synchronous Watts — Slip-Torque	
	Characteristics – Stable and Unstable Region – No Load Test and	
	Blocked Rotor Test – Development of Approximate Equivalent Circuit	
	- Problems on the above topics-Simplified Circle Diagram	

	Determination of Maximum Torque, Slip (Problems Not Required) -	
	Starting Torque and Starting Current Expression – Relationship between	
	Starting Torque and Full Load Torque – Speed Control of Induction	
	Starters of Induction Motors – Direct online Starter and Its Merits for	6
	Cage Motors – Star Delta Starter- Auto Transformer Starter - Rotor	
	Resistance Starter – Cogging –Crawling in Induction Motor– Double	
	Cage Induction Motor-Induction Generator.	
	SINGLE PHASE INDUCTION MOTOR	8
	Single Phase Induction Motors — Not Self Starting — Methods of	
	Making itself Starting – Construction, Working Principle – Phasor	
	Diagram-Slip Torque Characteristics- Split Phase Motor - Capacitor	
	Motor - Shaded Pole Motor - Repulsion Motor - Universal Motor -	
	Operation of Three Phase Motor with Single Phase Supply.	
IV	SYNCHRONOUS MOTOR	
	Principle of Operation –Not Self Starting – Methods of Starting–Effects	
	of Excitation on Armature Current and Power Factor- 'V' Curve and	7
	Inverted 'V" Curve of Synchronous Motor - The Phenomenon of	
	Hunting and Prevention of Hunting by Damper Winding —	
	Comparisonbetween Synchronous Motor and Three Phase Induction	
	Motor - Applications - Problems on Power Factor Improvement.	
	MAINTENANCE OF INDUCTION MOTORS AND STARTERS	7
	BIS Publication Dealing with The Code of Practice of Induction Motors	
	and Starters – Classification of Cage Motor – Continuous Rating and	
	Intermittent Rating – Various Types of Enclosures – Specifications of	
	Motors – Selecting the Cable Rating – Single Phase Prevention using	
V	Current Operated Relay – Commissioning - Annual Maintenance	
	Selection of Starters of Induction Motor - Common Induction Motor	
	Troubles and their Remedies – Causes of Noise and Vibration – Care	7
	ofBearings – Static Balancing – Degreasing – Vacuum Impregnation -	•
	Varnishing – Effect of Unbalanced Supply on the Performance of	

TEXTBOOK

S.No	Author	Title	Publisher
1.	B.L. Theraja	A Textbook of Electrical Technology -Volume II	S.Chand& Co. New Delhi
2.	Edward Hughes	Electrical Technology	Addision– Wesley International Student Edition

REFERENCE BOOK

S.No	Author	Title	Publisher
1.	M.G.Say	Performance and Design of ACMachines	Pitman PublishingLtd
2.	Nagarath	Electrical Machines	TMH Publications
3.	Bhattacharya	Electrical Machines	TMH Publications

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME (Implemented from the Academic year 2020 - 2021 onwards)

Course Name	: Diploma in Electrical and Electronics Engineering
Subject Code	: 4030420
Semester	: IV Semester
Subject Title	: MEASUREMENTS, INSTRUMENTS AND TRANSDUCERS

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 Weeks

Subject Instruction		Examination				
	Hours/	Hours/	Mar	ks	1	Duration
MEASUREMENTS,	Week	Semester	Internal Assessment	Board Examination	Total	
TRANSDUCERS	5	80	25	100*	100	3 Hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS AND ALLOCATION OF HOURS

Unit	Торіс	Hours
I	Classification and Characteristics of Instruments	15
П	Measurement of current Voltage and Resistance	15
	Measurement of Power, Power Factor and Frequency	15
IV	Measurement of L, C Parameters, Waveforms and Signal Conditioners	13
V	Sensors and Transducers	15
	Revision and Test	07
	Total	80

RATIONALE

Measurement is the basic and primary operation, the result of which is used only to describe the system and hence treated as an independent operation. Automation of any kind begins with the measurement of certain system parameters; In fact, Industrial growth moves hand in hand with the growth of the measurement of Science and Technology. Therefore, it is highly essential for Electrical Students to study about the measurement of various Electrical Parameters in a system and the construction and working of different Instruments used in measurement of such parameters.

OBJECTIVES

At the end of the Semester, Students will be able to:

- To define basic measurement terms.
- To learn about various operating Forces and effects used in Instruments.
- To study the construction and working of Moving coil and Moving Iron instruments, CT and PT and Electrostatic Voltmeter.
- To understand the measurement of Resistance using different means.
- To study Single Phase and Three Phase Power Measurement using Wattmeter.
- To study the construction and working of Single Phase, Three Phase Energy Meter and study about calibrations.
- To study the construction and working of Power Factor Meters, and Phase Sequence Indicators.
- To study about the Frequency Measurement using different types of Frequency Meters.
- To learn about the measurement of Inductance and Capacitance using Bridges.
- To study about CRO and its applications.

CONTENTS: Theory

UNIT	NAME OF THE TOPICS	HOUR S
	CLASSIFICATION AND CHARACTERISTICS OF INSTRUMENTS	
	General - Definition of Measurement – Functions of Measurement	
	System (Indicating, Recording and Controlling Function) –	10
	Applications of Measurement Systems – Classification – Absolute	
I	and Secondary Instruments – Indicating Recording and Integrating	
	Instruments –Analog and Digital	
	Definition of True Value, Accuracy, Precision, Error and Error	_
	Correction – Instrument Efficiency – Effects used in	5
	Instruments – Operating Forces – Deflecting, Controlling and	
	Damping Forces.	
	MEASUREMENT OF CURRENT, VOLTAGE AND RESISTANCE	
	Types of Instruments — Construction, Working and Torque	
	Equation of Moving Coil. Moving Iron. Dynamometer Type	10
	(Shaded Pole) Instruments — Extension of Instrument Range	
	Using Shunts and Multipliers, (Calculation, Requirements and	
	Simple Problems). Tong Tester — Electrostatic Voltmeter —	
	Rectifier Type Instruments –Instruments Transformers CT and PT	
п	- Testing Errors and Characteristics of CT and PT	
	Classification of Resistance – Measurement using Conventional	
	Method – (Ammeter – Voltmeter Method) Measurement of Low	5
	Resistance using Kelvin's Bridge Ohmmeter – Measurement of	
	Medium Resistance using Wheatstone Bridge – High	
	Resistance using Megger - Earth Resistance	
	Multimeters	

	FREQUENCY	
	Power in D.C and A.C Circuits - Watt Meters in Power	
	Measurement — Measurement of Energy in AC Circuits – Single	_
	Phase and Three Phase Energy Meters Construction and	1
	Operation —- Digital Energy Meter.	
III	Power Factor Meters – Single Phase Electro Dynamometer Type	
	- Construction and Working - Phase Sequence Indicator - Phase	0
	Difference Measurement using Synchro scope -Tri-vector Meter -	0
	Merz Price Maximum Demand Indicator. Frequency Measurement	
	Frequency Meter – Digital Frequency Meter (Simplified Block Diagram)	
	MEASUREMENT OF L, C PARAMETERS, WAVEFORMS AND SIGNAL CONDITIONERS	
		-
	Inductance – Maxwell's Inductance Bridge – Andersons Bridge –	5
	Measurement of Capacitance using Schering Bridge.	
IV	CRO — Block Diagram — CRT — Applications - Measurements	
	of Voltage, Frequency and Phase Difference Using CRO – Digital	5
	Storage Oscilloscope – Block Diagram.	
	SIGNAL CONDITIONER: Basic Components of Signal	3
	Conditioning System	
	SENSORS AND TRANSDUCERS	•
	Definition – Types of Transducers	8
	PASSIVE TRANSDUCERS:	
	Resistive Transducer – Strain Gauge – Capacitive Transducer –	
	Operation of LVDT and PVDT	
v		
v	RTD – Thermistor - Thermocouple – Synchrous – Piezoelectric	
	Transducer-Measurement of Pressure and Vibration – Hall Effect	
	Transducer – Photovoltaic Transducer – Photoconductive	7
	Transducer.	

TEXT BOOKS:

S.No	Title	Author	Publishers
1.	A Course in Electrical	A.K. Sawhney	Puneet Sawhney
	and Electronics Measurements and Instrumentation		Dhanpat Rai & Co (P) Ltd., New Delhi 1993

REFERENCE BOOKS:

S.No	Title	Author	Publishers
1.	Electronic	HS Kalsi	Tata Mc Graw Hill Publishing
	Instrumentation		Co., Delhi 2010
2.	Modern Electronic	Albert D. Helfrick	Prentic – Hall of India
	Instrumentation and	William David	(P)Ltd., New Delhi 2010
	Measurement techniques	Cooper	
3.	Electronics and	Dr.S.K.Battachariya	S.K. Kataria & Sons, New
	Instrumentation	Dr. Renu Vig	Delhi
4.	A course in Electrical and	Umesh Sinha	Satya Prakashan,
	Electronic Measurement		New Delhi
	and Instrumentation		

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS

N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : All Branches of Diploma in Engineering and Technology

Subject Code : 4040430

:IV

Semester

Subject title

: ANALOG AND DIGITAL ELECTRONICS

TEACHING AND SCHEME OF EXAMINATION

No of weeks/ semester: 16weeks

	Instruction		Examination			
Subject	Hours Hours		Marks			
-	/Week	/Semester	Internal	Board	Total	Duration
			Assessment	Examination	TOLAI	
ANALOG AND DIGITAL ELECTRONICS	4	64	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of hours

Unit	Торіс	Hrs
I	Linear ICs and OP-amps	10
II	A/D, D/A, Special Function ICs and IC Voltage Regulators	13
	Boolean Algebra and Arithmetic operations	10
IV	Combinational and Sequential Logic Circuits	12
V	Memories	12
	Tests and Model Exam	7
	Total	64

RATIONALE:

The subject Analog and Digital Electronics holds applications in all branches of engineering instrumentation and Industrial Automation. This will impart in depth knowledge of Number Systems, Logics of Combinational &Sequential circuits and memories.

OBJECTIVES:

On completion of the following units of the syllabus contents, the students must be able to

- > Understand the basics of operational amplifier.
- Know the op-amp applications.
- > Know the waveform generator and Active filter.
- Know the concept of D/A and A/D converters
- ▶ Know the applications of Special function IC, IC 555 Timer.
- Understand various Number Systems used in Digital Circuits
- Understand basic Boolean postulates and laws.
- > Understand the De-Morgan's theorem.
- Understand the concept of Karnaugh Map.
- Learn about Basic logic Gates.
- Study about Boolean techniques.
- Learn the different digital logic families
- Learn arithmetic circuits- Adder/Subtractor
- Understand the encoder/decoder & MUX / DEMUX
- > Understand the concept of parity Generator and checker
- > Understand various types of flip-flops.
- Understand various types of counters
- Understand various modes of shift registers
- Understand various types of memories

Contents: Theory

Unit	Name of the topics	Hours
	LINEAR ICS AND OP-AMPS	4
	1.1: OPERATIONAL AMPLIFIER	-
	Ideal Op-Amp – Block diagram and Characteristics – Op-amp parameters	
	CMRR – Slew rate – Concept of Virtual ground	
I	1.2: APPLICATIONS OF OP-AMP	4
	Inverting amplifier –Summing amplifier – Non inverting amplifier – Voltage	
	follower - Comparator – Zero crossing detector – Integrator – Differentiator-	
	waveform generation (Schmitt Trigger only)-RC Low pass Active filter.	
	1.3: OP-AMP SPECIFICATIONS	2
	OP-amp 741 – Symbol – Pin diagram – Specifications	
	A/D. D/A. SPECIAL FUNCTION ICs AND IC VOLTAGE REGULATORS	
	2.1: SAMPLING AND QUANTIZATION	2
	2.2: A/D CONVERTER	
	Analog to digital conversion using Ramp method – Successive approximation	
	method – Dual slope method – Specifications of A/D converter	3
	2.3: D/A CONVERTER	
	Basic concepts – Weighted Resistor D/A converter – R-2R Ladder D/A converter	
П	– Specifications of DAC IC	2
	2.4: SPECIAL FUNCTION ICs	
	2.4.1: IC 555 Timer – Pin diagram - Functional Block diagram of IC 555 in	
	Astable and Monostable Multivibrator mode - Schmitt trigger using IC 555	3
	2.4.2: IC 565-PLL-Pin Diagram-Functional Block diagram of IC 565	
	2.4.3: IC 566-VCO-Pin Diagram-Functional Block diagram of IC 566	
	2.5.: IC VOLTAGE REGULATORS	
	Positive IC Voltage Regulators: 78XX - Negative IC Voltage Regulators: 79XX	3
	and General-purpose IC Voltage Regulators using LM 723.	

-		
	BOOLEAN ALGEBRA AND ARITHMETIC OPERATIONS	
	3.1: NUMBER SYSTEMS	
	Decimal – Binary – Octal – Hexadecimal – BCD – Conversion from one	2
	number system to other – Boolean Algebra – Basic laws and Demorgan's	
	Theorems	
	3.2: UNIVERSAL GATES	2
111	Realization of basic logic gates using universal gates NAND and NOR -Tristate	
	Buffer circuit	
	3.3: PROBLEMS USING 2, 3, AND 4 VARIABLES	2
	Boolean expression for outputs – Simplification of Boolean expression using	
	Karnaugh map (up to 4 variable)- Constructing logic circuits for the Boolean	
	expressions	2
	3.4:ARITHMETIC OPERATIONS	
	Binary Addition-Binary Subtraction-1's compliment and 2's compliment-Signed	
	binary numbers	2
	3.5: ARITHMETIC CIRCUITS	
	Half Adder-Full Adder-Half Subtractor-Full Subtractor	
	COMBINATIONAL AND SEQUENTIALLOGIC CIRCUITS	
	4.1: PARITY GENERATOR AND CHECKER	
	4.2: DECIMAL to BCD ENCODER	1
	4.3: 3 to 8 DECODER	1
	4.4: MULTIPLEXER: 4 to 1 Multiplexer	•
	4.5: DEMULTIPLEXER :1 to 4 Demultiplexer	1
IV	4.6: FLIP-FLOPS (FF)	1
	RS FF– JK FF: Master Slave FF and Edge triggered FF – D and T FF	_
	4.7: COUNTERS	1
	4 bit Asynchronous Up Counter – Mod N counter – Decade counter –	2
	4 bit Synchronous up counter	
	4.8: SHIFT REGISTER	3
	4 bit shift register – Serial in Serial out	2
	4 dit snift register – Serial in Serial out	2

	MEMORIES	
	5.1: CLASSIFICATION OF MEMORIES	6
	5.2:RAM	
V	RAM organization-Address Lines and Memory Size- Read/write operations-	
	Static RAM-Bipolar RAM cell- Dynamic RAM- SD RAM- DDR RAM.	
	5.3:ROM	
	ROM organization-Expanding memory- PROM- EPROM- and EEPROM- Flash	6
	memory- Anti Fuse Technologies.	

TEXT BOOKS:

- 1. Roger L. Tokheim Macmillan Digital Electronics McGraw Hill –1994.
- 2. D.Roychoudhury & shail. B.Jain- Linear Integrated Circuits -New age International publishers II Edition -2004.

REFERENCE BOOKS:

- 1. Albert Paul Malvino and Donold P. Leach Digital Principles and Applications
- 2. William H.Goth Mann Digital Electronics An introduction to theory and practice PHI 1998.
- 3. Linear Integrated Circuits by B.Suseela & T.R.Ganesh babu -Scitech publications-2018
- 4. Integrated circuits by K.R.Botkar-Khanna publisher's-1996.

5. R.P.Jain – Modern Digital Electronics – TMH 2003.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : All branches of Diploma in Engineering and Technology
- Subject Code : 4020440
- Semester : VI
- Subject Title : E VEHICLE TECHNOLOGY & POLICY

TEACHING AND SCHEME OF EXAMINATION

No of Weeks per Semester: 16 Weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks			
			Internal Assessment	Board Examinations	Total	Duration
E - VEHICLE TECHNOLOGY AND POLICY	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours		
I	Environmental impact and history& Electric vehicle Types	12		
	Electric vehicle & Drive System	12		
	Energy Storages, Charging System, Effects and Impacts	12		
IV	Electric Mobility Policy Frame work India	11		
V	Tamilnadu E-Vehicle Policy 2019	10		
Test & Model Exam				
Total				
RATIONALE

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and auto-components. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. Due the rapid depletion of fossil fuel and increase in fuel cost, environmental pollution, the shift to clean transport is necessary. This subject introduced by keeping all the above factors.

OBJECTIVES

- 1. To learn the environmental impact and history of Electric Vehicles.
- 2. To understand the concept of Electric Vehicle and its types.
- 3. To study the configurations of Electric Vehicles
- 4. To acquire knowledge about Energy Storages, Charging System, Effects and Impacts
- 5. To appreciate the Electric Mobility Policy Frame work India and EV Policy Tamil Nadu 2019.

Contents: Theory

Unit	Name of the Topics	Hours
	Environmental impact and history& Electric vehicle Types:	12
	Environmental impact and history: Air pollution – Petroleum resources	
I	- History of Electric vehicles - History of Hybrid Electric Vehicles -	
	History of Fuel Cell Vehicles – Hybrid electric Vehicle (HEV) - Plug-in	
	Hybrid Electric Vehicle (PHEV) - Battery Electric Vehicle (BEV) -	
	Fuel Cell Electric Vehicle (FCEV) – Description.	
	Electric vehicle & Drive System:	
	Electric Vehicles: Configurations of Electric Vehicle – Performance	
	ofElectric Vehicles— Tractive Effort in Normal Driving — Energy	
	Consumption. Hybrid Electric Vehicles: Concept of Hybrid Electric Drive	
11	Trains – Architecture of Hybrid Electric Drive Trains. Electric	12
	Propulsion Systems: Drive Systems: DC Motor Drives - Principle of	
	Operation – Induction Motor Drives - Basic Operation Principles –	
	Permanent Magnetic Brush Less DC Motor Drives – Principles –	
	Construction and Classification.	
	Energy Storages, Charging System, Effects and Impacts:	8
	Energy Storages: Electrochemical Batteries – Battery Technologies –	
	Lead Acid Batteries – Nickel Based Batteries – Lithium Based Batteries	
	 Charging system –DC charging – Wireless charging – Power 	
	conversiontechniques.	4
	Effects of EV — Impacts on Power grid — Impacts on Environment	
	Electric Mobility Policy Frame work India:	11
	Government of India Electric Mobility Policy Frame Work – Global	
IV	Scenario of EV Adoption – Electric Mobility in India – National Electric	
	Mobility Mission Plan 2020 – Action led by Original Equipment	
	Manufacturers – Key Performance Indicator - Global Impact –	
	Trends and Future Developments.	

TEXT BOOKS:

- 1. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York.
- Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal

REFERENCE BOOKS:

- 1. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development (MDPI), Fuad Un-Noor, Sanjeevi kumar Padmanaban, Lucian Mihet-Popa, Mohammad NurunnabiMollah and Eklas Hossain.
- 2. Electric Vehicles: A future Projection CII October 2020 report.
- Design and analysis of aluminum/air battery system for electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.
- 4. Propelling Electric Vehicles in India, Technical study of Electric Vehicles and Charging Infrastructure
- 5. Zero Emission Vehicles (Zevs): Towards A Policy Framework Niti Aayog.
- Faster Adoption of Electric Vehicles in India: Perspective of Consumers and Industry, The Energy and Resources Institute, New Delhi.
- 7. India EV Story: Emerging Opportunities by Innovation Norway.

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030450
- Semester : IV

Subject Title : Electrical Machines and Instrumentation Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks			
-			Internal Assessment	Board Examinations	Total	Duration
ELECTRICAL MACHINES AND INSTRUMENTATION PRACTICAL	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks, and it will be reduced to 75 marks.

RATIONALE:

- To impart practical knowledge to the Diploma Students, Practical's are introduced for every corresponding Theory Subject.
- This Practical Subject supports the Aim and Objective of Electrical Machines II and Measurements and Instruments subjects.

OBJECTIVES:

On completion of this practical Subject the Students will be able to:

- Understand the characteristics of AC Machines.
- Make various Electrical Measurements.
- Use Transducers in Non-Electrical Quantity Measurement

Contents: Practical

Name of the Topics: Electrical Machines and Instrumentation Practical

Exercise:

- 1. Predetermine the Regulation of Alternator.
- 2. Load test on 3 Phase Alternator.
- 3. Synchronization of 3 Phase Alternator
- 4. Load test on Single Phase Induction Motor.
- 5. Load test on 3 Phase Induction Motor.
- 6. Determine the Equivalent Circuit Constants of 3 Phase Induction Motor.
- 7. Predetermine the performance of a 3 Phase Induction Motor.
- 8. Improvement of Power Factor of an Induction Motor with load.
- 9. Calibration of given Ammeter and Voltmeter.
- 10. Calibration of given Wattmeter.
- 11. Calibration of 3 Phase Energy Meter.
- 12. Measurement of Alternator Winding Resistance using Wheatstone Bridge
- 13. Measurement of value of unknown Capacitance using Schering Bridge.
- 14. Measurement of value of unknown Inductance using Anderson Bridge.
- 15. Displacement measurement using LVDT.
- 16. Measurement of earth Resistance by using Megger.

LIST OF EQUIPMENTS (For a Batch of 30 Students)

S NO		QUANTITY
0.110	NAME OF TH EQUIPMENTS	REQUIRED
1	Three Phase Squirrel Cage Induction motor 5 HP, 440V,1440 rpm	2
1.	with starting and loading arrangement	2
0	Three Phase Squirrel Cage Induction motor 5 HP,440V,1440 rpm	4
Ζ.	without starting and loading arrangement	I
2	Three phase Slip ring Induction motor 5HP, 440V, 940/1450 rpm with	4
3.	starting and loading arrangement	, i
1	Single phase induction motor with staring and loading arrangement	1
4.	2HP, 250V, 10A, 1440 rpm.	I
5.	Wheatstone bridge.	2
6.	Anderson Bridge.	2
7.	Schering Bridge.	2
8.	1 Phase Energy meter induction type, 250V, 10A.	2
9.	3 Phase Energy meter Induction type 440V, 10/20A.	2
10.	Earth megger with necessary connecting leads and rods.	1
11.	3 phase Alternator with prime mover.	2
12.	Synchronizing panel.	1
13.	PF meter (power factor meter).	2
14.	LVDT trainer.	2
15.	3 phase capacitor bank rating of 1KVAR, 400/440 V.	1

DETAILLED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1	Circuit Diagram	30
2	Connections And Conduction of the Experiment	30
3	Reading/Calculation	20
4	Graph/Result	15
5	Viva Voce	05
	Total	100

S	TATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS
	N-SCHEME (Implemented from the Academic year 2020 - 2021 onwards)
Course Name	: All Branches of Diploma in Engineering and Technology
Subject code	: 4040460
Semester	: IV
Subject title	: ANALOG AND DIGITAL ELECTRONICS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No. of weeks/ Semester: 16weeks

	Instruction		Examination			
	Hours /week		Marks			
Subject		Hours /semester	Internal Assessment	Board Examination	Total	Duration
ANALOG AND DIGITAL ELECTRONICS PRACTICAL	5	80	25	100*	100	3 Hours

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Every Electronic Engineer should have sound knowledge about the ICs used in Electronics Industry. This is vital in R&D Department for Chip level troubleshooting. To meet the industrial needs, diploma holders must be taught about the most fundamental subject, Analog and Digital Electronics Practical. By doing practical experience in this, they will be skilled in handling all types of ICs and able to apply the skill in electronic system design and the designing of PCBs.

OBJECTIVES:

On completion of the following experiments, the students must be able to

- > Know the Verification of truth table of OR, AND, NOT, NOR, NAND, EX-OR gates
- > Know the Realization of basic gates using NAND & NOR gates.
- > Know the verification of Half Adder and Full Adder using IC's.
- > Know the verification of Half Subtractor and Full Subtractor using IC's.
- Know the Verification of Truth Table for Decoder/Encoder.

- > Know the Verification of truth table for RS, D, T & JK flip-flop.
- Test Inverting Amplifier and Non inverting amplifier using Op-amp
- > Test Summing Amplifier, Difference Amplifier and Voltage Comparator using Op-amp.
- > Test Integrator and Differentiator.
- > Test Astable multivibrator using IC 555
- > Design IC Voltage Regulator Power Supplies using IC 7805, IC 7912
- > Design the PCB of 4- bit ripple counter using FF

4040460 ANALOG AND DIGITAL ELECTRONICS PRACTICAL DETAILED SYLLABUS

Contents: Practical

Exercises

Note: At least 6 experiments should be constructed using breadboard

- 1. Realization of basic gates using NAND & NOR gates.
- 2. Realization of logic circuit for De-Morgans Theorems
- 3. Test the performance of Half Adder and Full Adder.
- 4. Test the performance of Half Subtractor and Full Subtractor.
- 5. Test the performance of Decoder/Encoder.
- 6. Test the performance of RS, D, T & JK flip-flops.
- 7. Test the performance of Parity generator and checker using parity checker/ generator IC's.
- 8. Test the performance of Multiplexer/De-multiplexer using IC 4051
- Test the performance of Inverting Amplifier and Non inverting amplifier using Op-amp IC 741.
- 10. Test the performance of Summing Amplifier, Difference Amplifier.
- Test the performance of Zero Crossing Detector and Voltage Comparator using Op-amp IC 741.
- 12. Test the performance of Integrator and Differentiator using Op-amp IC 741.
- 13. Test the performance of Astable multivibrator using IC 555.
- 14. Test the performance of IC Voltage Regulator Power Supplies using IC 7805, IC 7912.
- 15. Design the PCB of 4- bit ripple counter using FF using Software tool Multisim/OrCAD

DETAILED ALLOCATION OF MARKS

S.No.	NAME OF THE ACTIVITY	MARK ALLOCATION
1	CIRCUIT DIAGRAM	25
2	CONNECTION	30
3	EXECUTION & HANDLING OF EQUIPMENT	20
4	OUTPUT / RESULT	15
5	VIVA – VOCE	10
	TOTAL	100

LIST OF EQUIPMENTS (For a Bach of 30 Students)

S. NO	Name of the Equipments	Range	Required Nos
1	DC Regulated power supply	0-30V,1A	5
0	IC Voltage Power Supply	0-5V,1A	5
2		15-0-15V, 1A	5
3	Signal Generator	1MHz	4
4	Dual trace CRO	20MHz/ 30MHz	5
5	Digital Trainer	-	10
6	DC Voltmeter (Analog/Digita)	Different Ranges	5
7	DC Ammeter (Analog/Digital)	Different Range	5
8	Desk Top Computer	-	5
9	Simulation Tool	Multisim/OrCAD	1

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030470
- Semester : IV

Subject Title : Electrical Circuits and Simulation Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Hours / Week Semester	Hours /	Marks			
		Semester	Internal Assessment	Board Examinations	Total	Duration
ELECTRICAL CIRCUITS AND SIMULATION PRACTICAL	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks, and it will be reduced to 75 marks. RATIONALE

All the Engineering applications are simulated through Computers. They are tested and then built using real components for commercial implementation. Simulation Software is available for all Engineering Fields. Hers is an attempt to impart the knowledge of using Simulation Software for realizing some of the Electrical and Electronics Circuits for the Diploma students.

OBJECTIVES

On Completion Of This Practical subject, the Students will be able to know :

- ✓ The Various Aspects of Simulation Software
- ✓ Simulate and Test the Simple Electrical and Electronics Circuits
- ✓ Simulate and Test the Wave Generating Circuits

- ✓ Simulate and Prove the Simple Theorems
- ✓ Simulate and Test the Performance Characteristics of Converters
- ✓ Design and Verify the Results of Various Electric Circuits Using Simulation Software

Contents: Practical

Name of the Topics: Electrical Circuits and Simulation Practical Exercise

- 1. Generate the following waveforms
 - (i) Sinusoidal waveform of Fundamental Frequency (50Hz)
 - (ii) 3rd Order, 5th Order and 7th Order Harmonics for the Fundamental frequency.
- 2. Simulation of RLC series and RLC Parallel Response Circuits.
- 3. Step Response of RL and RC Series Circuit.
- 4. Simulation of Mesh and Nodal analysis for DC Circuits.
- 5. Verification of Superposition Theorem.
- 6. Verification of Thevenin's and Norton's Theorem.
- 7. Verification of Maximum Power Transfer Theorem.
- 8. Simulation of Full Wave Rectifier (Center Tapped and Bridge) with RL load.
- Simulation of Single-Phase Half Wave Controlled Converter with RL Load and FreeWheeling Diode.
- 10. Simulation of Single-Phase Full Wave Controlled Converter with RL Load and FreeWheeling Diode.
- 11. Simulation of Three Phase Star Connected Balanced and Unbalanced Load
- 12. Simulation of Three Phase Delta Connected Balanced and Unbalanced Load
- 13. Simulation of Three Phase Non-Linear Star Connected Load with Three Phase 3 WireSystem.
- 14. Simulation of Three Phase Non-Linear Star Connected Load with Three Phase 4 Wire System.
- 15. Simulation basic Logic Gates, Universal Logic Gates and Realization of Logic Gates usingUniversal Logic Gates.
- 16. Simulation of Half Adders and Full Adder.

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S.No.	LISTOFEQUIPMENTS	QUANTITYREQUIRED
1.	PC with any suitable simulation software	30
2.	UPS 5KVA with half an hour battery backup	1
3.	Printer	1

DETAILED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1	Circuit Diagram (Manual Diagram)	30
2	Development of circuit diagram	30
3	Simulation Performance & print out	35
4	Viva Voce	05
	Total	100

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name	:	Diploma in Electrical and Electronics Engineering
Subject Code	:	4030510
Semester	:	V Semester
Subject Title	:	GENERATION, TRANSMISSION AND SWITCH GEAR

TEACHING AND SCHEME OF EXAMINATION

No of Weeks per Semester: 16 weeks

	Instructions		Examination			
Subiect	Hours /	Hours / Semester	Marks			
	Week Se		Internal Assessment	Board Examinations	Total	Duration
GENERATION, TRANSMISSION AND SWITCHGEAR	5	80	25	100*	100	3 Hrs.

Examinations will be conducted for 100 marks and it will be reduced to 75 Marks.

Topics and Allocation of Hours

Unit	Торіс	Hours.
Ι	Generation of Electrical Power	16
II	A.C. And H.V.D.C Transmission	14
Ш	FACTS, Line Insulators and Underground Cables	14
IV	Circuit Breakers and Over Voltage Protection	14
V	Protective Relays and Grounding	15
	Test & Model Exam	7
	Total	80

RATIONALE

Energy is the basic necessity for the Economic Development of a Country and also there is a growing impulse towards green and reduction in the use of Fossil Fuels. As a matter of fact, there is a close relationship between the Energy used per person and his standard of living. The Modern Society is so much dependent upon the use of Electrical Energy that it has become a part of our life. So, to have adequate knowledge in Electrical Power Generation and Transmission, Switch Gear and efficiency associated with them, it becomes necessary to include this subject.

OBJECTIVES

To Understand

- Conventional Power Plants-Layout and choice of site
- Renewable Energy Sources and Power Generation
- A.C Transmission-Supports, Conductors, Effects, Regulation and Efficiency
- H.V.D.C Transmission
- FACTS, Line Insulators and Underground Cables
- Circuit Breakers, Protective Relay and Lightning Arresters

Contents: Theory

UNIT	NAME OF THE TOPICS	HOURS
	GENERATION OF ELECTRICAL POWER Introduction- Conventional methods of power generations — schematic	
	arrangement and choice of site for Hydro, Thermal, Nuclear power	4
	plants-Advantages and Disadvantages-comparison of these power plants	4
	- Principle and types of co-generation.	
	Schematic arrangement of Diesel, Gas, Pumped storage schemes-	
	Advantages and Disadvantages-Grid or Inter connected system-Advantages	10
	of Inter connected systems- Load Transfer through Inter connector-Load	
	curves and Load duration curves-connected load-Average load-Maximum	
	Demand Factor- Plant capacity factor-Load factor and its significance-	
	Diversity factor-Simple problems- Load sharing between base load and peak	
	load plants.	
	Renewable Energy sources- Basic principle of Solar Energy, Wind Power	2
	Generation-Hybrid Renewable Energy Systems.	

A.C. AND H.V.D.C TRANSMISSION

A.C. Transmission:

Ш

Introduction-Typical Layout of A.C. Power supply scheme -Advantages and Disadvantages of A.C Transmission-High Transmission Voltage-Advantages-Economic choice of Transmission voltage-Elements of a Transmission Line-over Head Line-Conductor materials and their properties-Line supports-its properties-Types of supports and their applications-spacing between conductors-length of span-Sag in overhead lines-Calculation of Sag-When the supports are at equal and unequal levels- Problems- Effect of wind and ice loading over the line conductor (Qualitative treatment only) constants of a Transmission line- Transposition of Transmission lines-Skin Effect- Ferranti Effect-Corona formation and corona loss-Factors affecting corona-Advantages and Disadvantages -Classification of O.H Transmission lines-Performance of single phase short transmission line-voltage regulation and Transmission Efficiency-Problems.

H.V.D.C Transmission:

Advantages and Disadvantages of D.C Transmission- Layout Scheme and principle of High Voltage D.C Transmission-D.C link configurations (Monopolar, Bipolar and Homopolar)-HVDC convertor Station (Schematic diagram only).

4

10

	FACTS, LINE INSULATORS AND UNDERGROUND CABLES:
	Definition-Need for FACTS controllers- types of FACTS controllers-SVS-
	STATCOM-UPFC (block diagram explanation only)
	Line Insulators:
	Introduction - Line Insulator Materials-Properties of Insulators- Types &
	causes of failure of Insulators-Testing of Insulators-Potential Distribution over
	suspension Insulator String-String Efficiency - Methods of improving string
	efficiency- problems.
	Underground cables:
	Introduction-Advantages and requirement of cables-construction of a three-
	core cable-Insulating materials for cables- properties of Insulating materials
	used in cables-classification of cables- cables for three phase service-
	construction of Belted cable, screened cable, pressure cables-Laying of
	underground cables-Direct laying, Drawing system, Advantages and
	Disadvantages.
	CIRCUIT BREAKERS AND OVER VOLTAGE PROTECTION
	Switch gear-Essential features of Switch gear-faults in a Power system
	(definition only).
	CIRCUIT BREAKERS: Basic principle of circuit Breaker -Arc Phenomenon- methods of Arc
	Extinction-Arc voltage – Re-striking voltage and recovery voltage-Rate of rise
	of re-striking voltage C.B. ratings – Breaking canacity, making canacity, short
	time rating - Auto reclosing in circuit Breakers - Classification of Circuit
	Breakers — Construction and Working principle of Air Circuit Breakers
IV	ELCB Residual current circuit breaker SE6 and vacuum Circuit Breaker
	Maintenance of Circuit Breakers – Rupturing capacity of circuit breaker-
	conditions to trip – Auto reclose breaker – Fault clearance time – Inverse
	time overload relay – Maintenance Requirement for oil circuit breakers – SE6
	Circuit Breakers.
	FUSES - I. V fuses- Re-wirable fuse. HRCfuse-H.V. fuses & Cartridge Type.
	Liquid Type and Metal Clad-Fuses.
	Liquid Type and Metal Clad-Fuses. OVER VOLTAGE PROTECTION:

	Direct stroke, indirect stroke-Harmful Effects of lightning Protection against	
	lightning- Earthing screen, overhead ground Wires, Lightning arresters-	
	Expulsion type, Gapless arrester.	
	PROTECTIVE RELAYS AND GROUNDING PROTECTIVE RELAYS:	
	Basic principle-Fundamental requirements of protective relaying- Primary	
	and back up Protection-relay characteristics-relay timing - Instantaneous	
	relay -Inverse time relay and Definite time lag relay- Inverse definite	
	minimum time relay -classification of relays-Construction, Principle of	
V	operation and applications of Induction type over current relay (Directional	
	and Non-directional), Differential relay.	
	Static relays- Basic elements of static relay-Over Current-Distance relay	
	(Block diagram explanation only).	
	GROUNDING:	
	Introduction-Equipment grounding- system grounding- ungrounded neutral	
	system-Necessity of Neutral grounding — Methods- solid grounding	
	Resistance grounding. Reactance grounding. Resonant grounding.	

TEXT BOOK

S.No	Name of the Book Author Publisher		Publisher	Edition
1	Principles of PowerSystem	V.K.Metha	S.Chand & Company, NewDelhi	4 th Edition Reprint 2007

REFERENCE BOOK

SI. No	Name of the Book	Author	Publisher	Edition
1.	Electrical Power System	CLWadhawa	New Age International, New Delhi	Fourth Edition, 2009
2.	A Course in Electrical Power	Soni, Gupta	DhanpathRai&Co (P) Ltd, New Delhi	
3.	Electrical Power	S.L Uppal	Khanna Delhi Publishers	

4.	A Course in Electrical	J.B. Gupta	Kaison Publishing	Reprint
	Power		House	2004
5.	HVDC Power Transmission System &	KR. Padiyar	New Age	Reprint
	Technology		International, New	2005
			Delhi	
6.	Digital Protection – Protective	LP Singh	New Age	Second
	Relaying from Electromechanical to		International	Edition
	Microprocessor			1997
7.	Power System Protection and	B Ram & DN	TMH 1995	Reprint
	Switchgear	Viswakarma		2000
8.	Thyristor-Based Facts Controllers for	Mohan	IEEE press and	2005
	Electrical	Mathur.R.,	John Wiley &	
	Transmission Systems	Rajiv. K.Varma,	Sons, Inc., New	
9.	Understanding FACTS -	Narain G.	Standards	2001
	Concepts and Technology of Flexible	Hingorani,	publishers, New	
	AC Transmission Systems	Laszio. Gyugyi	Delhi	

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : All Branches of Diploma in Engineering and Technology
- Subject Code : 4040520
- Semester : V

Subject Title : MICROCONTROLLER AND ITS APPLICATIONS

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours / Semester	Marks			
	Week		Internal Assessment	Board Examinations	Total	Duration
MICROCONTROLLER						
AND ITS	5	80	25	100*	100	3 Hrs.
APPLICATIONS						

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.	
I	Architecture of 8051 Microcontroller		
II	8051 Instruction set and Programming	16	
III	Peripherals of 8051	15	
IV	Interfacing techniques	16	
V	Advanced Microcontrollers	11	
	Test & Model Exam		
	Total	80	

RATIONALE:

The introduction of this subject will enable the students to learn about microcontroller 8051 architecture, Pin details, Instruction sets, Programming and interfacing. This subject enables the students to do the project effectively. It also helps the students to choose the field of interest. If the student is aiming for higher studies, this subject is foundation.

OBJECTIVES:

On completion of the syllabus, the students must be able to

- -> Know the difference between microprocessor and microcontroller.
- -> Understand the architecture of 8051.
- -> Write programs using 8051 ALP.
- -> Understand the programming of I/O ports, Timer, Interrupt and Serial Programming.
- -> Use the interfacing techniques
- -> Know the types of microcontrollers
- -> Explain IoT.

Contents: Theory

Unit	Name of the Topics	Hours
	Architecture Of 8051 Microcontroller	
	1.1 : Architecture	
	Microprocessor-Microcontroller-Comparison of microprocessor and	
	microcontroller-Architecture diagram of microcontroller 8051-Functions of	
I	each block-Pin details of 8051-ALU- ROM-RAM-Memory organization of	15
	8051- Special function registers-Program counter-PSW register-Stack-	
	I/O ports-Timer-Interrupt-serial port-External memory- Oscillator and	
	Clock-Reset-Power on reset-Clock cycle-machine cycle-Instruction cycle-	
	Overview of 8051 family.	
	8051 Instruction set and programming	8
	2.1: Instruction Set Of 8051	
	Instruction set of 8051-Classification of 8051 instructions-data transfer	
	instructions - Arithmetic Instructions-Logical Instructions-Branching	
	Instructions-Bit manipulation instructions- Assembling and running an	
II	8051 program-Structure of Assembly Language-Assembler Directives-	
	Different Addressing modes of 8051-Time delay routines.	
	2.2: Assembly language programs	
	16-bit addition and 16-bit subtraction-8-bit multiplication and 8 bit	
	division-BCD to HEX code conversion-HEX to BCD code conversion	8
	Smallest number/ Biggest number.	
	Peripherals of 8051	
	3.1: I/O Ports	3
	Bit addresses for I/O ports-I/O port programming-I/O bit manipulation	
	programming.	
	3.2: Timer/Counter	
	SFRS for Timer- Modes of Timers/counters- Programming 8051 Timer	4
	(Simple programs).	
	3.3: Serial Communication	4
	Basics of serial communication-SFRs for serial communication-RS232	
	standard-8051 connection to RS 232-8051 serial port programming.	

	3.4: Interrupts8051 interrupts-SFRs for interrupt-Interrupt priority.	4
	Interfacing Techniques	
	4.1: IC 8255	3
	IC 8255-Block Diagram-Modes of 8255-8051 interfacing with 8255	
	4.2: Interfacing	
IV	Interfacing external memory to 8051-Relay interfacing- Sensor	13
	interfacing -Seven segment LED display interfacing-Keyboard	
	Interfacing-Stepper motor interfacing-ADC interfacing- DAC interfacing-	
	DC motor interfacing using PWM-LCD interfacing.	
	Advanced Microcontrollers	8
	5.1: Types of microcontrollers	
	PIC microcontroller-General Block diagram-Features-Applications-	
	Arduino- General Block diagram-Variants-Features-Applications-	
V	Raspberry pi-General Block diagram-Features-Applications-Comparison	
	of microcontrollers.	
	5.2: IoT	
	Introduction to IoT-Block diagram of home automation using IoT.	3

TEXT BOOKS:

- 1. "Ajit pal" "Microcontrollers, Principles and Applications ",PHI Ltd,-2011.
- 2. "Mazidi,Mazidi and D.MacKinlay" "8051 Microcontroller and Embedded Systems using Assembly and C",2006 Pearson Education Low Price Edition.

REFERENCE BOOKS:

- 1. "R. Theagarajan" "Microprocessor and Microcontroller", Sci Tech Publication, Chennai.
- 2. www.microchip.com, www.raspberrypi.org,www.arduino.org.
- 3. "J.B. Peatman" "Design with PIC microcontrollers".
- 4. "Michael McRoberts", "beginning Arduino.
- 5. "Matt Richardson", "Getting started with Raspberry Pi".
- 6. 8."Samuel Greengard", "The Internet of Things".

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030511
- Semester : V
- Subject Title : CONTROL OF ELECTRICAL MACHINES

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours / Semester	Marks			
	Week		Internal Assessment	Board Examinations	Total	Duration
CONTROL OF	5	80	25	100*	100	3 Hrs.
ELECTRICAL MACHINES						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours
I	Control Circuit Components	16
II	Motor Control Circuits	15
	Industrial Control Circuits	14
IV	Programmable Logic Controller	14
V	PLC Programming and SCADA	14
	Test & Model Exam	7
	Total	80

RATIONALE

The Energy Conversion between Electrical and Mechanical Systems is performed by the Control of Electrical Machines in both directions.

Various Control Operations are to be performed on the Electrical Machines to meet the Industrial requirements. Especially Technicians are mainly employed to look after the control Panels. To make our students Employable, they have to be trained in using various Control Components and Circuits. This subject fulfills the requirement.

OBJECTIVES

At the end of the Semester the Students must be able to understand the concepts of:

- Electrical Control Circuit Elements including Various Types of Industrial Switches, Relays, Timers, Solenoids, Contactors and Interlocking arrangements.
- 2. DC Motor and AC Motor Control Circuits for Acceleration Control, Speed Control, Direction Control, Braking Control and jogging using Contactors.
- 3. Different Control Circuits for Industrial Applications.
- 4. Basics of Programmable Logic Controllers.
- 5. PLC Programming and SCADA.

Contents: Theory

Unit	Name of the Topics	Hours
	CONTROL CIRCUIT COMPONENTS Switches – Push Button, Selector, Drum, Limit, Pressure, Temperature	
	(Thermostat), Float, Zero Speed and Proximity Switches. Relays -	
	Voltage Relay, DC Series Current Relay, Frequency Response Relay,	10
	Latching Relay and Phase Failure Relay (Single Phasing Preventer).	10
	Over Current Relay — Bimetallic Thermal Over Load Relay and	
	Magnetic Dash Pot Oil Filled Relay.	
	Timer — Thermal Pneumatic and Electronic Timer. Solenoid Valve,	
	Solenoid Type Contactor (Air Break Contactor), Solid State Relay,	6
	Simple ON-OFF Motor Control Circuit, Remote Control Operation and	
	Interlocking of Drives.	
	MOTOR CONTROL CIRCUITS	
	CHAPTER: 2.1: DC MOTOR CONTROL CIRCUITS	
	Series Relay and Counter EMF Starters – Field Failure Protection –	3
	CHAPTER: 2.2: AC MOTOR CONTROL CIRCUITS	
1	DOL Starter – Automatic Auto Transformer Starter (Open Circuit and	12
	Closed-Circuit Transition) – Star/Delta Starter (Semi-Automatic and	
	Automatic) – Starter for Two Speed Two Winding Motor – Reversing the	
	Stop Poter Posistance Starter for Wound Induction Motor	
	Step Rotol Resistance Starter for Wound Induction Motor –	
	Planner Machine Control – Skip Hoist Control – Automatic Control of	14
	a Water Pump – Control of Electric Oven – Control of Air Compressor	
	- Control of Over Head Crane - Control of Battery-Operated Truck -	
	Control of Conveyor System – Control of Elevator - Trouble Spots	
	in Control Circuits – General Procedure for Trouble Shooting.	

	PROGRAMMABLE LOGIC CONTROLLER	
	Automation — Types of Automation (Manufacturing and Non-	7
	Manufacturing) – Advantages of Automation –PLC Introduction –	
	Block Diagram of PLC-Principle of Operation-Modes of Operation-	
IV	PLC Scan-Memory Organization-Input Module (Schematic and	
	WiringDiagram) – Output Module (Schematic and Wiring Diagram).	
	Types of Programming Devices – Comparison between Hardwire	_
	Control System and PLC System –PLC Types (Fixed and Modular)	7
	- Input Types - Output Types - Criteria for Selection of Suitable	
	PLC – List of Various PLCs available.	
	PLC PROGRAMMING AND SCADA	
	Different Programming Languages – Ladder Diagram – Relay Type	
	Different Programming Languages – Ladder Diagram – Relay Type Instruction – Timer Instruction – ON Delay and OFF Delay Timer	
	Different Programming Languages – Ladder Diagram – Relay Type Instruction – Timer Instruction – ON Delay and OFF Delay Timer – Retentive Timer Instruction – Cascading Timers – Counter	7
V	Different Programming Languages – Ladder Diagram – Relay Type Instruction – Timer Instruction – ON Delay and OFF Delay Timer – Retentive Timer Instruction – Cascading Timers – Counter Instruction	7
V	Different Programming Languages – Ladder Diagram – Relay Type Instruction – Timer Instruction – ON Delay and OFF Delay Timer – Retentive Timer Instruction – Cascading Timers – Counter Instruction UP Counter – Down Counter – UP/DOWN Counter - Ladder Logic	7
V	Different Programming Languages – Ladder Diagram – Relay Type Instruction – Timer Instruction – ON Delay and OFF Delay Timer – Retentive Timer Instruction – Cascading Timers – Counter Instruction UP Counter – Down Counter – UP/DOWN Counter - Ladder Logic Diagram for DOL Starter, Automatic STAR-DELTA Starter - Rotor	7 7
V	Different Programming Languages – Ladder Diagram – Relay Type Instruction – Timer Instruction – ON Delay and OFF Delay Timer – Retentive Timer Instruction – Cascading Timers – Counter Instruction UP Counter – Down Counter – UP/DOWN Counter - Ladder Logic Diagram for DOL Starter, Automatic STAR-DELTA Starter - Rotor Resistance Starter and EB to Generator Change over System.	7 7
V	Different Programming Languages – Ladder Diagram – Relay Type Instruction – Timer Instruction – ON Delay and OFF Delay Timer – Retentive Timer Instruction – Cascading Timers – Counter Instruction UP Counter – Down Counter – UP/DOWN Counter - Ladder Logic Diagram for DOL Starter, Automatic STAR-DELTA Starter - Rotor Resistance Starter and EB to Generator Change over System. Supervisory Control Data Acquisition System (SCADA) – Block Diagram	7 7

TEXT BOOKS:

1. "S.K.Battacharya" "Control of Electrical Machines", New Age International Publishers, New Delhi

REFERENCE BOOKS:

- 1. "Pradeep Kumar, Srivastava" Exposing Programmable Logic Controllers with Application", BPB Publications
- 2. "Stephen Herman" Industrial Motor Control", 6th Edition, Cengage Learning
- 3. "David Bailey, Edwin Wright" "Practical SCADA for Industry", Newnes Publishers

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030512
- Semester : V

Subject Title : PROGRAMMABLE LOGIC CONTROLLER

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Hours	Hours /	Marks			
	/ Week	/ Semester	Internal Assessment	Board Examinations	Total	Duration
PROGRAMMABLE LOGIC CONTROLLER	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours	
I	Introduction to PLC	16	
II	Input / Output Modules	15	
	PLC Programming	14	
IV	Networking	14	
V	Data Acquisition Systems	14	
Test & Model Exam			
	Total	80	

RATIONALE

Various control operations are to be performed automatically and sequentially on the electrical machines to suit the industrial requirements. Programmable controllers are mainly employed to control the process in industries. In order to impart knowledge on programmable Logic Controller this theory subject is introduced.

OBJECTIVES

Unit: 1

After completing this chapter, students should able to:

- ✓ Explain the meaning of automation and List the types of automation
- ✓ Define PLC and Explain why their use is valuable
- ✓ Explain what PLC can do
- ✓ Compare fixed and modular PLC
- ✓ Explain the advantages of PLC
- ✓ Explain the functions of various elements of power supply unit

Unit: 2

After completing this chapter, students should able to:

- ✓ Know the difference between digital and analog input and output signals
- ✓ Observe how digital field device information gets into a PLC
- ✓ Observe how analog field device information gets into a PLC
- ✓ Understand I/O addresses and how they are used in a PLC

Unit: 3

After completing this chapter, students should able to:

- ✓ Describe PLC timer instruction and differentiate between a non-retentive and retentive timer
- ✓ Program the control of outputs using the timer instruction
- ✓ List and describe the functions of PLC counter instructions
- ✓ Create PLC programs involving program control instructions, math instructions

Unit: 4

After completing this chapter, students should able to:

- ✓ Explain the functionality of different levels of industrial network
- ✓ Explain the concept of network topology and network protocols
- ✓ Explain the concept of I/O bus networks etc.,

Unit: 5

After completing this chapter, students should able to:

- ✓ Describe the computer control of process
- ✓ Explain the operation of SCADA
- ✓ Explain the functions of the major components of a process control system
- ✓ Explain how on/off control and PID control work.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
	INTRODUCTION TO PLC:	
	Automation – Types of Automation (Manufacturing and Non-	
	Manufacturing) – Advantages of Automation - PLC Introduction -	
	Definition – Block diagram of PLC – Principle of Operation –	
	Modes of Operating System – PLC Scan - Hardwire Control	10
I	System compared with PLC System - Advantages and	
	Disadvantages of PLCs.	
	Criteria for selection of suitable PLC – Memory Organization – Input	6
	Types – Discrete input – Analog in/out - Elements of Power	
	Supply Unit - PLC Types (Fixed I/O and Modular I/O) - List of	
	various PLCs available – Applications of PLC.	
	INPUT/OUTPUT MODULES	
	The I/O Section - Discrete I/O Modules (DC and AC) – Analog I/O	7
	Modules - Special I/O Modules- I/O Module Specification - Typical	
	Discrete and Analog I/O field Devices –Sensors — Limit Switch–	
п	Reed Switch — Proximity Sensor (Inductive and Capacitive).	
	Types of Photo Electric Sensor - Sinking and Sourcing I/O Modules-	8
	TTL Output Module — Relay Output Module –Isolated Output	0
	Module –Input /Output Addressing Scheme in important commercial	
	PLCs.	

	PLC PROGRAMMING					
	Types of Programming Methods – Types of Programming Devices –					
	Logic Functions – AND Logic – OR Logic – NOT Logic - Relay					
	Typeinstructions – Timer Instructions – ON Delay and OFF Delay	4				
	Timer.					
	Retentive Timer Instruction — Cascading Timers — Counter					
111	Instruction – UP Counter – DOWN Counter – UP/DOWN					
	Counter – Cascading Counters – Program Control					
	Instructions –Data Manipulation Instruction – Data Compare					
	Instructions – Math Instructions - Sequencer Instructions - PID					
	Instruction – PWM Function – Simple programs using above					
	instructions.					
	Develop ladder logic for: Bottle Filling System – Automatic Car	5				
	Parking System - EB To Generator Changeover System – Batch					
	Process – Elevator System -DOL Starter- Automatic Star-					
	Delta Starter – Traffic Light Control.					
	NETWORKING					
	Levels of Industrial Network – Network Topology –Network					
	Protocol – OSI Reference Model - Networking with TCP / IP Protocol - I/O Bus notworks - Block diagram of I/O Bus notworks					
	Types of I/O Bus networks.	7				
IV						
	Protocol standards — Advantages of I/O Bus networks -					
	Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial	7				
	Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet –	7				
	Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet – Modbus – Fieldbus – Profibus- Sub Netting – Subnet mask - File transfer protocol.	7				
	 Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet – Modbus – Fieldbus – Profibus- Sub Netting – Subnet mask - File transfer protocol. DATA ACQUISITION SYSTEMS 	7				
	Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication — Device Net — Control Net — Ethernet — Modbus — Fieldbus — Profibus- Sub Netting — Subnet mask - File transfer protocol.DATA ACQUISITION SYSTEMS Computers in Process Control — Types of Processes - Structure	7				
	Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet – Modbus – Fieldbus — Profibus- Sub Netting — Subnet mask - File transfer protocol.DATA ACQUISITION SYSTEMS Computers in Process Control – Types of Processes - Structure of Control system — ON/OFF Control — Closed loop Control -	7				
V	 Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet – Modbus – Fieldbus — Profibus- Sub Netting — Subnet mask - File transfer protocol. DATA ACQUISITION SYSTEMS Computers in Process Control – Types of Processes - Structure of Control system — ON/OFF Control — Closed loop Control - PID Control – Motion Control –Block diagram of Direct Digital 	7				
V	 Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet – Modbus – Fieldbus — Profibus- Sub Netting — Subnet mask - File transfer protocol. DATA ACQUISITION SYSTEMS Computers in Process Control – Types of Processes - Structure of Control system — ON/OFF Control — Closed loop Control - PID Control – Motion Control –Block diagram of Direct Digital Control. Supervisory Control and Data Acquisition (SCADA)– 	7 7				
V	 Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet – Modbus – Fieldbus — Profibus- Sub Netting — Subnet mask - File transfer protocol. DATA ACQUISITION SYSTEMS Computers in Process Control – Types of Processes - Structure of Control system — ON/OFF Control — Closed loop Control - PID Control – Motion Control –Block diagram of Direct Digital Control. Supervisory Control and Data Acquisition (SCADA)– Block diagram of SCADA – Features of SCADA – Functions of 	7 7				
V	 Protocol standards — Advantages of I/O Bus networks - Gateway — Token passing — Data Highway — Serial Communication – Device Net – Control Net – Ethernet – Modbus – Fieldbus — Profibus- Sub Netting — Subnet mask - File transfer protocol. DATA ACQUISITION SYSTEMS Computers in Process Control – Types of Processes - Structure of Control system — ON/OFF Control — Closed loop Control - PID Control – Motion Control –Block diagram of Direct Digital Control. Supervisory Control and Data Acquisition (SCADA)– Block diagram of SCADA – Features of SCADA – Functions of SCADA - SCADA software - Data Loggers – Tags – Alarms - 	7 7 7				

TEXT BOOK:

S.No	Name of the Book	Author	Publisher	Edition
1	Introduction to Programmable Logic Controllers	Gary Dunning	Cengage Learning India PvtLtd — Third Edition 2011	
2	Technician's Guide to Programmable Logic Controllers	Richard A. Cox	Delmer — Sixth Edition 2011	
3	Programmable Logic Controllers – Principle andApplications	John W. Webb	Prentice Hall	
4	Programmable Logic Controllers – ProgrammingMethods and Applications	John R Hackworth and Fredrick D. Hackworth	Pearson Education	
5	Programmable Logic Controllers	W. Bolton	Newness	
6	Programmable Controller Theory and Implementation	L.A.Bryan E.A.Bryan	An Industrial Text Company Publication – Second Edition 1997	

REFERENCE BOOKS:

S.No	Name of the Book	Author	Publisher	Edition
1	Programmable Logic Controllers	Frank D.Petruzella	Tata McGraw Hill Edition-Fourth Edition 2011	
2	Practical SCADA for industry	David Bailey Edwin Wright	Newnes	

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030513
- Semester : V

Subject Title : Elective Theory I: RENEWABLE ENERGY SOURCES

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Hours		Marks			
	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
RENEWABLE						
ENERGY	5	80	25	100*	100	3 Hrs.
SOURCES						

* Examinations will be conducted for 100 marks, and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours
I	Fundamentals of Energy Systems and Solar Radiation	16
II	Solar Thermal Conversion and Solar PV Systems	15
	Wind, Tidal and Wave Energy	14
IV	Bio – Energy	14
V	Geothermal and Oceanic Energy	14
	Test & Model Exam	7
	Total	80

RATIONALE

Electrical Energy requirement is the major crisis and hence any saving in Electrical energy is equivalent to production of Electrical Energy. Saving can be achieved by the utilization of Renewable Energy Sources.

OBJECTIVES

- Study about the fundamentals of Energy.
- Study the applications of solar energy for thermal and powergeneration.
- Understand the concept of wind, tidal and wave energies and theirapplications.
- Understand the Bio energy sources and energy conversion technologies.
- Understand the development of geothermal energy and OTEC principle.

Contents: Theory

Unit	Name of the	Hours
I	FUNDAMENTALS OF ENERGY SYSTEMS AND SOLAR RADIATION 1.1. FUNDAMENTALS OF ENERGY SYSTEMS: Introduction to Energy - Energy consumption and standard of living - classification of Energy Resources-consumption trend of Primary Energy Resources-importance of Renewable Energy Sources- Energy for	8
	Sustainable Development Various Forms of Renewable Energy 1.2 SOLAR RADIATION: Outside Earth's Atmosphere – Earth Surface —Analysis of Solar Radiation Data — Geometry — Measurement of Solar Radiation – Solar Radiation Data in India.	8
	SOLAR THERMAL CONVERSION AND SOLAR PV SYSTEMS 2.1 SOLAR THERMAL APPLICATIONS: Solar Collectors - Flat Plate Collectors- Concentrating Collectors - Comparison of Collectors - Selection of Collector for Various Applications - Solar Water Heaters - Solar Industrial Heating System — Solar Cookers - Solar Pond Electric Power Plant.	7
II	2.2. SOLAR PV SYSTEMS: A Brief History of PV, PV in Silicon: Basic Principle, Classification of PV Cells - Equivalent Circuit and Electrical Characteristics of Silicon PV Cells — Series Parallel Connections of Solar Cells - Solar PV Array and Solar Panel - Solar Panel Applications - Grid Connected PV System – Stand Alone Solar PV Power Plant – Hybrid Solar PV System.	8
 WIND ENERGY: Introduction-Basic Principles of Wind Energy Conversion: Nature of the Wind, Power in the Wind, Forces on the Blades and Wind Energy Conversion-Wind Data and Energy Estimation-Site Selection-Classification of Wind Energy Conversion Systems - Types of Wind Machines-Horizontal Axis Wind Turbine(HAWT) -Vertical Axis Wind Turbine(VAWT) — Comparison Between HAWT & VAWT - Generating System - Energy Storage — Applications of Wind Energy — Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel Devention – Dispersion Plant – Wave Plant 		
---	----	
Conversion: Nature of the Wind, Power in the Wind, Forces on the Blades and Wind Energy Conversion-Wind Data and Energy Estimation-Site Selection-Classification of Wind Energy Conversion Systems - Types of Wind Machines-Horizontal Axis Wind Turbine(HAWT) -Vertical Axis Wind Turbine(VAWT) — Comparison Between HAWT & VAWT - Generating System - Energy Storage — Applications of Wind Energy — Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES : Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel		
Blades and Wind Energy Conversion-Wind Data and Energy Estimation-Site Selection-Classification of Wind Energy Conversion Systems - Types of Wind Machines-Horizontal Axis Wind Turbine(HAWT) -Vertical Axis Wind Turbine(VAWT) Comparison Between HAWT & VAWT - Generating System - Energy Storage Applications of Wind Energy Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel Devices	10	
Estimation-Site Selection-Classification of Wind Energy Conversion Systems - Types of Wind Machines-Horizontal Axis Wind Turbine(HAWT) -Vertical Axis Wind Turbine(VAWT) Comparison Between HAWT & VAWT - Generating System - Energy Storage Applications of Wind Energy Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel		
 Conversion Systems - Types of Wind Machines-Horizontal Axis Wind Turbine(HAWT) -Vertical Axis Wind Turbine(VAWT) — Comparison Between HAWT & VAWT - Generating System - Energy Storage — Applications of Wind Energy — Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel 		
 Wind Turbine(HAWT) -Vertical Axis Wind Turbine(VAWT) — Comparison Between HAWT & VAWT - Generating System - Energy Storage — Applications of Wind Energy — Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel 		
 III Comparison Between HAWT & VAWT - Generating System - Energy Storage — Applications of Wind Energy — Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel 		
 III Energy Storage — Applications of Wind Energy — Power Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel 		
 Generation – Pumping Station -Safety and Environmental Aspects. TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel Demontion. 		
TIDAL & WAVE ENERGY: Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel		
 Basic Principle of Tidal Power – Components and Operation of Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel 		
Tidal Power Plant – Wave Energy- Wave Energy Conversion Devices. BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel Description Description	Α	
Devices. BIO – ENERGY BIOMASS RESOURCES : Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel	4	
BIO – ENERGY BIOMASS RESOURCES: Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel		
BIOMASS RESOURCES : Introduction – Photo Synthesis – Usable Forms of Bio Mass, Their Composition and Fuel		
Usable Forms of Bio Mass, Their Composition and Fuel		
Duran antica Diana a Diana antica	6	
Properties - Biomass Resources.		
BIOMASS ENERGY CONVERSION:		
IV Biomass Conversion Technologies – Urban Waste to Energy		
Conversion – Biomass Gasification – Biomass Liquification –	8	
Biomass to Ethanol Production – Biogas Production from Waste	Ū	
Biomass – Types of Bio Gas Plants - Applications – Bio Diesel		
Production – Biomass Energy Scenario in India.		
GEOTHERMAL AND OCEANIC ENERGY		
GEO THERMAL ENERGY:		
Energy inside the Earth – Uses of Geothermal Energy –	7	
V Geothermal Wells – Potential in India - Types of Geothermal		
Heat Pump Systems - Types of Geothermal Power Plants.		
Ocean Energy Resources – Principle of Ocean Thermal Energy Conversion (OTEC) – Method of Ocean Thermal Electric Power Generation.	7	

TEXT BOOK

S.No	Name of the Book	Author	Publisher	Edition
1	Non-Conventional Energy	G.D. Rai	Khanna Publishers,	1999
	Sources		New Delhi	

REFERENCE BOOKS

S.No	Name of the Book	Author	Publisher	Edition
1	Non-Conventional Energy	R.K. Rajput	S.Chand &	2012
	Sources and Utilization		Company Ltd.	
2	Renewable Energy	Twidell J.W. and	EFN Spon Ltd.	1986
	Sources	Weir A		
3	Non-Conventional Energy	B.H.Khan	Tata Mc Graw Hill.,	2 nd Edn,
	Resources		New Delhi.	2009

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADUDIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030514
- Semester : V

Subject Title : CONTROL OF ELECTRICAL MACHINES PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of Weeks per Semester: 16 weeks

Subject	Instructions		Examination			
	Hours /	s / Hours / k Semester	Marks			
	Week		Internal Assessment	Board Examinations	Total	Duration
CONTROL OF						
ELECTRICAL	5	80	25	100*	100	2 Uro
MACHINES			25	100	100	з піз.
PRACTICAL						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

The controlling techniques of various types of AC and DC Electrical Machines are to be practically learned to meet the present industrial requirements. The Controlling Process is mainly to be known to Diploma Engineer and become a successful Employee or Technician. This Subject will make our students with knowledge of application-oriented skills in Industrially Operated Machines.

OBJECTIVES

On completion of this practical subject the students will be able to:

- Make use of various types of control circuit elements like industrial switches, relays, timers, solenoids, contactors and inter locking arrangement.
- Construct various types of automatic starters for electrical motors.
- Construct control circuits for braking, jogging, reversing operations.
- To make use of PLCs for control applications.
- To program PLCs for controlling the motor.

DETAILED SYLLABUS

Contents: Practical

Name of the Topics:

Exercise

- 1. Wire and Test the Control Circuit for Jogging in Cage Induction Motor.
- 2. Wire and Test the Control Circuit for Semi-Automatic Star Delta Starter.
- 3. Wire and Test the Control Circuit for Automatic Star Delta Starter.
- 4. Wire and Test the Control Circuit for Dynamic Braking of Cage Motor.
- 5. Wire and Test the Control Circuit for Two Speed Pole Changing Motor.
- 6. Wire and Test the Control Circuit for Forward and Reverse Operation.
- 7. Wire and Test the Control Circuit for Automatic Rotor Resistance Starter.
- 8. Wire and Test the DOL Starter with Single Phase Preventer using PLC.
- 9. Wire and Test the Star Delta Starter using PLC.
- 10. Wire and Test the Control Circuit for Automatic Rotor Resistance Starter using PLC.
- 11. Develop and execute the Ladder Logic Diagram in PLC for 3 Stage Lift Operation.
- 12. Wire and Test the Sequential Operation of Solenoid Valve and a Motor for Tank FillingOperation using PLC.

- 13. Develop and execute the Ladder Logic to Interface PLC with Conveyor Model for countingthe object moving in the Conveyer.
- 14. Wire and Test the Control Circuit for Jog Forward, Jog Reverse, Forward and ReverseOperations using PLC.

Note: The performance of control circuit is to be verified with Induction motor for the experiments 1 to 10.

DETAILED ALLOCATION OF MARKS

S.No	NAME OF ACTIVITY	MARK ALLOCATION
1.	Drawing Connection/Ladder Diagram and Writing Details of the Components/Equipment/Machines used	25
2.	Making the correct circuit connections	20
3.	Conducting the Experiment Following the correct procedure Verifying the operation / appropriate readings Following the appropriate safety procedure 	30
4.	Tabulation of Readings / Interpretation of Results Graphical Representation (If required)	20
5.	Viva-voce	05
	Total Marks	100

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S. No	LIST OF EQUIPMENTS	QUANTITY REQUIRED
1	Transformer oil Tester Kit, Acidity Test kit	Each 1
2	Thermal Overload Relay	3
3	AC Contactor 230v/440v, 16A	26
4	Push Button With NO/NC Elements	30
5	Induction Motor 440 V, 1440 rpm, any HP rating (apart fromEM- II lab)	3
6	Proximity Switch	2
7	PLC (any brand) suitable for above experiments	5
8	Solenoid Valve	
9.	Three Stage Lift Model, Conveyor Model	Each 1
10.	Forward, Reverse and Jogging (Forward and Reverse) Operation Model	1

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics
- Subject Code : 4030515
- Semester : V Semester

Subject Title : PROGRAMMABLE LOGIC CONTROLLER PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of Weeks per Semester: 16Weeks

Subject	Instru	nstructions Examination				
	Hours / Hours /		Marks			
	Week Semester	Internal Assessment	Board Examinations	Total	Duration	
PROGRAMMABLE LOGIC CONTROLLER PRACTICAL	5	80	25	100*	100	3 Hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

Various control operations are to be performed automatically and sequentially on the electrical machines to suit the industrial requirements. Programmable controllers are mainly employed to control the process in industries. In order to train our students on handling of programmable controllers this practical subject is introduced.

OBJECTIVE

On completion of this practical subject the students will be able to

- Develop ladder logic for different types of starters.
- Develop ladder logic for EB to Generator changeover.
- Develop ladder logic for Automatic load transfer.
- Develop ladder logic for sequential control process like water filling, fire alarm and conveyor sorting etc.,
- To program PLCs for controlling Heater and motors.

DETAILED SYLLABUS

PROGRAMMABLE LOGIC CONTROLLER PRACTICAL

LIST OF EXPERIMENTS

1. Interfacing of Limit switch, Reed switch and Proximity switch with PLC.

2. DOL starter with single phase prevention.

- 3. EB to Generator Change over switch implementation with interlocking
- 4. Star Delta starter
 - a. Single phasing prevention
 - b. Adjustable star-delta transfer time
 - c. Pre-settable overload trip time
- 5. Automatic load transfer
 - a. Transfers load from one phase to another when one phase in a three-phase system fails
 - b. Automatically restores when power is resumed
 - c. Time delays are affected to prevent action during short time failure

6. Fill the water in water tank and maintain the water level.

- a. When water level comes below lower-level switch ON the pump
- b. When water level reaches the high level switch OFF the pump
- c. Include manual switch to operate the pump at any level of water.

7. Fire alarm

a. Multiple alarms

- b. Sound alarm
- c. If not acknowledged, Sound alarms 1 and 2
- d. Similarly go up to 4 alarm conveyor belt sorting

8. Three floor Lift control

- 9. Traffic light control
- 10. Automatic operation of double acting pneumatic cylinder Multi cycle
- 11. Sequential operation of two Double Acting Cylinders for the sequence A+,B+,B-,A-
- 12. Analog input to PLC as a set of valves for a comparator function block -The input is multilevel illumination control. The input is setting is by means of a potentiometer in an analog input to the PLC. The outputs turn on several groups of lamps to obtain desired level illumination.

13. Heater control with PID function of the PLC

- A 1000 W water heater is controlled using the PID function of the PLC. The temperature transducer is a temperature transmitter with 4 to 20 mA output and Pt 100 Probe.

14. Round table liquid filling system

- Dropping of Reagents into test tubes. The feedback is from potentiometer. The program must ensure that the end limits of the pot are never reached by carefully balancing the clockwise and anti- clockwise revolution.

15. Slow speed motor control using PWM function of the PLC

- Slow speed 12V DC 18W permanent magnet motor with fly wheel is controlled with the PWM output and feedback from a low-resolution encoder.

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S.No	LIST OF EQUIPMENTS	QUANTITY REQUIRED
1	PLCs suitable to conduct above Experiments	3
2	Limit Switch	1
3	Reed Switch	1
4	Inductive Proximity Sensor	1
5	Capacitive Proximity Sensor	1
6	PC (or) Laptop	3

DETAILED ALLOCATION OF MARKS

S.No.	NAME OF THE ACTIVITY	MARKS ALLOCATED
1.	Drawing Connection/Ladder Diagram and Writing Details of	20
	the Components/Equipments/Machines used	
2.	Making the correct circuit connections	25
3.	Conducting the Experiment	30
	- Following the correct procedure	
	- Verifying the operation / appropriate readings	
	- Following the appropriate safety procedure	
4.	Tabulation of Readings / Interpretation of	20
	Results	
	Graphical Representation (If required)	
5.	Viva-Voce	05
	Total Marks	100

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

:	Electrical and Electronics Engineering 4030516
:	V
:	Elective Practical – I: Renewable Energy Sources Practical
	: : :

TEACHING AND SCHEME OF EXAMINATION

No of Weeks per Semester: 16 Weeks

	Instru	uctions	Examination					
Subject Hou We	Hours / Hours /		Μ					
	Week	Semester	Internal Assessment	Board Examinations	Total	Duration		
			Assessment	Examinations				
RENEWABLE								
ENERGY	5	80			05	400*	100	
SOURCES			25	100*	100	3 Hrs.		
PRACTICAL								

* Examinations will be conducted for 100 M and it will be reduced to 75 M.

RATIONALE

Modern world aims to tap and utilize the Renewable Energy Sources as they are available almost at free of cost and eco-friendly nature. Our government also promotes the utilization of Renewable Energy Sources in full mind.

OBJECTIVES

- To measure the Solar Radiation
- To study the I-V and P-V Characteristics of PV Modules
- To measure Power flow of standalone PV System
- To study the Solar Thermal Equipments

DETAILED SYLLABUS

Contents: Practical

Name of the topic	Exp. No	Experiment
	1	Measurement of Solar Radiation
Solar PV Module	2	I-V and P-V Characteristics of PV Module
	3	I-V and P-V Characteristics of PV Modules in Series
	4	I-V and P-V Characteristics of PV Modules in Parallel
	5	Effect of Tilt Angle on PV Module power
	6	Effect of shading on output of Solar Panel
	7	Working of Blocking Diode
Power flow	8	Power flow calculation of standalone PV System for AC
calculation		Load
	9	Power flow calculation of standalone PV system for DC
		Load
	10	Calculation of Maximum Power Point
Solar Thermal	11	Direct type Solar Dryer
conversion	12	Indirect type Solar Dryer
	13	Solar Water Heater
	14	Solar Cooker
	15	Solar Air Heater
Wind mill	16	Demo model of Wind Mill

DETAILED ALLOCATION OF MARKS

S.No.	Name of the Activity	Marks Allocation
1	Procedure	25
2	Sketches/Circuit diagram	25
3	Tabulation	15
4	Calculation/graph	15
5	Result	15
6	Viva – voce	05
	TOTAL	100

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

Ex. No	Equipments	Quantity
1	Solar panel PV Training Kit	6
2	Infra-red Thermometer	1
3	Lux Meter	2
4	Solar Power Meter	1
5	Solar Panel 100 Watts (Mono -1, Poly – 2)	3
6	Inverter (PWM, MPPT – 1 no. Each)	2
7	Battery 12V, 13 AH	1
8	Charge Controller 12V/10A	2
9	MC Voltmeter (0 – 100V)	6
10	MC Ammeter (0 – 15A)	6
11	AC/DC Digital Tong Tester	2
12	Rheostat 50 Ohm	1

13	Direct type Solar Dryer Kit	1
14	Indirect type Solar Dryer Kit	1
15	Solar Water Heater Kit	1
16	Solar Cooker Kit	1
17	Solar Air Heater Kit	1
18	Model Wind Mill	1

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name	: Diploma in Electrical and Electronics Engineering
Subject Code	: 4030540
Semester	: V Semester
Subject Title	: COMPUTER AIDED ELECTRICAL DRAWING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 Weeks

Subject	Instr	uction	Examination			
COMPUTER AIDEDHours/HoursELECTRICALWeekSemesting		Hours/ Semester	Marks Internal Board Total		Duration	
DRAWING PRACTICAL	4	64	25	Examination 100*	100	3 Hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

This subject is introduced in order to impart skill of making Computer Aided Electrical Drawing.

OBJECTIVES

At the end of the semester the students must be able to draw:

- 2D Diagrams using Auto CAD
- Symbols widely used in Electrical and Electronics Circuits
- Single Line Diagram of different types of Panels.
- Single Line Diagrams of Substation Layout.
- Winding Diagrams
- Line Diagram of Distribution Panels

DETAILED SYLLABUS

PART-A

ELECTRICAL SYMBOLS-DRAWING

(5*2=10)

- Draw the symbols for Components: Resistor, Capacitor, Inductor, Diode, Transistor, FET, SCR, UJT, TRIAC, DIAC, and Gates AND, OR, NOT, NAND, NOR, EXOR.
- 2. Draw the Symbols used in Electrical Wiring: Relays, Contactors, Fuses, Main Switch, Electric Bell, Earth, DPST, DPDT, TPST, and Neutral Link.
- Draw the Symbols for Instruments: Ammeter, Voltmeter, Wattmeter, Energy Meter, Frequency Meter, Power Factor Meter, Timer and Buzzers.
- 4. Draw the Symbols for Machines: Armatures, Alternators, Field winding (Shunt, Series and Compound) Transformer and Autotransformer.

PART-B

(1*60=60)

ELECTRICAL CONNECTION DIAGRAMS- DRAWING

- 1. Draw the Single Line Diagram of Single Phase MCB Distribution Board.
- 2. Draw the Single Line Diagram of Three Phase MCB Distribution Board.
- 3. Draw the Single Line Diagram of typical MV Panel.
- 4. Draw the Single Line Diagram of Motor Control Centre (MCC) Panel.
- 5. Draw the Single Line Diagram of Fire Alarm Riser Arrangement in Multi-Storey Building.
- 6. Draw the Single Line Diagram of Intercom Arrangement in Multi Storey Building.
- 7. Draw the Front-End Schematic Diagram of typical Sub Switch Board (SSB).
- Draw the Winding Diagram of Lap Connected DC Armature withCommutators Connections and Brush Positions.
- 9. Draw the Control and Main Circuit of Automatic Star Delta Starter.
- 10. Draw the Mush Winding Diagram of a Three Phase Induction Motor.
- 11. Draw the Concentric Winding Diagram of a Single-Phase Induction Motor.

NOTE FOR EXAMINERS

- 1. Five symbols should be asked from part A exercise 1to 4 with at least one from each.
- 2. One sketch should be asked from part B exercise 1 to 13.
- 3. Printed output of the given symbols and sketch is to be evaluated

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S.No	NAME OF THE EQUIPMENT	QUANTITY REQUIRED
1.	PC – Pentium Dual Core	30
2.	Electrical CAD Software multi user	01
3.	UPS – 5KVA with half an hour batterybackup	01

ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1.	SYMBOLS IN CAD	20
2.	MANUAL DRAWING OF ELECTRICAL CONNECTIONDIAGRAM	20
3.	ELECTRICAL CONNECTION DIAGRAM IN CAD	40
4.	PRINT OUT	15
5.	VIVA VOCE	05
	Total	100

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : All Branches of Diploma in Engineering and Technology

Subject Code : 4040550

Semester : V

Subject Title : MICROCONTROLLER PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions			Examination		
Subject	Hours /	Hours /		Marks		Duration
-	Week Semester	Internal Assessment	Board Examinations	Total		
MICROCONTROLLER PRACTICAL	4	64	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The introduction of this subject will enable the students to have hands on experience in using 8051 trainer kits. The students are exposed to learn simple programs using assembly language. They can also get familiar with the C compiler platform. They also gain knowledge by using application specific interfacing boards.

OBJECTIVES:

The students are able to

- -> Understand the use of instruction set by writing and executing simple ALP.
- -> Know the connection details between microcontroller and peripherals.

DETAILED SYLLABUS

Contents: Practical

Exercises

Part A

The following experiments should be written using 8051 assembly language program and should be executed in the 8051-Microcontroller trainer kit.

- 1.8 / 16 bit addition
- 2.8 / 16 bit subtraction
- 3.8 bit multiplication
- 4.8 bit division
- 5. BCD to Hex code conversion
- 6. Hex to BCD code conversion
- 7. Smallest / Biggest number
- 8. Time delay routine (Demonstrate by Blinking LEDS).
- 9. Using Timer/ counter of 8051

Part B (Interfacing Application Boards)

The following experiments can be written using C compiler or 8051 assembly language and to be executed.

- 10. Interfacing Digital I/O board
- 11. Interfacing DAC
- 12. Interfacing Stepper motor
- 13. Interfacing Seven segment LED display or LCD
- 14. Sending data through the serial port between microcontroller kits
- 15. Interfacing DC motor using PWM.

BOARD EXAMINATION

Note:

1. Students are provided with Hex code sheet for manual hand assembly.

DETAILED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1.	ALGORITHM OR FLOW CHART	20
2.	PROGRAM	30
3.	EXECUTION	30
4.	RESULT	10
5.	VIVA VOCE	10
	Total	100

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S.No.	Name of the Equipments	Required No.s
1	8051 Microcontroller Kit	14
2	Digital I/O Interface Board	2
3	Seven Segment LED Display Interface Board	2
4	8 Bit DAC Interface Board	2
5	Stepper Motor Control Interface Board	2
6	DC Motor Control Interface Board	2
7	RS 232 Serial Port Cable	2
8	LCD Interface Board	2
9	Laptop / Desktop Computer	6

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic Year 2020-2021 onwards)

- Course Name : All Branches of Diploma in Engineering and Technology and Special Programs
- Subject Code : 4040570
- Semester : V

Subject Title : ENTREPRENERUSHIP AND STARTUPS

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 Weeks

Subject	Instruction		Examination			
	Hours/ Week	Hours/ Semester	rs/ Marks ester			Duration
			Internal Assessment	Board Examinations	Total	-
ENTREPRENEURSHIP AND STARTUPS	4	64	25	75	100	3 Hrs

Topics and Allocation of Hours

UNIT	Торіс	Hours
I	Entrepreneurship – Introduction and Process	10
II	Business Idea and Banking	10
	Startups, E-cell and Success Stories	10
IV	Pricing and Cost Analysis	10
V	Business Plan Preparation	10
Revision,	Field visit and Preparation of case study report	14
	Total	64

RATIONALE:

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socio-economic environments; to ensure equity of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and startups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

OBJECTIVES:

At the end of the study of 5th semester the students will be able to

- To excite the students about entrepreneurship
- Acquiring Entrepreneurial spirit and resourcefulness
- Understanding the concept and process of entrepreneurship
- Acquiring entrepreneurial quality, competency and motivation
- Learning the process and skills of creation and management of entrepreneurial venture
- Familiarization with various uses of human resource for earning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- Survey and analyze the market to understand customer needs
- Understand the importance of generation of ideas and product selection
- Learn the preparation of project feasibility report
- Understand the importance of sales and turnover
- Familiarization of various financial and non-financial schemes
- Aware the concept of incubation and starts ups

DETAILED SYLLABUS

Unit	Name of the Topics	Hours				
1	ENTREPRENEURSHIP – INTRODUCTION AND PROCESS					
	 Concept, Functions and Importance 					
	Myths about Entrepreneurship	10				
	 Pros and Cons of Entrepreneurship 					
	Process of Entrepreneurship					
	Benefits of Entrepreneur					
	Competencies and Characteristics					
	Ethical Entrepreneurship					
	 Entrepreneurial Values and Attitudes 					
	Motivation					
	Creativity					
	Innovation					
	 Entrepreneurs - as problem solvers 					
	 Mindset of an employee and an entrepreneur 					
	 Business Failure – causes and remedies 					
	 Role of Networking in entrepreneurship 					
II	BUSINESS IDEA AND BANKING					
	 Types of Business: Manufacturing, Trading and Services 					
	Stakeholders: Sellers, Vendors and Consumers					
	E- Commerce Business Models					
	 Types of Resources - Human, Capital and Entrepreneurial 					
	tools					
	 Goals of Business and Goal Setting 					
	 Patent, copyright and Intellectual Property Rights 					
	 Negotiations - Importance and methods 					
	 Customer Relations and Vendor Management 					
	 Size and Capital based classification of business enterprises 					
	Role of Financial Institutions					
	Role of Government policy					
	Entrepreneurial support systems					

	Incentive schemes for State Government	
	 Incentive schemes for Central Government 	
III	STARTUPS, E-CELL AND SUCCESS STORIES	
	 Concept of Incubation center's 	10
	Activities of DIC, financial institutions and other relevance	10
	institutions	
	 Success stories of Indian and global business legends 	
	Field Visit to MSME's	
	 Various sources of Information 	
	Learn to earn	
	Startup and its stages	
	Role of Technology – E-commerce and social media	
	Role of E-Cell	
	E-Cell to Entrepreneurship	
IV	PRICING AND COST ANALYSIS	
	 Calculation of Unit of Sale, Unit Price and Unit Cost 	10
	 Types of Costs - Variable and Fixed, Operational Costs 	10
	Break Even Analysis	
	 Understand the meaning and concept of the term Cash 	
	Inflow and Cash Outflow	
	Prepare a Cash Flow Projection	
	 Pricing and Factors affecting pricing 	
	 Understand the importance and preparation of Income 	
	Statement	
	 Launch Strategies after pricing and proof of concept 	
	 Branding - Business name, logo, tag line 	
	Promotion strategy	
V	BUSINESS PLAN PREPARATION	
	 Generation of Ideas, 	10
	 Business Ideas vs. Business Opportunities 	
	 Selecting the Right Opportunity 	
	Product selection	
	 New product development and analysis 	

Feasibility Study Report – Technical analysis, financial	
analysis and commercial analysis	
Market Research - Concept, Importance and Process	
Marketing and Sales strategy	
Digital marketing	
Social Entrepreneurship	
Risk Taking-Concept	
Types of business risks	

TEXT BOOKS:

- 1. Dr. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra 282002
- Dr. G.K. Varshney, Business Regulatory Framework, Sahitya Bhawan Publications, Agra 282002

REFERNCE BOOKS:

- Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship, McGraw Hill (India) Private Limited, Noida - 201301
- M.Scarborough, R.Cornwell, Essentials of Entrepreneurship and small business management, Pearson Education India, Noida - 201301
- Charantimath Poornima M. Entrepreneurship Development and Small Business Enterprises, Pearson Education, Noida - 201301
- 4. Trott, Innovation Management and New Product Development, Pearson Education, Noida 201301
- 5. M N Arora, A Textbook of Cost and Management Accounting, Vikas Publishing House Pvt. Ltd., New Delhi-110044
- Prasanna Chandra, Financial Management, Tata McGraw Hill education private limited, New Delhi
- 7. I. V. Trivedi, Renu Jatana, Indian Banking System, RBSA Publishers, Rajasthan
- 8. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai 600018
- 9. Ramani Sarada, The Business Plan Write-Up Simplified A practitioner's guide to writing the Business Plan, Notion Press Media Pvt. Ltd., Chennai 600095.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030610
- Semester :VI
- Subject Title : Distribution and Utilization

TEACHING AND SCHEME OF EXAMINATION

No of Weeks per Semester: 16 Weeks

	Instructions		Examination			
Subject	Hours	Hours /	Marks			
Subject	/ Semester Week	Internal Assessment	Board Examinations	Total	Duration	
DISTRIBUTION AND UTILIZATION	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours		
I	Distribution	20		
II	Industrial Drives	18		
III	Electric Traction	17		
IV	Illumination	17		
V	Electric Heating and Welding	17		
Test & Model Exam				
	Total	96		

RATIONALE

Electrical Energy requirement is the major crisis and hence any saving in Electrical energy is equivalent to production of Electrical Energy. Saving can be achieved by the utilization of Renewable Energy Sources.

OBJECTIVES

At the end of the Semester, Students will be able to understand the concepts of :

- Substation arrangements.
- Distribution of Power.
- Industrial Drives Suitability for different applications.
- Track Electrification-Traction Mechanics Traction Motor Controls
- Illumination Design of Lighting Schemes Sources of Light.
- Electric Heating Methods Electric Furnace Temperature Control.
- Electric Welding and Welding Equipments.

DETAILED SYLLABUS

Contents:	Theory	
Unit		Hours
	DISTRIBUTION 1.1. Substation: Introduction-Sub Stations-Classification of Sub	
	Stations-Indoor and Outdoor S.S - Gas Insulated S.S-	
	Comparisons-Layout 110/11KV Substation and 11KV/400V	
	Distribution Substation-Substation Equipments-Bus Bar- Types of	8
	Bus Bar Arrangement -Advantages and Disadvantages.	-
	1.2 Distribution: Distribution System-Requirements of a	
	Distribution System-Part of Distribution System- Classification of	
1	Distribution Systems-Comparison of Different Distribution	
-	Systems (A.C And D.C) -A.C Distribution -Types-Connection	12
	Schemes of Distribution System-A. C Distribution Calculations-	
	Calculation of Voltage At Load Points on Single Phase	
	Distribution Systems (With Concentrated Load Only)- Distribution	
	Fed At One End, Both Ends and Ring Mains-Problems- Three	
	Phase, Four Wire, Star Connected Unbalanced Load Circuit-	
	Problems- Consequence of Disconnection of Neutral in	
	Three Phase Four Wire System (Illustration with an Example)	
	INDUSTRIAL DRIVES	
	Introduction to Electric Drive – Advantages of Electric Drives –	
	Transmission of Power-Types of Electric Drives-Individual, Group	
	and Multi Motor Drives — Advantages and Disadvantages of	
	Individual And Group Drive -Factors Governing The Selection of	40
П	Motors-Nature and Classification of Load Torque-Matching of	18
	Speed Torque Characteristics of Load and Motor-Standard	
	Ratings of Motor- Classes of Load Duty Cycles -Selection of	
	Motors for Different Duty Cycles-Selection of Motors for Specific	
	Application-Braking- Features of Good Braking System- Types of	
	Braking - Advantages of Electric Braking - Plugging, Dynamic	

ELECTRIC TRACTION	
ELECTRIC TRACTION Introduction To Traction Systems - Advantages and Disadvantages of Electric Traction. System of Track Electrification - Methods of Supplying Power-Rail Connected System and Over Head System-O.H. Equipments-Contact Wire, Centenary and Droppers – Current Collection Gear for OHE –Bow and Pantograph Collector-Different Systems of Track Electrification-Advantages of Single Phase Low Frequency A.	٤
 C. System- Booster Transformer-Necessity- Methods of Connecting B.T-Neutral Sectioning. Traction Mechanics: Units and Notations used in Traction Mechanics-Speed Time Curve for Different Services - Simplified 	
Speed Time Curve-Derivation of Maximum Speed-Crest Speed, Average Speed, Schedule Speed (Definitions Only)-Tractive Effort and Power Requirement- Specific Energy Output-	ç
Specific Energy Consumption - Traction Motors and Control: Desirable Characteristics of Traction Motors-Motors used for Traction Purpose-Methods of Starting and Speed Control of D.C	
Rheostatic Control-Energy Saving with Plain Rheostatic Control Series- Parallel Control- Energy Saving with Series Parallel Starting - Shunt Transition -Bridge- Transition- Multiple Unit Control –Regenerative Braking. Recent Trends in	
Electric Traction-Magnetic Levitation (MEGLEV) — Suspension Systems.	

	ILLUMINATION	
	Introduction - Definition and Units of Different Terms used in	
	Illumination-Plane Angle, Solids Angle, Light, Luminous Flux,	
11/	Luminous Intensity, Luminous Efficacy Candle Power, Lumen,	
IV	Illumination, M.S.C.P, M.H.C.P, M.H.S.C.P- Reduction Factor,	8
	Luminance, Glare Lamp Efficiency. Space-Height Ratio,	
	Depreciation Factor Utilization Factor, Waste Light	
	Factor, Absorption Factor, Beam Factor, Reflection	
	Factor.	
	Requirements of Good Lighting System- Laws of Illumination-	
	Problems. Types of Lighting Scheme- Factors to be Considered	
	while Designing Lighting Scheme- Design of Lighting Scheme	
	(Indoor and Outdoor)- Problems- Lighting Systems- Factory	
	Lighting Flood Lighting Street Lighting	
	Sources of Light: Arc Lamp Incandescent Lamp Halogen Lamp	9
	Sodium Vapour Lamp, High Prossure Moreury Vapour Lamp,	
	Elucroscopt Tube Induction Lamp, Energy Soving Lamp, (C.E.L.	
	And L E D Lamps) Limitation and Diaposal Of C E L Bangfita of	
	And L.E.D Lamps)-Limitation and Disposal Of C.F.L-Benefits of	
	Led Lamps-Comparison of Lumen Output for LED, CFL and	
	Incandescent Lamp	
	Earthing and Maintenance of Lighting:	
	Fluorescent Lamp Disposal - Precautions in erecting lighting	
	installations – Symptoms to identify the end of the useful life of	
	lamp – Causes for lowering the illumination level.	

ELECTRIC HEATING AND WELDING **Electric Heating:** Introduction – Advantages of Electric Heating – Modes of Heat Transfer - Classification of Electric Heating -5 Power Frequency Electric Heating — Direct and Indirect Resistance Heating-Infrared Heating-Arc Heating -High Frequency Electric Heating – Induction Heating-Induction Stove -Eddy Current Heating and Dielectric Heating. Electric Furnaces: Resistance Furnace-Requirements of Heating Elements-Commonly used Heating Element Materials-Resistance Furnace for Special Purposes-Temperature Control of 6 Resistance Furnace-Arc Furnace -Direct and Indirect Arc V Furnace- Temperature Control of Arc Furnace-Reasons for Employing Low Voltage and High Current Supply - Induction Furnace-Direct and Indirect Core Type Induction Furnace-Coreless Induction Furnace-Power Supply for Coreless Induction Furnace. Electric Welding: Introduction-Types of Electric Welding-Requirements of Good Weld- Preparation of Work -Resistance Welding- Butt Welding, Spot Welding, Seam Welding, Projection Welding and Flash Welding-Arc Welding-Carbon Arc Welding, Metal Arc Welding, Atomic Hydrogen Arc Welding, Inert Gas Metal Arc Welding- Comparison between Resistance and Arc Radiation Welding - Ultrasonic Welding, Welding. Electron Beam Welding, Laser Beam Welding-Electric Welding Equipments (A.C. And D.C).

6

TEXT BOOK

S.No	Name of the Book	Author	Publisher	Edition
1	A Course in Electrical	Soni&Gupta	Dhanpat Rai&	
	Power		Sons, New Delhi	

REFERENCE BOOKS

S.No	Name of the Book	Author	Publisher	Edition
1	Electric Power	SL Uppal	Khanna Publishers,	
			New Delhi	
2	Modern Electric Traction	H Partab	Dhanpat Rai & sons,	
			New Delhi	
3	Electrical Power	AS Pabla	Tata McGraw Hill	
	Distribution System		Publishing Co, New Delhi	
4	Utilization of Electric	NV	Tata McGraw Hill	
	Power	Suryanarayana	Publishing Co, New Delhi	

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name : Diploma in Electrical and Electronics Engineering

Subject Code : 4030630

Semester : IV

Subject Title : Energy Conservation and Audit

TEACHING AND SCHEME OF EXAMINATION

No of weeks per Semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours /	Marks			
	Week Seme	Semester	Internal Assessment	Board Examinations	Total	Duration
ENERGY CONSERVATION AND AUDIT	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours
I	Energy Conservation and its Importance	11
II	Energy Conservation in Electrical Machines	11
	Energy Conservation in Electrical Installation Systems	11
IV	Energy Audit and Instruments	12
V	Energy Costs and Energy Audit Report	12
	Test & Model Exam	7
	Total	64

RATIONALE

Energy conservation is the effort made to reduce the consumption of energy by using less of an energy service. Energy can be conserved by reducing wastage and losses, improving efficiency through technological upgrades and improved operation and maintenance. Energy Audit is the key to a systematic approach for decision-making in the area of energy management. The effective use of energy to maximize profits (minimize costs) and enhance competitive positions, it is necessary to conserve energy. Hence it is necessary to study energy auditing methods and energy saving opportunities in electrical system.

OBJECTIVES

At the end of the Semester, Students will be able to:

- ✓ Explain necessity and importance of Energy Conservation
- Explain the goal with energy conservation techniques is to reducedemand, protect supplies, develop and use Alternative Energy Sources.
- ✓ Explain the energy efficient technologies in Electrical System
- ✓ Explain the Periodic maintenance of Electrical Systems.
- ✓ Explain Technical losses and commercial losses in installation Systems.
- ✓ Explain How to product output or to lower operating costs.
- ✓ Discuss about Energy Conservation Equipment
- ✓ Explain Energy Conservation in Lighting System
- Identify where and how energy and factors affecting consumptionconsumed.
- ✓ Explain Energy Costs.
- ✓ Explain how to Detect and improving energy Efficiency.
- ✓ Explain the concept and types of Energy of Energy Audit.
- ✓ Explain the importance of Energy Audit.
- ✓ List the Instruments for Audit and Monitoring Energy and Energy Savings
- ✓ Explain Energy cost in Indian Scenario.
- ✓ Draw the Energy Audit Report Format

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
1	ENERGY CONSERVATION AND ITS IMPORTANCE	
	Definition - Need for and importance of Energy Conservation - Primary	
	and Secondary Energy - Energy Demand and Supply - Energy	
	Conservation in Household, Industries and Community Level - Energy for	5
	sustainable Development - Energy Conservation in India - Energy	
	Conservation Approaches - Safe working of Electrical Equipments and	
	Electrical Safety.	
	Energy Conservation Techniques - Principles of Energy Conservation	6
	Methods - Difference between Energy conservation and Energy audit -	
	Polovant clauses of Energy Conservation - REE and its Polos - MEDA	
	and its Polos - Energy Audit in Energy Conservation Star Labelling:	
	Need and its honefits. Pole of Tamilandu Energy Development Agency	
	(TEDA) Introduction to ISO 50001 Energy Audit Cartificato	
	(TEDA) - Introduction to ISO 50001 - Energy Addit Certificate.	
I	ENERGY CONSERVATION IN ELECTRICAL MACHINES	
	Need for Energy Conservation in Induction Motor and Transformer -	
	Methods of Energy Conservation in Induction Motor - Energy Saving	
	Opportunities with Energy Efficient Motors - Energy Conservation	
	Techniques in Induction Motor By: Improving Power Quality -Variation in	6
	Efficiency and Power Factor with Loading Motor Survey Matching Motor	
	Rating with Load - Minimizing the Idle and Redundant Running of Motor	
	Operating in Star Mode -Rewinding of Motor - Replacement by Energy	
	Efficient Motor Periodic Maintenance	
	Energy Conservation Techniques in Transformer. Loading Sharing	E
	Parallel Operation Isolating Techniques. Replacement by Energy Efficient	J
	Transformers - Periodic Maintenance - Energy Conservation Equipment:	
	Soft Starters, Automatic Star Delta Convertor, Variable Frequency Drives,	
	Automatic P. F. Controller (APFC), Intelligent P. F. Controller	
	(IPFC)Energy Efficient Motor; Significant Features, Advantages,	
	Applications and Limitations.	

ENERGY CONSERVATION IN ELECTRICAL INSTALLATIONSYSTEMS

Aggregated Technical and commercial losses (ATC); Power system at state, regional, national and global level. Technical losses; causes and measures to reduce by - Controlling I2R losses. Optimizing distribution voltage. Balancing phase currents Compensating reactive power flow Commercial losses: pilferage causes and remedies.

Energy conservation equipment: Maximum Demand Controller, KVAR Controller, Automatic Power Factor controller (APFC) Energy Conservation in Lighting System Replacing Lamp sources. Using energy efficient luminaries. Using light-controlled gears. Installation of separate transformer / servo stabilizer for lighting. Periodic survey and adequate maintenance programs. Energy Conservation techniques in fans, electronic regulators.

ENERGY AUDIT AND INSTRUMENTS

111

IV

detailed audit)

Definition, objective and principles of Energy Management, Need of Energy Audit and Management, types of Energy Audit, Audit Process, Energy Audit of Building System, Lighting System, HVAC System, Water Heating System, Heat Recovery opportunities during Energy Audit, Industrial Audit Opportunities. Energy Flow Diagram (Sankey Diagram) Simple Payback Period, Energy Audit Procedure (walk through audit and

Instruments for Audit and Monitoring Energy and Energy Savings Energy Audit Instruments - Basic Measurements — Electrical Measurements, Light, Pressure, Temperature and Heat Flux, Velocity and Flow Rate, Vibrations, etc. Instruments Used in Energy systems: Load and Power Factor Measuring Equipments, Wattmeter, Flue Gas Analysis, Temperature and Thermal Loss Measurements, Air Quality Analysis etc.

6

6

5

6
ENERGY COSTS AND ENERGY AUDIT REPORT

Understanding Energy Costs Energy Cost in Indian Scenario - Cogeneration and Tariff - Concept, Significance for Energy Conservation -Co-generation - Types of Cogenerations on basis of sequence of Energy use (Topping cycle, bottoming cycle) - Types of Co-generation basis of Technology (Steam Turbine Co-generation, Gas Turbine Co-generation, Reciprocating Engine Co-generation) Factors governing the selection of Co-generation System. Advantages of Co-generation - Tariff: Types of Tariff Structure: Special Tariffs; Time-Off-Day Tariff, Peak-Off-Day Tariff, Power Factor Tariff, Maximum Demand Tariff, Load Factor Tariff - Application of Tariff System to reduce Energy bill. Benchmarking and Energy Performance - Energy Audit Report Format - Guidelines for writing Energy Audit Report - Data presentation in Report.

TEXT BOOKS:

V

- 1. "M A Chaudhari, S M Chaudhari & S A Asarkar ", "Energy Conservation & Audit ", "Nirali Prakashan" Publication.
- 2. "Y. B. Mandake", "Pankaj Mohan", "Dr. D.B. Talange" Energy Conservation and Audit, "Tech Neo" Publications.

REFERENCE BOOKS

- 1. "Er. Udit Mamodiya" "Electrical Energy Conservation & Auditing", Ashirwad Publication.
- 2. O.P. Gupta, "Energy Technology", Khanna Publishing House, New Delhi

6

6

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030621
- Semester : VI

Subject Title : Elective Theory – II - POWER ELECTRONICS

TEACHING AND SCHEME OF EXAMINATION

No of Weeks per Semester: 16 Weeks

	Instru	uctions		Examination		
Subiect	Hours /	Hours /		Marks		
-	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
POWER ELECTRONICS	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours
Ι	Thyristor Family, Trigger and Commutation Circuits	13
II	Phase Controlled Rectifiers	15
	Choppers and Inverters	15
IV	Control of DC Drives	15
V	Control of AC Drives	15
	Test & Model Exam	7
	Total	80

RATIONALE

Developments in Electronics have their own impact in other fields of Engineering. Today all the Controls and Drives for the Electrical Machines are formed by Electronic Components and there are many Electronic Devices available to handle Eclectic Power in terms Kilo-Amps and Kilo-Volts. This subject gives a comprehensive knowledge base about the devices and circuits used in Electrical Power Control.

OBJECTIVES

On completion of these units, the student should be able to:

- Explain the scope and application of Power Electronics
- Explain the operating region and working of Thyristor family devices.
- Explain and state the application for Commutation Circuits and Trigger Circuits of SCR.
- Familiarize the Phase Controlled Rectifier for different kinds of Loads.
- Study the complete protection of Converter Circuits.
- Understand the working and applications of different types of Choppers and Inverters.
- Understand the application of Power Electronics devices as UPS, SMPS.
- Understand the control of DC Drives.
- Know the various methods of Speed Control of DC Drives.
- Familiarize the Control of AC Drives.
- Study the Speed Control of Three Phase Induction Motor using PWM and Slip Power Recovery Scheme.
- Understand the Closed Loop Control of DC Drive and AC Drive.
- Know the operation of Single Phase and Three Phase Cyclo Converter.
- Study the need of Microcomputer Based Motor Control.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
	THYRISTOR FAMILY, TRIGGER AND COMMUTATION CIRCUITS	
	Thyristor Family (Review) –SCS, SUS, SBS, LASCR and GTO. Symbol,	
	Circuit, Working, Characteristics and Applications - UJT, SCR, DIAC,	
	TRIAC, IGBT, GTO and MOSFET. Gate Triggering Circuits -	
_	Requirements, Types. Circuit, working of $-$ R, RC, Synchronized UJT	
I	Triggering Circuits. Pulse Transformer in Trigger Circuits — IC	7
	based Advance Triggering Circuits for SCR & TRIAC (Using IC TCA	
	785) - Driver and Power circuits for Thyristor.	
	Commutation Circuits – SCR Turn Off Methods – Natural Commutation	
	-Forced Commutation - Class A, Class B, Class C, Class D, Class E	6
	and Class F. SCR rating and their importance.	
	PHASE CONTROLLED RECTIFIERS	
	Introduction — Phase Controlled Rectifiers. Circuit Diagram, Working and	
	Waveform - Half Wave, Full Wave Controlled Rectifier with Resistive,	
	Inductive Loads and Free Wheeling Diode - Single Phase Fully	
п	Controlled Bridge, Single Phase Dual Converter with R Load, RL Load -	8
	Single Phase Semi Converter with Continuous and Discontinuous Load	-
	Current. AC – AC Converter.	
	Three Phase Half Controlled Bridge, Fully Controlled Bridge with RL	7
	Load - Complete Protection of Thyristors against Surge Current, Surge	i
	Voltage, Dv/Dt, Di/Dt Protection.	

	CHOPPERS AND INVERTERS	
	Choppers – Introduction, Principle of Chopper Operation. Control	
	Strategies — Constant Frequency System and Variable Frequency	
	System. Chopper Circuit Classification — Step Up Chopper, Step Down	
	Chopper, Voltage, Current, Load Commutated Chopper, Fist Quadrant,	
	Second Quadrant, Two Quadrant and Four Quadrant Choppers. Circuit	
Ш	Diagram, Working and Waveform – Step Up Chopper, Morgan Chopper,	8
	Jones Chopper. Applications of Choppers – SMPS	
	Inverters – Introduction, Classification of Inverter. Circuit Diagram,	
	Working and Waveform Parallel Inverter, Half Bridge Inverter, Full Bridge	3
	Inverter, Modified MC Murray Full Bridge Inverter, MC Murray Bedford	·
	Full Bridge Inverter.	
	Three Phase Bridge Inverter Under 180° Mode,120° Mode Operations -	4
	Pulse Width Modulated Inverters, (Single Pulse, Multiple Pulse,	
	Sinusoidal Pulse) Applications of Inverters — UPS - Online, Offline.	
	CONTROL OF DC DRIVES	
	Introduction — DC Drive. Basic DC Motor Speed Equation —	
	Operating Region, Armature Voltage Control, Field Current Control,	
	Constant Torque and Constant HP Regions - Circuit Diagram, Output	7
	Waveforms and Output Equation of — Separately Excited DC Motor in	
	- A) Single Phase Full Converter Drives B) Single Phase Dual	
IV	Converter Drives C)Three Phase Semi Converter Drives.	
	DC Chopper for Series Motor Drive – Four Quadrant Control of DC Motor	-
	- DC to DC Converter using MOSFET and IGBT - Block Diagram,	8
	Explanations of Closed Loop Control of DC Drives, Phase Locked Loop	
	Control of DC Drives - Microprocessor Based Closed Loop Control of DC	
	Drives.	

	CONTROL OF AC DRIVES	
	Introduction AC Drive - Torque Speed Characteristics of Three Phase	
	Induction Motor, Speed Control of Induction Motor, Stator Voltage	8
	Control, Variable Frequency Control, Necessity of Maintaining V/F Ratio.	
	Rotor Resistance Control Inverters for Variable Voltage and Variable	
V	Frequency Control -Static VAR Compensation.	
	Speed Control by Rotor Resistance for Slip Ring Induction Motors —	
	Static Scherbius Drive (Slip Power Recovery Scheme) - Closed Loop	7
	Control of AC Drive Block Diagram — Micro Computer based PWM	
	Control of Induction Motor – Introduction to Cyclo Converter with Simple	
	Circuit – Single Phase and Three Phase.	
		1

TEXT BOOKS

S. No.	Author	Title	Publication	Edition
1	MD Singh, KB Khanchandani	Power Electronics	McGraw Hill Publishing CompanyNew Delhi	Third reprint 2008

REFERENCE BOOKS

S. No.	Author	Title	Publication	Edition
1.	Mohammed H.Rashid	Power Electronics	New Age Publication.	Third Edition,2004
2.	Mohan, Undeland, Robbins.	Power Electronics	Wiley India Edition.	Media Enhanced Third Edition
3.	Dr.P.S.Bimbhra	Power Electronics	Khanna Publishers.	Fourth Edition, 2011.
4.	M.S.Jamil Asghar	Power Electronics	PHI Learning Private Limited	Eastern Economy Edition, 2010

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME (Implemented from the Academic year 2020 - 2021 onwards)

: Diploma in Electrical and Electronics Engineering
: 4030622
: VI
: ELECTIVE THEORY - II: BIO MEDICAL NSTRUMENTATION

TEACHING AND SCHEME OF EXAMINATION

Number of Weeks per Semester: 16 weeks

	Instru	ction	Exami	ination		
Subject	Hours /	Hours/	М	arks		
	Week	Semester	Internal	Board	Total	Duration
			Assessment	Examination	lotai	
BIO MEDICAL INSTRUMENTATION	5	80	25	100*	100	3 Hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS AND ALLOCATION

Unit	Торіс	Hours
I	Bio - Electric Signals, Electrodes and Clinical Measurement	13
II	Bio - Medical Recorders	15
	Therapeutic Instruments	15
IV	Biotelemetry and Patient Safety	15
V	Modern Imaging Techniques	15
VI	Revision & Test	07
	TOTAL	80

RATIONALE

Bio Medical Engineering Education is in the growing stage. But every year, there is a tremendous increase in the use of Modern Medical Equipment in the Hospital and Health Care Industry therefore it is necessary for every Student to understand the functioning of various Medical Equipments. This Subject to enable the students to learn the basic principles of different Biomedical Instruments viz Clinical Measurement, Bio -Medical Recorders, Therapeutic Instruments, Biotelemetry and Modern Imaging Techniques Instruments.

OBJECTIVES

After learning this subject, the student will be able to understand the about:

- The generation of Bio-Potential and its measurement using various Electrodes.
- The measurement of Blood Pressure.
- The measurement of Lung Volume.
- The measurement of Respiration Rate.
- The measurement of Body Temperature and Skin Temperature.
- The principles of operations of ECG Recorder.
- The principles of operations of EEG Recorder.
- The principles of operations of ENG Recorder.
- The working principles of Audio Meter.
- The principles of operations of Pacemaker.
- The basic principle of Dialysis.
- The basic principle of Short-Wave Diathermy.
- The basic principle of Ventilators.
- The working principles of Telemetry.
- The basic principle of Telemedicine.
- To learn about Patient Safety.
- The various methods of Accident Prevention.
- The basic principle of various types of Lasers.
- The basic principle of CT and MRI Scanner.
- The principle of operation of various Imaging Techniques

DETAILED SYLLABUS

Contents: Theory

Units	Name of the topic	Hours
	BIO-ELECTRIC SIGNALS AND ELECTRODES	
	Bio – Potential and Their Generation – Resting and Action Potential	
	-Propagation of Action Potential.	
	Electrodes – Micro – Skin Surface – Needle Electrodes.	3
	CLINICAL MEASUREMENT	
	Measurement of Blood Pressure (Direct, Indirect) – Blood Flow	
	Meter (Electro Magnetic& Ultrasonic Blood Flow Meter) – Blood Ph	10
	Measurement - Measurement Of Respiration Rate – Measurement	
	of Lung Volume - Heart Rate Measurement - Measurement of	
	Body and Skin Temperature - Chromatography, Photometry,	
	Flurometry.	
	BIO - MEDICAL RECORDERS	
	Electro Cardiograph (ECG) – Lead System – ECG Electrodes –	
	ECG Amplifiers — ECG Recording Units — Analysis of ECG	Q
	Curves. Electroencephalograph (EEG) — 10-20 Lead System —	0
	EEG Recording Units – EEG Wave Types – Clinical use of EEG	
11	– BrainTumor.	
	Electro Myograph (EMG) — EMG Waves — Measurement of	
	Conduction Velocity - EMG Recording Units – Electro Retino	7
	Graph (ERG)- ERG Recording Units, Audiometer - Principle – Types	
	 Basics Audiometer Working. 	

111	Cardiac Pacemaker — Classification — External Pace Makers — Implantable Pacemaker – Programmable Pacemaker – Cardiac Defibrillators – Types – AC and DC Defibrillators -Heart Lung Machine with Block Diagram. Dialysis – Hemo Dialysis – Peritoneal Dialysis. Endoscopes Endoscopic Laser Coagulator and Applications – Physiotherapy Equipment – Short Wave Diathermy – Micro Wave Diathermy – Ultrasonic Therapy Unit (Block / Circuit) – Ventilators – Types – Modern Ventilator Block Diagram.	15
IV	 BIOTELEMETRY AND PATIENT SAFETY Introduction to Biotelemetry – Physiological – Adaptable to Biotelemetry – Components of a Biotelemetry System – Application of Telemetry - – Tele-medicine - Introduction, Working, Applications. Patient Safety: Physiological effects of Electric Current – Micro and Macro Shock – Leakage Current – Shock Hazards from Electrical Equipment. Methods of Accident Prevention – Grounding – Double Insulation — Protection by Low Voltage — Ground Fault Circuit Interrupter – Isolation of Patient Connected Parts – Isolated Power Distribution System. Safety Aspects in Electro Surgical Units – Burns, High Frequency Current Hazards, Explosion Hazards. 	8
V	MODERN IMAGING TECHNIQUES LASER Beam Properties – Block Diagram – Operation of CO2 And Ndyag LASER – Applications of LASER in Medicine. X Ray Apparatus –Block Diagram – Operation – Special Techniques in X-Ray Imaging – Tomogram — Computerized Axial Tomography, CT Scanner — Ultrasonic Imaging Techniques – Echo Cardiograph – Angiography – Magnetic Resonance Imaging Techniques.	5 10

TEXT BOOK

1. Dr.M. Arumugam – Biomedical Instrumentation, Anuradha Publications, Chennai.

REFERENCE BOOKS

- 1. Leslie Cromwell Fred j. Wibell, Erich A.P Feither Bio Medical Instrumentation and Measurements, II Edition.
- 2. Jacobson and Webstar Medicine and Clinical Engineering.
- 3. R.S. Khandpur Hand book of Bio Medical Instrumentation.
- 4. Medical Electronics Kumara doss
- 5. Introduction to Medical Electronics. B.R. Klin
- 6. Introduction to Biomedical Instrumentation Mandeep Singh Printice Hall India2010.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name : Diploma in Electrical and Electronics Engineering

- Subject Code :4030623
- Semester :VI

Subject Title : Elective: III - COMPUTER HARDWARE AND NETWORKS

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 Weeks

	Instructions		Examination			Duration
Subject	Hours / Hours / Internal Board Tot		Total			
	Week	Semester	Assessment	Examination	Total	
COMPUTER						
HARDWARE	5	5 80	25	100*	100	3 Hrs
AND						
NETWORKS						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS AND ALLOCATION OF HOURS

Unit	Торіс	Hours
1	Mother Board Components and Memory Storage Devices	13
2	I/O Devices and Interface	15
3	Maintenance and Trouble Shooting of Desk top and Mobile Phones	15
4	Computer Network Devices and OSI Layers	15
5	802.X and TCP/IP Protocols	15
	Revision and Test	7
	TOTAL	80

RATIONALE

Maintaining and servicing the computers, laptops and peripherals are essential requirements of the computer students. The clear understanding of computer network devices and protocols are also taught in this subject.

OBJECTIVES

- 1. On completion of the following units of syllabus contents, the students can Identify the major components that make up the system unit.
- 2. Understand the principle of operations of Keyboard, mouse and displays.
- Study about the specification of I/O Ports of all I/O devices like serial, parallel, USB – Game port, Blue tooth and IP Connectors
- 4. Understand the technology of high-quality multiple color graphic output devices like Dotmatrix, Inkjet, Laser, Line, MFP and computer system.
- Understand the operations to Power Supply devices. Know the use of diagnostic Software. Identify the major components of Laptop. Troubles shoot the problems in Laptop.
- 6. Understand the concept of data communication.
- 7. Discuss the advantages and disadvantages of different network topologies. Compare different network classifications based on different category.
- 8. Know the use of different network devices.
- Understand the different layers of OSI and their functions. Compare different LAN protocols. Identify the protocols used in TCP /IP and compare with OSI model. Understand IP address concepts and TCP/IP suite.

DETAILED SYLLABUS

UNI DEV	T I - MOTHERBOARD COMPONENTS AND MEMORY STORAGE	13 HOURS
1.1	Introduction: Parts - Mother board, sockets, expansion slots, memory, power supply, drives and front panel and rear panel connectors – Hardware, Software and Firmware.	3
1.2	Processors: Architecture and block diagram of multi core Processor (any one), Features of new processor Definition only chipsets (Concepts only)	2
1.3	Bus Standards Overview and features of PCI, AGP, USB, PCMCIA, Processor BUS — High	2
1.4	Primary Memory : Introduction-Main Memory, Cache memory –DDR2- DDR3, RAMversions – 1TB RAM – Direct RDRAM	1
1.5	Secondary Storage: Hard Disk – Construction – Working Principle – Specification of IDE, Ultra ATA, Serial ATA; HDD Partition - Formatting. Troubleshooting hard disk drives.	3
1.6	Removable Storage: CD&DVD construction – reading & writing operations; CD-R, CD-RW; DVD-ROM, DVD-RW; construction and working of DVD Reader / Writer. Blue-ray: Introduction – Disc Parameters – Recording and Playback Principles – Solid state memory devices.	2
UNI	T II I/O DEVICES AND INTERFACE	15 HOURS
2.1	Keyboard and Mouse: Keyboard: Signals – operation of membrane and mechanical keyboards–troubleshooting; wireless Keyboard. Mouse- types, connectors, operation of Optical mouse and Troubleshooting.	3
2.2	Printers: Introduction – Types of printers– Dot Matrix, Laser, line printer, MFP (Multi-Function Printer), Thermal printer - Operation – Construction – Features and Troubleshooting	4
2.3	I/O Ports: Serial, Parallel, USB, Game Port, Bluetooth interface, IR connector, fire ware, Signal specification problems with interfaces.	3
2.4	Displays and Graphic Cards: Panel Displays– Principles of LED, LCD and TFT Displays. SVGA Port signals – common problems and solutions.	3
2.5	Power Supply: SMPS: Principles of Operation and Block Diagram of ATX Power Supply, connector specifications	2

UN Phe	IT III Maintenance and Trouble Shooting of Desk top andMobile ones	15 HOURS
3.1	BIOS: Standard CMOS setup, Advanced BIOS setup, Power management, advanced chipset features, PC Bios communication – upgrading BIOS, Flash BIOS - setup.	3
3.2	POST: Definition – IPL hardware – POST Test sequence – beepcodes and error messages.	2
3.3	Mobile phone components: Basics of mobile communication. Components - battery- antenna-ear piece- microphone -speaker- buzzer-LCD- keyboard. Basic circuit board components — Namesand functions of different ICs used in mobile phones.	3
3.4	Tools & Instruments used in mobile servicing : Mobile servicing kit – soldering and de-soldering components using different soldering tools - Use of multi- meter and battery booster.	2
3.5	Installation & Troubleshooting: Assembling and disassembling of different types of mobile phones – Installation of OS - Fault finding & troubleshooting-Jumpering techniques and solutions.	2
3.6	Software and Antivirus : Flashing- Formatting- Unlocking -Use of secret codes-Downloading- Routing; Mobile Viruses – Precautions – Antivirus Software.	3
UNI	T – IV COMPUTER NETWORK DEVICES AND OSI LAYERS	15 HOURS
4.1	Data Communication: Components of a data communication – Data flow: simplex – half duplex – full duplex; Networks – Definition - Network criteria – Types of Connections: Point to point – multipoint; Topologies: Star, Bus, Ring, Mesh, Hybrid – Advantages and Disadvantages of each topology.	3
4.2	Types of Networks: LAN – MAN – WAN – CAN – HAN – Internet –Intranet –Extranet, Client-Server, Peer to Peer Networks.	3
4.3	Transmission Media: Classification of transmission media - Guided – Twisted pair, Coaxial, Fiber optics; Unguided – Radiowaves – Infrared – LOS – VSAT – cabling and standards.	3
4.4	Network devices: Features and concepts of Switches – Routers (Wired and Wireless) – Gateways.	3
4.5	Network Models: Protocol definition - standards - OSI Model – layered architecture – functions of all layers.	3

UNI	T V 802.X AND TCP/IP PROTOCOLS	15 HOURS
5.1	Overview of TCP / IP: OSI & TCP/IP – Transport Layers	3
	-Sockets – TCP & UDP.	
5.2	802.X Protocols: Concepts and PDU format of CSMA/CD (802.3) – Token bus (802.4) – Token ring (802.5) – Ethernet – type of Ethernet (Fast Ethernet, gigabit Ethernet) –Comparison between 802.3, 802.4 and 802.5	3
5.3	Network Layers Protocol: IP –Interior Gateway Protocols (IGMP, ICMP, ARP, RARPConcept only).	3
5.4	IP Addressing: Dotted Decimal Notation –Subnetting & Super netting – VLSMTechnique-IPv6 (concepts only)	3
5.5	Application Layer Protocols: FTP- Telnet - SMTP- HTTP - DNS - POP	3

TEXT BOOKS

S.No	Title	Author	Publisher	Year of Publishing / Edition
1.	Computer Installation and Servicing	D.Balasubramanian	Arasan Ganesan Institute of Technology	1993
2.	The complete PC upgrade and Maintenance	Mark Minasi	BPB Publication	1997
3.	Troubleshooting, Maintaining and Repairing PCs	Stephen J Bigelow	Tata MCGraw Hill Publication	2004
4.	Computer Networks	Andrew S.Tanenbaum	Prentice-Hall of India, New Delhi	2002
5.	Data Communication and networking	Behrouz A.Forouzan	Tata Mc-Graw Hill, New Delhi	2006
6.	Data and Computer Communications	William Stallings	Prentice-Hall of India	Eighth Edition 2007

REFERENCE BOOKS

S.No	Title	Author	Publisher	Year of Publishing / Edition
1.	Computer Networks	Achyut Godbole	Tata Mc-Graw Hill -New Delhi	
2.	Principles of Wireless Networks– A unified Approach	Kaveh Pahlavan and Prashant krishnamoorthy	Pearson Education	2002

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030640
- Semester : VI

Subject Title : ELECTRICAL ESTIMATION AND COSTING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 Weeks

	Inst	tructions	Examination			
Subject	Hours	Hours /	Marks			
	/ Week		Internal Assessment	Board Examinations	Total	Duration
ELECTRICAL						
ESTIMATION	5	80	25	100*	100	3 Hrs.
AND						
COSTING						
PRACTICAL						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

To enable the students to prepare the schedule of materials with specification and estimate the cost for different types of Electrical Installations. This will empower the students with the necessary principles of Planning, Electrical Rules and Method of Installations.

OBJECTIVES

On completion of the following units of syllabus contents, the students must be able to:

- Draw the Conventional Symbols for various Electrical Installations.
- To quote the relevant IE Rules for a given Electrical Installation, Earthing and clearanceof Service Lines.
- Familiarize the types of Wiring.
- Explain the necessity and types of Earthing.
- Estimate the quantity of materials and cost required for Domestic and Industrial Wiring.

DETAILED SYLLABUS

Contents: Practical

Name of the Topics:

Exercise

- To study the various Electrical Symbols, IE Rules 28, IE Rules 30, IE Rules 31, IE Rules 54, IE Rules 56, IE Rules 87.
- 2. To study the various types of Earthing.
- 3. To study the various types of Electrical Wiring Methods.
- 4. Estimate the quantity of material and cost required for Residential Building (1BHK).
- 5. Estimate the quantity of material and cost required for Computer Centre having 10 Computers, AC Unit, UPS, Light and Fan.
- 6. Estimate the quantity of material and cost required for Industrial Power Wiring having 4 Machines.
- Estimate the quantity of material and cost required for street light service having 12 Lamps Light Fitting.
- 8. Estimate the quantity of material and cost required for 3 Phase Service connection to abuilding having 5KW Load.
- 9. Estimate the quantity of material and cost required for Irrigation Pump Wiring (5HP).
- 10. Estimate the quantity of material and cost required for School Building having 3 Class Rooms.
- 11. Estimate the quantity of material and cost required for erection of a 15HP Induction Motor in a Saw Mill/Flour Mill.

REFERENCE BOOKS

SI.No.	Title of the book	Author	Publisher
1.	Electrical Design Estimating and Costing.	K.B.Raina&K.Battacharya.	Khanna Publications.
2.	Electrical Installation Estimating and Costing.	J.B.Gupta	S.K.Kataria and Sons
3.	Electrical Wiring, Estimating and Costing.	Dr.S.L.Uppal	New age international (p) limited
4.	Electrical Estimating and Costing.	Surjit Singh	DhanpatRai company.
5.	Electrical wiring, Estimating and costing	B.D.Arora	R.B. Publication.

DETAILED ALLOCATION OF MARKS

SI.No	NAME OF ACTIVITY	MARK ALLOCATION
1.	LAYOUT / DETAILS OF FITTING	20
2.	LOAD CALCULATION	20
3.	MATERIAL CALCULATION	30
4.	MATERIAL SCHEDULE AND APPROXIMATE COST	25
6.	VIVA-VOCE	05
	TOTAL	100

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

- Course Name : Diploma in Electrical and Electronics Engineering
- Subject Code : 4030624
- Semester : VI
- Subject Title : POWER ELECTRONICS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Hours /	Hours /	Marks			
	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
POWER ELECTRONICS PRACTICAL	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

- The advent of Thyristors has revolutionized art of Electric Power Conversation and its Control.
- The use of the Power Electronic Devices has pervaded the Industrial Applications relating to the field of Electrical, Electronics, Instrumentation and Control Engineering.
- This Subject is introduced to impart practical skills to the students in using some important Power Electronic Devices and Circuits.

OBJECTIVES

At the end of the Course, Students will be able to:

- Construct and test various Triggering Circuits for SCR.
- Construct and test different types of Phases Controlled Converters invarious configurations at different load conditions.
- Construct and observe the performance of different types of Chopper and Inverters.
- Construct and test the performance of Open Loop and Closed LoopControl of DC and AC drives.
- Construct and test the performance of Single Phase Cyclo Converter.

DETAILED SYLLABUS

Contents: Practical

Name of the Topics: Power Electronics Practical

Exercise

- 1. Construct the Line synchronized Ramp trigger circuit using UJT with ACLoad to measure Firing Angles.
- Construct Lamp control circuit using DIAC TRIAC to measure various outputvoltage for Firing Angles.
- 3. Construct and test the SCR Commutation Circuits (Class B & Class D)
- 4. Construct and test the Half Wave Controlled Rectifier with R- Load, RL Load
- 5. Construct and test the Single Phase Fully Controlled Bridge with RL- Load and Free Wheeling Diode.
- 6. Construct and test the Single-Phase Semi Controlled Bridge with R-Load
- 7. Construct and test the DC Chopper Control Circuit using Thyristor (any class).
- 8. Construct and test the Step-Up Chopper.
- 9. Construct PWM based Step Down DC Chopper using MOSFET/IGBT.
- 10.Construct and test the Single-Phase Single Pulse / Sinusoidal PWM Inverter using MOSFET/IGBT.
- 11. Construct and test the SMPS using MOSFET/IGBT.
- 12. Construct and test the Open Loop Speed Control Circuit for DC Shunt Motor and Single-Phase AC Motor.

13. Construct and test the Control Circuit using TRIAC for Universal Motor.

- 14. Construct and test the Closed Loop Speed Control for a DC and AC Motor.
- 15. Construct and test the Single-Phase Parallel Inverter using MOSFET/IGBT
- 16. Construct and test the Single Phase to Single Phase Cyclo Converter.

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

		NO OF
3.110		QUANTITY
1.	Line Synchronized Ramp Trigger Circuit Using UJT Trainer Kit.	1
2.	Lamp Control Circuit Using DIAC – TRIAC Trainer Kit.	1
3.	SCR Commutation Circuits (Class B & Class D)	1
4.	Half Wave Controlled Rectifier with R- Load & RL Load Trainer	
	Kit.	
5.	Single Phase Fully Controlled Bridge with RL- Load And Freewheeling Diode Trainer Kit.	1
6.	Single Phase Semi Controlled Bridge with R- Load Trainer Kit.	1
7.	Construct and Test the DC Chopper Control Circuit using Thyristor (Any Class) Trainer Kit.	1
8.	Step Up Chopper Trainer Kit.	1
9.	PWM Based Step Down DC Chopper using MOSFET/IGBT Trainer Kit.	1
10.	Single Phase Single Pulse / Sinusoidal PWM Inverter using MOSFET/IGBT Trainer Kit.	1
11.	SMPS using MOSFET/IGBT Trainer Kit.	1
12.	Open Loop Speed Control Circuit for DC Shunt Motor and Single-Phase AC Motor Trainer Kit	1
13.	Control Circuit Using TRIAC for Universal Motor Trainer Kit.	1
14.	Closed Loop Speed Control of DC and AC Motor Trainer Kit.	1
15.	Single Phase Parallel Inverter using MOSFET/IGBT Trainer Kit	1
16.	Single Phase to Single Phase Cyclo Converter Trainer Kit.	1
17.	CRO With Power Probe	4
18.	Multi Meter	5

DETAILED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1	Circuit Diagram	25
2	Connections	25
3	Procedure	20
4	Reading/Graph/Result	25
5	Viva Voce	05
	Total	100

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name	: Diploma in Electrical and Electronics Engineering
Subject Code	: 4030625
Semester	: VI
Subject Title	: BIO-MEDICAL INSTRUMENTATION PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 Weeks

Subject	Instruction		Examination			
BIO-MEDICAL	Hours/	Hours/		Marks		Duration
INSTRUMENTATION PRACTICAL	Week	Semester	Internal Assessment	Board Examination	Total	
	6	96	25	100*	100	3 hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

Recent advances in Medical Field have been fueled by the Instruments developed by the Electronics and Instrumentation Engineers. Pacemakers, Ultrasound Machine CAT, Medical Diagnostic Systems are few names which have been contributed by Engineers. Now Health Care Industry uses many Instruments which are to be looked after by Instrumentation Engineers.

OBJECTIVES

- 1. Will enable the Students to learn the basic principles of different Instruments/Equipment used in the Health Care Industry.
- 2. The practical work done in this area will impart skill in the use, Servicing and Maintenance of this Instruments/Equipment.
- Proficiency in this area will widen the knowledge and skill of Diploma Holders in the field of Biomedical Instrumentation.

DETAILED SYLLABUS

List of Experiments:

- 1. Construction and Testing of Differential amplifier.
- 2. Construction and Testing of Instrumentation amplifier.
- 3. Measurement of pH of given solution.
- 4. Measurement of Blood pressure.
- 5. Measurement of ECG waveform.
- 6. Construction and verification of pacemaker circuit.
- 7. Construction and testing of high gain amplifier.
- 8. Measurement of Body and Skin temperature.
- 9. Study, handle and use the following Instruments/Equipments:
 - a. Cardiac monitor.
 - b. ECG stimulator.
 - c. Muscle stimulator.
 - d. Vascular Doppler recorder.
 - e. Pressure plethysmograph.
 - f. Skin sympathetic response meter.

DETAILED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1	Circuit Diagram / Connection	35
	Diagram / Block Diagram	
2	Connections and Proceeding the Experiment	35
3	Reading/Calculation/Graph/Result	25
4	Viva Voce	05
	Total	100

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

S.No	LIST OF EQUIPMENTS	QUANTITY REQUIRED
1	pH meter and conductivity meter	1
2	Photo transducer for pulse measurement	1
3	Sphygmomanometer and Stethoscope	1
4	Blood flow measurement system	1
5	Multi parameter (ECG, EMG, EEG) Simulator	1
6	GSR measurement setup.	1
7	Function generator	8
8	DSO	8
9	Regulated Power supplies	8
10	Bread boards	8

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name	: Diploma in Electrical and Electronics Engineering
Subject Code	:4030626
Semester	: VI
Subject title	: COMPUTER HARDWARE AND NETWORKING PRACTICAI

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 Weeks

	Instructions		Examination		Duration	
Subject	Hours / week	Hours / semester	Internal Assessment	Board Examination	Total	
COMPUTER HARDWARE AND NETWORK PRACTICAL	6	96	25	100*	100	3Hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE

The course aims at making the students familiar with various parts of computers and laptops and how to assemble them and the different types of peripherals desired. In addition, the course will provide the students with necessary knowledge and skills in computer and laptop software installation and maintenance and to make him diagnose the software faults. This subject also gives the knowledge and competency to diagnose the problems in computer hardware and peripherals and also gives the knowledge for trouble shooting for systematic repair and maintenance of computers and laptops.

OBJECTIVES

On completion of the following exercises, the students must be able to

- > Know the various indicators, switches and connectors used in Computers.
- > Familiarize the layout of SMPS, motherboard and various Disk Drives.
- > Configure Bios set up options.
- Install various secondary storage devices with memory partition and formatting.
- Know the various types of printer installation and to handle the troubleshooting
- > Assemble PC system and checking the working condition.
- > Installation of Dual OS in a system.
- Identify the problems in Computer systems, software installation and rectification
- Assembling and disassembling of Laptop to identify the parts and to install OS and configure it.
- > Enable to perform different cabling in a network.
- > Configure Internet connection and use utilities to debug the network issues.
- Configure router for any topology
- Install and configure Windows 2008 / 2013 Server
- > Design Windows server Active directory Services.
- > Install and configure server hardware devices.

DETAILED SYLLABUS

PART	A - COMPUTER SERVICING AND NETWORKPRACTICAL
1	Identification of system layout (Study Exercise)
	a) Front panel indicators & switches and front side & rear side connectors.
	 Familiarize the computer system Layout: Marking positions of SMPS, Motherboard, HDD, DVD and add on cards.
	 c) Configure bios setup program and troubleshoot the typical problems using BIOS utility.
2	HARD DISK
	a) Install Hard Disk.
	b) Configure CMOS-Setup.
	c) Partition and Format Hard Disk.
	d) Identify Master /Slave / IDE Devices.
	e) Practice with scan disk, disk cleanup, disk De-fragmentation, Virus
	Detecting and Rectifying Software.
3	a) Install and Configure a DVD Writer & Blu-ray Disc Writer.
	b) Recording a Blank DVD & Blu-ray Disc.
4	Assemble a system with add on cards and check the working condition of the system and install Dual OS.
5	Identification of mobile phone components (Study Exercise)
	a) Basic mobile phone components.
	 b) Familiarizing the basic circuit board components: Marking position of different IC and Switches in the Network and Power sections of the PCB.
6	Flashing, Unlocking and Formatting memory cards in Mobile phones.
7	Do the following cabling works in a network
	a) Cable Crimpling b) Standard Cabling c) Cross Cabling d) I/O
	Connector Crimping
	e) Testing the Crimped cable using a Cable tester
8	a) Configure Host IP, Subnet Mask and Default Gateway in a system in
	LAN(TCP/IP Configuration).
	 b) Configure Internet connection and use IPCONFIG, PING / Tracert and Net stat utilities to Debug the Network issues.
9	Transfer files between systems in LAN using FTP Configuration. Install a printer in LAN and share it in the network.

10	Installation of Windows 2008 / 2013 Server.
11	Installation and configuration of DHCP Server.
12	Installation and configuration of Mail Server.
13	a) Installation of Red Hat Linux using Graphical mode.
	 b) Installation of Red Hat Linux using VMware.
14	a) Creating a user in Linux Server and assigning rights.
	b) Configuring and troubleshooting.
15	a) Configuring and troubleshooting of /etc/grub.conf
	 b) Configuring and trouble shooting of /etc/passwd

Note:

The students must and should install software's. After the demonstration, the same is uninstalled. Each batch has to learn to install and use the tools.

DETAILED ALLOCATION OF MARKS

S.NO	NAME OF THE ACTIVITY	MARK ALLOCATION
1	Procedure Writing – One Question from	10
	PART – A	
2	Procedure Writing – One Question from	15
	PART - B	
3	Executing Exercise (PART – A)	10
4	Executing Exercise (PART – B)	20
5	Result (PART – A)	5
6	Result (PART – B)	5
7	Demonstration of mini project	5
8	VIVA – VOCE	5
	TOTAL	75

LIST OF EQUIPMENTS (FOR A BATCH OF 30 STUDENTS)

Hardware Requirements:	
Desktop Systems	30 Nos
Hard disk drive	06 Nos
DVD, Blu-ray Drive	06 Nos
Blank DVD , Blu-ray Disc	20 Nos
Head cleaning CD	
Dot matrix Printer	02 Nos
Laser Printer	02 Nos
Server	01 Nos
Mobile phones	06 Nos
Network Requirements:	
Crimping Tool	06 Nos
Screwdriver set	06 Nos
Network Cables	
Modem	02 Nos
Hub	01 No
Router	01 No
Switch	02 Nos
Software Requirements:	
Windows OS	
Windows Server 2008 / 2013 and LINUX.	
Antivirus software.	
DVD and Blu-ray Burning S/W.	
Mobile Phone Flashing S/W	

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040: Electronics and Communication Engineering

Subject Code : 4040660

Semester : VI

Subject Title : Project Work & Internship

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16

	Instruction		Examination		
Subject	Hours/	Hours/	Assessment Marks		
	Week	Semester	Internal	Board	Total
				Exam	
PROJECT WORK &	6	96	25	100*	100
INTERNSHIP					

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Minimum Marks for Pass is 50 out of which minimum 50 marks should be obtained out of 100 marks in the Board Examination alone.

OBJECTIVES:

- The project work and internship is aimed to assemble and test a photo type model of any one item/gadget.
- Real time application problems if any may be identified from any industry and may be chosen.
- The knowledge and the skill so far acquired may be made use of.
- The team spirit may be motivated.
- The entrepreneurship ideas may be motivated by conducting a career guidance programme.
- Learn and understand the gap between the technical knowledge acquired through curriculum and the actual industrial need through internship .

INTERNAL ASSESSMENT:

The internal assessment should be calculated based on the review of the progress of the work done by the student periodically as follows.

Detail of assessment	Period of assessment	Max. Marks
First Review	6 th week	10
Second Review	12 th week	10
Attendance	Entire semester	5
Total		25

EVALUATION FOR BOARD EXAMINATION:

Details of Mark allocation	Max Marks
Demonstration/Presentation	25
Report	25
Viva Voce	30
Internship report	20
Total	100

M - SCHEME		N – SCHEME			
III SEMESTER					
Subject Code	Subject Name	Subject Code	Subject Name		
34031	Electronic Devices and Circuits	4040310	Electronic Devices and Circuits		
33031	Electrical Circuit Theory	4030320	Electrical Circuit Theory		
33032	Electrical Machines-I	4030330	Electrical Machines -I		
34034	Electronic Devices and Circuits Practical	4040340	Electronic Devices and Circuits Practical		
33034	Electrical Circuits and Machines Practical	4030350	Electrical Circuits and Machines Practical		
33036	Electrical Work Shop Practical	4030360	Electrical Workshop Practical		
33064	Wiring and Winding Practical	4030370	Wiring & Winding Practical		
IV SEMESTER					
33041	Electrical Machines – II	4030410	Electrical Machines -II		
33042	Measurements and Instruments	4030420	Measurements, Instruments and Transducers		
33044	Transducers and Signal Conditioners	4030320	Measurements, Instruments and Transducers		
34043	Digital Electronics	4040430	Analog and Digital Electronics		
		4000440	E-Vehicle Technology and Policy		
33045	Electrical Machines and Instrumentation Practical	4030450	Electrical Machines and Instrumentation Practical		
34046	Integrated Circuits Practical	4040460	Analog and Digital Electronics Practical		
33065	Electrical Circuits Simulation Practical	4030470	Electrical Circuits and Simulation Practical		

List of Equivalent Subjects for M - Scheme to N - Scheme

	V SEME	ESTER	
33051 34052	Generation Transmission and Switchgear Micro Controller	4030510	Generation Transmission and Switchgear Micro Controller and its
00055	Operation Aided Electrical	4000540	Applications
33055	Drawing Practical	4030540	Electrical Drawing Practical
33071	Control of Electrical Machines	4030511	Control of Electrical Machines
33072	Programmable Logic Controller	4030512	Programmable Logic Controllers
00074		4030513	Sources
33074	Control of Electrical Machines Practical	4030514	Control of Electrical Machines Practical
33075	Programmable Logic Controller Practical	4030515	Programmable Logic Controller Practical
		4030516	Renewable Energy Sources Practical
34056	Micro Controller Practical	4040550	Microcontroller and its ApplicationsPractical
		4040570	Entrepreneurship and Startups
	VI SEMI	ESTER	
33061	Distribution and Utilization	4030610	Distribution and Utilization
		4030630	Energy Conservation and Audit
33053	Electrical Estimation and Energy Auditing	4030640	Electrical Estimation and Costing Practical
33081	Power Electronics	4030621	Power Electronics
34082	Bio-Medical Instrumentation	4030622	Bio-Medical Instrumentation
34682	Computer Hardware and Networks	4030623	Computer Hardware and Networks
33084	Power Electronics Practical	4030624	Power Electronics Practical
33085	Bio-Medical Instrumentation Practical	4030625	Bio-Medical Instrumentation Practical
34684	Computer Hardware and Networks Practical	4030626	Computer Hardware and Networks Practical
33067	Project Work	4020660	Project Work and Internship

DIPLOMA IN ENGINEERING AND TECHNOLOGY

(1040,3040) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SEMESTER PATTERN

N – SCHEME

IMPLEMENTED FROM 2020 - 2021

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI-600 025, TAMIL NADU
DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING

Syllabus Revision Committee

Chairperson

Tmt.G.LaxmiPriya IAS Director Directorate of Technical Education Chennai – 600 025.

Coordinator

Tmt J Rama Principal, Government Polytechnic College R K Nagar, Chennai - 81

Convener

Tmt J Rama Principal, Government Polytechnic College R K Nagar, Chennai - 81

Members

1.	Dr.G.Geetha, Associate Professor, Anna University, Chennai-25	5.	Tmt.Rm.Shanthi, Senior Lecturer K.L.N memorial Polytechnic College Madurai
2.	Tmt.E.Kalpana, Senior Lecturer, P.T.Lee.Chengalvaraya Naicker Polytechnic College,Chennai -7	6.	Tmt.K.Vethapackiam Lecturer Government Polytechnic College Thoothukodi -628008
3.	Dr.M.Varathaguru Lecturer Government Polytechnic College Perundurai	7.	Dr.B.Suseela Lecturer Government Polytechnic College Perambalur-621104
4.	Thiru.S.Dhanasekaran M.E., Sub-Divisional Engineer, GSM BSS Tambaram BSNL Chennai Telephones	8.	Thiru.R.Vijayaraja M.E., Founder &CEO GemicatesTechnologiesPvt.Ltd., Ashok Nagar,Chennai-83

DIPLOMA COURSES IN ENGINEERING/TECHNOLOGY (SEMESTER SYSTEM) (Implemented from 2020 - 2021) N – SCHEME <u>R E G U L A T I O N S</u>*

*Applicable to the Diploma Courses other than Diploma in Hotel Management & Catering Technology.

1. Description of the Course:

a. Full Time (3 years)

The Course for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 semesters* and the First Year iscommon to all Engineering Branches.

b. Sandwich (3¹/₂ years)

The Course for the Sandwich Diploma in Engineering shall extend over a period of three and half academic years, consisting of 7 semesters* and the First Yearis common to all Engineering Branches. The subjects of three years full timediploma course being regrouped for academic convenience.

During 4th and/or during 7thsemester the students undergo industrial training forsix months/ one year. Industrial training examination will be conducted after completion of every 6 months of industrial training.

c. Part Time (4 years)

The course for the Part Time Diploma in Engineering shall extend over a period of 4 academic years containing of 8 semesters*, the subjects of 3 year full time diploma courses being regrouped for academic convenience.

* Each Semester will have 16 weeks duration of study with 35 hrs. / Week for Regular DiplomaCourses and 18 hrs. / Week for Part-Time Diploma Courses.

The Curriculum for all the 6 Semesters of Diploma courses (Engineering & Special Diploma Coursesviz. Textile Technology, Leather Technology, Printing Technology, Chemical Technology etc.) have been revised and revised curriculum is applicable for the candidates admitted from 2020 – 2021 academic year onwards.

2. Condition for Admission:

Condition for admission to the Diploma courses shall be required to have passed in the S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.

(Or)

The Anglo Indian High School Examination with eligibility for Higher SecondaryCourse in Tamil Nadu.

(Or)

The Matriculation Examination of Tamil Nadu.

(Or)

Any other Examinations recognized as equivalent to the above by the Board of Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

3. Admission to Second year (LateralEntry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for University Courses of study or equivalent examination& Should have studied the following subjects.

•	nnnn in	γ	laara	ITI w	th onr	vronrioto	Trada	or Er	nuivalant	ovomination
A	Dass III	~	rears		III add	JIODHAIE	IIaue		JUIVAIEIIL	
										•••••••••••••••••••••••••••••••••••••••

		H.Sc Academic	H.Sc Vo	cational	Industrial
SI.	Courses		Subjects	Training	
No	Courses	Subjects Studied	Related	Vocational	Institutes
			subjects	subjects	Courses
1.	All the	Physics and	Maths / Physics	Related	2 years
	All the Dogular and	Chemistry as	/ Chemistry	Vocational	course to
	Sandwich	compulsory along		SubjectsTheory	be passed
	Diploma	with Mathematics /		& Practical	with
	Courses	Biology			appropriate
	0001363				Trade
2.	Diploma	English &	English &	Accountancy &	-
	Coursein	Accountancy	Accountancy,	Auditing,	
	Commercial				
	Practice	English &	English &	Banking,	
		Elements of	Elements of		
		Economics	Economics,	Business	
				Management,	
		English &	English &		
		Elements of	Management	Co-operative	

	Commerce	Principles & Techniques,	Management,
		1 /	International
		English & Typewriting	Trade,
		, jp	Marketing &
			Salesmanship,
			Insurance& Material Management,
			Office Secretaryship.

- For the Diploma Courses related with Engineering/Technology, the related / equivalent subjects prescribed along with Practicals may also be taken for arriving the eligibility.
- Branch will be allotted according to merit through counseling by the respective Principal as per communal reservation.
- For admission to the Textile Technology, Leather Technology, Printing Technology, Chemical Technology and Commercial Practice Diploma courses the candidates studied the related subjects will be given first preference.
- Candidates who have studied Commerce Subjects are not eligible for Engineering Diploma Courses.
- 4. Age Limit: No Age limit.

5. Medium of Instruction: English

6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3 academic years in any institution affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and two years if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Courses are as given below:

Diploma Course	Minimum Period	Maximum Period	
Full Time	3 Years	6 Years	
FullTime (Lateral Entry)	2 Years	5 Years	
Sandwich	31/2 Years	61/2 Years	
Part Time	4 Years	7 Years	

This will come into effect from N Scheme onwards i.e. from the academic year 2020-2021.

7. Subjects of Study and Curriculum outline:

The subjects of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical subjects.

The curriculum outline is given in Annexure – I.

8. Examinations:

Board Examinations in all subjects of all the semesters under the scheme of examinations will be conducted at the end of each semester.

The internal assessment marks for all the subjects will be awarded on the basis of continuous internal assessment earned during the semester concerned. For each subject 25 marks are allotted for internal assessment. Board Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks.

9. Continuous Internal Assessment:

A. For Theory Subjects:

The Internal Assessment marks for a total of 25 marks, which are to be distributed as follows:

i) Subject Attendance

(Award of marks for subject attendance to each subject Theory/Practical willbe as per the range given below)

80%	-	83%	1 Mark
84%	-	87%	2 Marks
88%	-	91%	3 Marks
92%	-	95%	4 Marks
96%	-	100%	5 Marks

ii) Test

10 Marks

2 Tests each of 2 hours duration for a total of 50 marks are to be conducted. Average of the these two test marks will be taken and the marks to be 05 Marks reduced to:
The Test – III is to be the Model Examination covering all the five units and the marks obtained will be reduced to :

5 Marks

TEST	UNITS	WHEN TO CONDUCT	MARKS	DURATION
Test I	Unit – I & II	End of 6 th week	50	2 Hrs
Test II	Unit – III & IV	End of 12 th week	50	2 Hrs
Test III	Model Examination: Covering all the 5 Units. (Board Examinations- question paper- pattern).	End of 16 th week	100	3 Hrs

From the Academic Year 2020 – 2021 onwards.

Question Paper Pattern forthe Test -I and Test – II is as follows. The tests should be conducted by proper schedule. Retest marks should not be considered for internal assessment.

Without Choice:

	Total	50 marks
Part C Type questions:	2 Questions × 15 marks	30 marks
Part B Typequestions:	7Questions × 2marks	14 marks
Part A Type questions:	6 Questions × 1 mark	06 marks

iii) Assignment

5 Marks

For each subject Three Assignments are to be given each for 20 marks and the average marks scored should be reduced for 5 marks.

iv) Seminar Presentation

The students have to select the topics either from their subjects or general subjects which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation.For the Third Year, the students should present the seminar individually.) The seminar presentation is mandatory for all theory subjects and carries 5 marks for each theory subject.The respective subject faculty may suggest topics to the students and will evaluate the submitted materials and seminar presentation. (21/2 marks for the material submitted in writing and 2 1/2 marks for the seminar

5 Marks

presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 5 marks.

All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for onesemester after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection/verification.

B. For Practical Subjects:

The Internal Assessmentmark for a total of 25 marks which are to be distributed as follows:-

a) Attendance	:5Marks
	(Award of marks same as theory subjects)
b) Procedure/ observation a	nd tabulation/
Other Practical related Work	:10Marks
c) Record writing	:10Marks
TOTAL	: 25Marks

- All the Experiments/Exercises indicated in the syllabus should be completed and the same to be given for final Board examinations.
- The observation note book / manual should be maintained for 10 marks. The observation note book / manual withsketches, circuits, programme, reading and calculation written by the students manually depends upon the practical subject during practical classes should be evaluated properly during the practical class hours with date.
- The Record work for every completed exercise should be submitted in the subsequent practical classes and marks should be awarded for 10 marks for each exercise as per the above allocation.
- At the end of the Semester, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)
- Only regular students, appearing first time have to submit the duly signed bonafiderecord note book/file during the Practical Board Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Log Book of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Log Book of the staff, who is handling the practical subject.

10. Communication Skill Practical, Computer ApplicationPractical and Physical Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase the Communication skill and ICT skill of students.

As per the recommendation of MHRD and under Fit India scheme, the Physical education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

11. Project Work and Internship:

The students of all the Diploma Courseshave to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the samesemester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work & Internship:

Project Review I	 10 marks
Project Review II	 10 marks
Attendance	 05 marks(Award of marks same as
	theory subject pattern)
Total	 25 marks

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work &Internship in Board Examinations:

Total	100* marks
Internship Report	20 marks
Viva Voce	30 marks
Report	25 marks
Demonstration/Presentation	25 marks

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individualstudent during the Project Work &Internship Board examination.

12.Scheme of Examinations:

The Scheme of examinations for subjects is given in Annexure - II.

13.Criteria for Pass:

- No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
- 2. A candidate shall be declared to have passed the examination in a subject if he/she secures not less than 40% in theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Board Examinations marks put together, subject to the condition that he/she secures at least a minimum of 40 marks out of 100 marks in the Board Theory Examinations and a minimum of 50 marks out of 100 marks in the Board Practical Examinations.

14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations fromApril 2023 onwards (Joined first year in 2020 -2021) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the subjects and passes all the semesters in the first appearance itself and passes all subjects within the stipulated period of study 2 / 3/ 31/2/ 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate marks in all the semesters put together and passes all the semesters except the I and II semester in the first appearance itself and passes all subjects within the stipulated period of study 2 / 3/ 31/2/ 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class:

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all the semesters put together and passes all the subjects within the stipulated period of study 2 / 3/ 31/2/ 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

Second Class:

All other successful candidates will be declared to have passed in Second Class.

The above classifications are also applicable for the Sandwich / Part-Time students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 -2021)

15. Duration of a period in the Class Time Table:

The duration of each period of instruction is1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

BLANK PAGE

ANNEXURE I

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS N SCHEME

(Implemented from the Academic year 2020- 2021 onwards)

CURRICULUM OUTLINE

FULL TIME(1040)

THIRD SEMESTER

SUBJECT		HOURS PER WEEK				
CODE	SUBJECT	THEORY	TUTORIAL	PRACTICAL	TOTAL	
		HOURS	HOURS	HOURS	HOURS	
4040310	Electronic Devices and Circuits	5	-	-	5	
4040320	Electrical Circuits and Instrumentation	6	-	-	6	
4040330	Programming in 'C'	5	-	-	5	
4040340	Electronic Devices and Circuits Practical	-	-	4	4	
4040350	Electrical Circuits and Instrumentation Practical	-	-	4	4	
4040360	Programming in 'C' Practical	-	-	4	4	
4040370	Simulation Practical			4	4	
	Physical Education	-	2	-	2	
	Library	-	1	-	1	
Total		16	3	16	35	

FOURTH SEMESTER

SUBJECT			HOURS	PER WEEK	
CODE	SUBJECT	THEORY HOURS	TUTORIAL HOURS	PRACTICAL HOURS	TOTAL HOURS
4040410	Industrial Electronics	5	-	-	5
4040420	Communication Engineering	5	-	-	5
4040430	Analog and Digital Electronics	4	-	-	4
4040440	Industrial Electronics Practical	-	-	5	5
4040450	Communication Engineering Practical	-	-	4	4
4040460	Analog and Digital Electronics Practical	-	-	5	5
4020620	E-Vehicle Technology & Policy #	4	-	-	4
	Physical Education	-	2	-	2
	Library	-	1	-	1
Total		18	3	14	35

Common with Mechanical Engineering

FIFTH SEMESTER

SUBJECT		HOURS PER WEEK				
CODE		THEORY	TUTORIAL	PRACTICAL	TOTAL	
	SUBJECT	HOURS	HOURS	HOURS	HOURS	
4040510	Analog and Digital Communication systems	5	-	-	5	
4040520	Microcontroller and its Applications	5	-	-	5	
4040531	Elective 1.Very Large Scale Integration	4	-	-	4	
4040532	2.Consumer Electronics					
4040533	3.Basics of Digital Signal and Image processing					
4040540	Analog and Digital Communication Practical	-	-	5	5	
4040550	Microcontroller Practical	-	-	4	4	
4040561	Elective practical 1.Very Large Scale Integration Practical	-	-	5	5	
4040562	2.Consumer Electronics Practical					
4040563	3.Signal and Image processing Practical					
4020570	Entrepreneurship and Start –ups #			4	4	
	Physical Education	-	2	-	2	
	Library	-	1	-	1	
	Total	14	3	18	35	

Common with Mechanical Engineering

SIXTH SEMESTER

SUBJECT			HOURS PE	ER WEEK	
UUDL	SUBJECT	THEORY HOURS	TUTORIAL HOURS	PRACTIC AL HOURS	TOTAL HOURS
4040610	Computer Hardware Servicing and Networking	5	-	-	5
4040620	Biomedical Instrumentation	5	-	-	5
	Elective Theory				
4040631	1. Television Engineering				
4040632	2. Mobile and Optical Communications	5	-	-	5
4040633	3.Embedded Systems				
4040640	Computer Hardware Servicing and Networking Practical	-	-	6	6
4040651	Elective Practical 1.Television Engineering Practical	-	_	5	5
4040652	2.Mobile and Optical Communication Practical				
4040653	3. Embedded Systems practical				
4040660	Project Work and Internship	-	-	6	6
	Physical Education	-	2	-	2
	Library	-	1	-	1
	Total	15	3	17	35

ELECTRONICS AND COMMUNICATION ENGINEERING

(PART TIME)(3040)

THIRD SEMESTER

Subject		HOURS PER WEEK				
Code	SUBJECT	THEORY HOURS	TUTORIAL HOURS	PRACTICAL HOURS	TOTAL HOURS	
4040310	Electronic Devices and Circuits	4	-	-	4	
4040320	Electrical Circuits and Instrumentation	4	-	-	4	
40015	Engineering Graphics I		4		4	
4040340	Electronic Devices and Circuits Practical	-	-	3	3	
4040350	Electrical Circuits and Instrumentation Practical	-	-	3	3	
	Total	8	4	6	18	

FOURTH SEMESTER

Subject		HOURS PER WEEK				
Code	SUBJECT	THEORY HOURS	TUTORIAL HOURS	PRACTICAL HOURS	TOTAL HOURS	
4040330	Programming in 'C'	4	-	-	4	
4040410	Industrial Electronics	4	-		4	
40025	Engineering Graphics II		4		4	
4040360	Programming in 'C' Practical	-		3	3	
4040370	Simulation Practical	-		3	3	
	Total	8	4	6	18	

FIFTH SEMESTER

Subject			HOURS PER WEEK			
Code	SUBJECT	THEORY HOURS	TUTORIAL HOURS	PRACTICAL HOURS	TOTAL HOURS	
4040420	Communication Engineering	4	-	-	4	
4040430	Analog and Digital Electronics	4	-	-	4	
4040440	Industrial Electronics Practical	-	-	4	4	
4040450	Communication Engineering Practical	-	-	3	3	
4040460	Analog and Digital Electronics Practical	-	-	3	3	
	Total	8		10	18	

SIXTH SEMESTER

Subject		HOURS PER WEEK			
Code	SUBJECT	THEORY HOURS	TUTORIAL HOURS	PRACTICAL HOURS	TOTAL HOURS
4040510	Analog and Digital Communication systems	4	-	-	4
4040520	Microcontroller and its Applications	4	-	-	4
40001	Communication skill Practical			3	3
4040540	Analog and Digital Communication Practical	-	-	3	3
4040550	Microcontroller Practical	-	-	4	4
	Total	8		10	18

SEVENTH SEMESTER

Subject			HOURS	PER WEEK	
Code	SUBJECT	THEORY HOURS	TUTORIAL HOURS	PRACTICAL HOURS	TOTAL HOURS
4040610	Computer Hardware Servicing and Networking	3	-	-	3
4040531	Elective 1.Very Large Scale Integration	3	-	-	3
4040532	2.Consumer Electronics				
4040533	3.Basics of Digital Signal and Image processing				
4020620	E-Vehicle Technology & Policy #	3	-	-	3
4040561	Elective practical 1.Very Large Scale Integration Practical	-	-	3	3
4040562	2.Consumer Electronics Practical				
4040563	3.Signal and Image processing Practical				
4040640	Computer Hardware Servicing and Networking Practical	-	-	3	3
40002	Computer Application Practical			3	3
	Total	9	-	9	18

Common with Mechanical Engineering

EIGHTH SEMESTER

Subject			HOURS	PER WEEK	
Code	SUBJECT	THEORY		PRACTICAL	TOTAL
4040620	Biomedical Instrumentation	4	-	-	4
	Elective Theory				
4040631	1. Television Engineering				
4040632	2. Mobile and Optical Communications	4	-	-	4
4040633	3.Embedded Systems				
4020570	Entrepreneurship and Start -ups #			3	3
4040651	Elective Practical 1.Television Engineering Practical	-	-	3	3
4040652	2.Mobile and Optical Communication Practical				
4040653	3 Embedded Systems Practical				
4040660	Project Work and Internship	-	-	4	4
	Total	8		10	18

Common with Mechanical Engineering

ANNEXURE II

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ELECTRONICS AND COMMUNICATIONENGINEERING SYLLABUS N SCHEME

(Implemented from the Academic year 2020- 2021 onwards)

SCHEME OF EXAMINATION

(FULL TIME)(1040)

THIRD SEMESTER

Subject		Examination				
Code	Subject	Marks				
	Gubjeet	Internal	Board	Tatal	Duration	
		Assessment	Examinations	TOLAI		
4040310	Electronic Devices and Circuits	25	100*	100	3 Hrs.	
4040320	Electrical Circuits and Instrumentation	25	100*	100	3 Hrs.	
4040330	Programming in 'C'	25	100*	100	3 Hrs.	
4040340	Electronic Devices and Circuits Practical	25	100*	100	3 Hrs.	
4040350	Electrical Circuits and Instrumentation Practical	25	100*	100	3 Hrs.	
4040360	Programming in 'C' Practical	25	100*	100	3 Hrs.	
4040370	Simulation Practical	25	100*	100	3 Hrs.	
	Physical Education					
	Library					

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

FOURTH SEMESTER

Subject		Examination				
Code	Subject		Marks			
	Subject	Internal	Board	Total	Duration	
		Assessment	Examinations	TOLAI		
4040410	Industrial Electronics	25	100*	100	3 Hrs.	
4040420	Communication Engineering	25	100*	100	3 Hrs.	
4040430	Analog and Digital Electronics	25	100*	100	3 Hrs.	
4040440	Industrial Electronics Practical	25	100*	100	3 Hrs.	
4040450	Communication Engineering Practical	25	100*	100	3 Hrs.	
4040460	Analog and Digital Electronics Practical	25	100*	100	3 Hrs.	
4020620	E-Vehicle Technology & Policy #	25	100*	100	3 Hrs.	
	Physical Education					
	Library					

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Common with Mechanical Engineering

Subject		Examination				
Code	Subject	Marks				
		Internal	Board	Total	Duration	
		Assessment	Examinations	Total		
4040510	Analog and Digital Communication systems	25	100*	100	3 Hrs.	
4040520	Microcontroller and its Applications	25	100*	100	3 Hrs.	
4040531	Elective Theory 1.Very Large Scale Integration	25	100*	100	3 Hrs.	
4040532	2.Consumer Electronics	25	100*	100	3 Hrs.	
4040533	3.Basics of Digital Signal and Image processing	25	100*	100	3 Hrs.	
4040540	Analog and Digital Communication Practical	25	100*	100	3 Hrs.	
4040550	Microcontroller Practical	25	100*	100	3 Hrs.	
4040561	Elective practical 1.Very Large ScaleIntegration Practical	25	100*	100	3 Hrs.	
4040562	2.Consumer Electronics Practical	25	100*	100	3 Hrs.	
4040563	3.Signal and Image processing Practical	25	100*	100	3 Hrs.	
4020570	Entrepreneurship and Start –ups #	25	100*	100	3 Hrs.	
	Physical Education					
	Library					

* Examination will beconducted for 100 marks and it will be reduced to 75 marks.

Common with Mechanical Engineering

Subject		Examination			
Code	Subject		Marks		
		Internal	Board	Total	Duration
		Assessment	Examinations		
4040610	Computer Hardware Servicing and Networking	25	100*	100	3 Hrs.
4040620	Biomedical Instrumentation	25	100*	100	3 Hrs.
	Elective Theory	25	100*	100	3 Hrs.
4040631	1. Television Engineering	25	100*	100	3 Hrs.
4040632	2. Mobile and Optical Communications	25	100*	100	3 Hrs.
4040633	3.Embedded Systems	25	100*	100	3 Hrs.
4040640	Computer Hardware Servicing and Networking Practical	25	100*	100	3 Hrs.
4040651	Elective Practical 1.Television Engineering Practical	25	100*	100	3 Hrs.
4040652	2.Mobile and Optical Communication Practical	25	100*	100	3 Hrs.
4040653	3 Embedded Systems practical	25	100*	100	3 Hrs.
4040660	Project Work and Internship	25	100*	100	3 Hrs.
	Physical Education				
	Library				

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

List of Equivalent Subjectsfor M- Scheme to N- Scheme

THIRD SEMESTER

Code No	M Scheme	Code No	N scheme
34031	Electronic Devices and Circuits	4040310	Electronic Devices and Circuits
34032	Electrical Circuits and Instrumentation	4040320	Electrical Circuits and Instrumentation
34033	Programming in C	4040330	Programming in C
34034	Electronic Devices and Circuits Practical	4040340	Electronic Devices and Circuits Practical
34035	Electrical Circuits and Instrumentation Practical	4040350	Electrical Circuits and Instrumentation Practical
34036	Programming in C Practical	4040360	Programming in C practical
34037	Computer Application Practical for Electronics	40002	Computer Application Practical

FOURTH SEMESTER

Code No	M Scheme	Code No	N scheme
34041	Industrial	4040410	Industrial
	Electronics		Electronics
34042	Communication	4040420	Communication
	Engineering		Engineering
34043	Digital Electronics	4040430	Analog and Digital Electronics
34044	Linear Integrated Circuits	4040430	Analog and Digital Electronics
34045	Industrial Electronics and Communication Engineering Practical	4040440	Industrial Electronics Practical
34046	Integrated Circuits Practical	4040460	Analog and Digital Electronics Practical
30002	Life and Employability Skill Practical		No Equivalent

FIFTH SEMESTER

Code No	M Scheme	Code No	N scheme
34051	Advanced	4040510	Analog and Digital
	Communication		Communication
	Systems		Systems
34052	Microcontroller	4040520	Microcontroller
			and its
			Applications
34053	VLSI	4040531	VLSI
34071	Digital		No Equivalent
	Communication		
34272	Programmable		No Equivalent
	Logic Controller		
34073	Electronic		No Equivalent
	Systems Design		
34055	Advanced	4040540	Analog and Digital
	communication		Communication
	Systems Practical		Practical
34056	Microcontroller	4040550	Microcontroller
	Practical		Practical
34057	VLSI Practical	4040561	VLSI Practical

SIXTH SEMESTER

Code No	M Scheme	Code No	N scheme
34061	Computer	4040610	Computer
	Hardware		Hardware
	Servicing and		Servicing and
	Networking		networking
34062	Bio Medical	4040620	Bio Medical
	Instrumentation		Instrumentation
34081	Television	4040631	Television
	Engineering		Engineering
34082	Test Engineering		No Equivalent
34083	Mobile	4040632	Mobile and Optical
	Communication		Communication
34064	Computer	4040640	Computer
	Hardware		Hardware
	Servicing and		Servicing and
	Networking		Networking
	Practical		Practical
34084	PCB Design		No Equivalent
	Practical		
34085	Test Engineering		No Equivalent
	Practical		
34066	Embedded	4040653	Embedded
	Systems Practical		Systems Practical
34067	Project Work		No Equivalent

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronics and Communication Engineering

Subject Code : 4040310

Semester :IIISemester

Subject title : ELECTRONIC DEVICESANDCIRCUITS

TEACHINGAND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instru	uction	Examination			
Subject	Hours Hours		Marks			
	/Week	/Semester	Internal Assessment	Board Examination	Total	Duration
Electronic Devices and Circuits	5	80	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and allocation of hours

UNIT	ΤΟΡΙϹ	Hrs
I	Filters, Zener diode and Opto-electronic devices	14
II	Bipolar Junction Transistor, Field Effect Transistor and UJT	16
	Feedback, Amplifiers and Oscillators	16
IV	Special Semiconducting Devices(SCR, DIAC AND TRIAC)	14
V	Wave shaping Circuits	13
	Tests and Model Exam	7
	Total	80

RATIONALE:

EveryElectronicsEngineershouldhavesoundknowledgeaboutthecomponentsused in Electronics Industry.This is vitalin R&DDepartment for chip level troubleshooting. To meet theindustrialneeds,diplomaholders mustbetaughtaboutthemostfundamentalsubject, ElectronicdevicesandCircuits.Bystudyingthissubject,theywillbeskilledinhandlingall types ofelectronic devices and ableto applythe skill in electronics system.

OBJECTIVES:

On completion of the following units of syllabus contents, the students must be able to:

- Know the importance of Filters
- > Know the construction, working principle and applications of Zener diode
- > Know the construction, working principle and applications of Optoelectronic devices
- > Know the biasing methods of Transistors and their applications
- > Study the performance of special devices like UJT,FET
- > Studythe Concept of Feedback, different types of Negative feedback connections
- > Know the Types of Transistor amplifiers ,Transistor oscillators and their applications
- > Study the performance of Special semiconducting devices like SCR, DIAC, and TRIAC
- > Explain the concept ofwave shaping circuits, Bistable Multivibrator and Schmitt trigger
- Studytheworking principle of clippers, clampers, Voltage Multipliers and their applications

4040310 ELECTRONIC DEVICES AND CIRCUITS

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the topics	Hours
1	FILTERS. ZENER DIODES AND OPTO-ELECTRONIC DEVICES	
	1.1: FILTERS	5
	Definition - Types - Capacitor filter - Inductor filter - L section filter - Pi section	
	and RC filter - Comparison and Applications of Filters	
	1.2: ZENER DIODE	5
	Construction, Working principle and Characteristics of Zener Diodes-	5
	Zenerbreakdown-Avalanchebreakdown- Zenerdiode asa Voltageregulator.	
	1.3: OPTO-ELECTRONIC DEVICES	4
	Definition - Types - Symbol, Working , Characteristics and Applications of	
	LED, 7 Segment LED - Photo diode, Photo transistor and Opto- coupler	
П	BIPOLAR JUNCTION TRANSISTOR (BJT), FIELD EFFECT TRANSISTOR	
	(FET) AND UNI JUNCTION TRANSISTOR (UJT)	
	2.1: BIPOLAR JUNCTION TRANSISTOR	7
	Transistorbiasing: Need for biasing - Types- Fixedbias,Collector tobase bias	
	andSelfbias (Operation only ,No derivation of circuit elements and parameters)-	
	Define: Stability factor - Operation of Common Emitter TransistorasanA mplifier	
	andasa switch.	
	2.2: FIELD EFFECT TRANSISTOR (FET)	
	Construction- Workingprinciple-Classification - Drain and Transfer	5
	Characteristics - Applications-Comparison between FET and BJT- FET amplifier	
	(common source amplifier).	
	2.3: UNIJUNCTION TRANSISTOR (UJT)	
	Construction-Equivalentcircuit-Operation-Characteristics-UJTasa relaxation	4
	oscillator	

111	FEEDBACK , AMPLIFIERS AND OSCILLATORS 3.1: FEEDBACK Concept - effects of negativefeedback-Types of negativefeedback connections -	6
	Applications 3.2: AMPLIFIERS Transistor amplifiers - Types - RC coupled amplifier - Working and Frequency responsecharacteristics –Working of Common Collector Amplifier(Emitter follower)	6
	3.3 : OSCILLATORS Transistoroscillators–Conditionsforoscillation(Barkhausencriterion)- Classifications– HartleyOscillator– Colpitts Oscillator – RC Phaseshift oscillator	4
IV	 SPECIAL SEMICONDUCTING DEVICES (SCR, DIAC AND TRIAC) 4.1:SCR (SILICON CONTROLLED RECTIFIER) Symbol – Layered Structure – Transistor analogy - Working–VIcharacteristics– Applications - ComparisonbetweenSCRand Transistor 4.2: DIAC (Diode for Alternating Current) Symbol – Layered structure - Working – VIcharacteristics- Applications 4.3: TRIAC (Triode for Alternating Current) Symbol – Layered structure - Working – VIcharacteristics- Applications 	5 5 4
V	 WAVE SHAPING CIRCUITS 5.1: CLIPPERSAND CLAMPERS Construction and working of Positive, Negative and biased Clippers - Construction and working of Positive and Negative Clamper 5.2: Voltage Multipliers Construction and working of Voltage Doubler and Tripler. 5.3 :Multivibrator and SchmittTrigger Construction – Working – Waveform of Astable and Monostable Multivibratorusing Transistorsand SchmittTrigger usingTransistors 	5 3 5

Reference Books:

1. Electronics Devices & Circuits bySalivahananS,N.Suresh Kumar, A.Vallavaraj Tata McGrawPublication 3rdEdition 2016

2. Electronics Devices and circuit theorybyBoyestad&Nashelsky, PHI, NewDelhi 2009

- 3. Electronic Principles byMalvino,-Tata McGrawHill Publication 2010.
- ElectronicsDevices&CircuitsbyJacobMillmanandHalkias3rdEdition 2010, Tata McGraw– Hill publication

5.Optical Fiber Communication byGerdKeiser 5thEdition, Tata McGraw-Hill .

STATE BOARD OF TECHNICAL EDUCATION ANDTRAINING, TAMILNADU DIPLOMAINENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronics and Communication Engineering

SubjectCode. : 4040320

Semester :III

SubjectTitle :ELECTRICALCIRCUITSANDINSTRUMENTATION

TEACHINGANDSCHEMEOFEXAMINATION

NumberofWeeks/Semester:16weeks

	Instructions		Examination			
Subject			Marks			
	Hours/	Hours/	Internal	Board	Total	Duration
	Week	Semester	Assessment	Examination		
ElectricalCircuits andInstrumentati on	6	96	25	100*	100	3Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs
I	DCCircuitsandTheorems	18
II	ACCircuits	17
	ElectricalMachines	18
IV	Transducers and CRO	18
V	Measurement and Instruments	18
	7	
	TOTAL	96

RATIONALE:

This subject enables the students with concepts of DC circuits & network theorems, AC circuits. The subject also deals with principles and working of different Measuringinstruments and Electrical Machines. The introduction of this subject impart the knowledge for students to analyze the electrical circuits.

OBJECTIVES:

Onsuccessful completion of the course, the students must be able to

- State ohm'slawandKirchoff'slaws.
- > Understand the DC circuit and network theorems.
- > Understandseriesandparallelcircuits.
- > Define varioustermsrelatedtoACcircuits.
- Get knowledge on ACcircuits.
- > Understand aboutresonance in seriesandparallelcircuits.
- > Know theoperation of different Electrical machines.
- > Know theoperation of measuring instruments.
- > Have basic knowledge on circuit analysis.

4040320 ELECTRICAL CIRCUITS AND INSTRUMENTATION DETAILEDSYLLABUS

Contents: Theory

UNIT	NAMEOF THE TOPIC	HOURS
	D.C.CIRCUITSAND THEOREMS 1.1 Definition and Unit: Voltage, current, power, resistance and conductance.	3
	1.2 Electrical laws: Ohm's law – Simple problems in ohm'slaw – Kirchoff's current law and Kirchoff's voltage law.	4
	1.3 Basic DC circuits: Series and Parallel connections of resistors – Voltage and Current division in series and parallel circuits – Mesh analysis for DC circuits (simpleproblems).	5
	1.4 Network theorems: Thevenin's theorem –Superpositiontheorem – Maximumpower transfer theorem (Statement, Explanation, Simpleproblems).	6
2	A.C.CIRCUITS 2.1 Basic AC circuits: Definition for impedance, reactance, admittance andpower factor Sinusoidal and Non sinusoidal waveforms – Average and RMS value – Current and Voltage relationship in R, L and C circuits – Analysis of RL, RC and RLC series circuits – Analysis of RL, RC and RLC parallel circuits (simple problems).	9
	2.2 Resonance: Series resonance – Parallel resonance – Conditionfor resonance – frequency response – Resonant frequency, Q factor and bandwidth.	8
3	ELECTRICAL MACHINES	
	3.1 Transformer : Construction – workingprinciple – EMF equation – Losses in transformer – efficiency of a transformer – OC, SC test ontransformer– Applications of transformer.	5
	3.2 Single phase and three phase supply : Introduction to single phase and three phase supply – Star Deltatransformation – Differencebetweensinglephaseandthreephasesupply.	5
	3.3 DC Generator: Construction, working principle, EMF equation.	3
	3.4 Electric Motors: DC motor –Single phase induction motor –Three phase	5

	induction motor – Capacitor start induction motor –stepper motor – Universal Motor.	
	TRANSDUCERS& CRO:	0
4	4.1 Transducers: Classification of Transducers – Strain gauge: Principle of operation, construction, types, advantage, disadvantage and application, Advantage of semiconductor strain gauge over metallic strain gauge – Photo electric transducer – LVDT – RVDT– Loadcell.	9
	4.2 CRO: CRT – Block diagram and operation of CRO – Applications of CRO – Dual trace – Digital storageOscilloscope:Blockdiagram,working principle – FunctionGenerator : Block Diagram, workingprinciple.	9
5	MEASUREMENT AND INSTRUMENTS: 5.1 Definition : Definition for Measurement, Accuracy, precision, resolution, Calibration	
	5.2 Instruments:	2
	Operation of Thermocouple – working principle of Thermistor – PMMC Instrument: Construction and working principle – Moving Iron Instrument: Construction and working principle – Shuntsand Multipliers – Potentiometer – DCammeter – DCvoltmeter – Voltmetersensitivity.	8
	5.3 Measurement: Errors inMeasurement –Temperaturemeasurement using thermocouple –Temperaturemeasurement using thermistors–Resistance measurement: Wheatstone bridge – Measurement of Inductance: Maxwell's bridge – Measurement of Capacitance: Schering Bridge.	8

REFERENCEBOOKS:

1."B.L.Theraja,A.K.Theraja"" A Text book of ElectricalTechnology", S. Chand & co publisher, New Delhi 2005.

2.."R.K.Rajput"" Electronic Measurements and Instrumentation", S. Chand (Third Edition)-2008.

3. "Dr.M.Arumugam,N.Premkumaran"," ElectricCircuitTheory", KhannaPublishers, New Delhi ,5th edition 1979.

4. "A.K.Sawhney" A Course in Electrical and Electronic Measurements and Instrumentation", Dhanpat raj & co-1993.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name :1040:Electronics and Communication Engineering

Subject Code : 4040330

Semester :IIISemester

Subject title : PROGRAMMING IN C

TEACHINGAND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instruction		Examination			
Subject	Hours	Hours	Marks			
-	/Week	/Week /Semester	Internal	Board	Total	Duration
			Assessment	Examination		
Programming in C	5	80	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS&ALLOCATIONOFHOURS

UnitNo.	Topics	No.ofHours
I	BASICS OF 'C'	14
II	COPERATORS , DECISIONMAKING, BRANCHING AND LOOPING STATEMENTS	15
III	ARRAYS AND STRINGS	15
IV	STRUCTURE AND UNION	15
V	FUNCTIONS &FILES I/O	14
	Revision,Test&Model Exam	7
	TOTAL	80

RATIONALE:

'C' language is the most widely used computer language, which is being taught as a core course. C is the generalpurpose high level language. Due to the flexibility, it is suitable for different development environments. 'C' language has importance and popularity in recently developed and advanced softwareindustry. 'C' language can also be used for system level programming and it is still considered as first priorityprogramming language. This course covers the basic concepts of 'C'.

OBJECTIVES:

The course aims to provide exposure / train the students to do programming in C. AttheendoftheCourse,thestudents will be able to

- > Know the basics of C.
- > Writealgorithm and flow chartfor any problems.
- > Know operators used in 'C' and Decision making statements.
- > Define and understand aboutarraysandfunctions.
- > Defineand understand aboutstructureandunion.
- > Understand strings, string handling functions.
- > Developprogramsusing C operators, decision making statements.
- > Developprogramsusing arrays, function, and structure.
4040330PROGRAMMINGINC DETAILEDSYLLABUS

Contents: Theory

UNIT	NAMEOF THE TOPICS	HOURS
I	BASICS OF C:	
	 1.1 Introduction to C: History of 'C' – Structure of C program – Steps for execution of C program – Functions performed by Compiler, Linker – Algorithm & flow chart – Low level and High level Programming language – C 	8
	character set –Tokens –Constants – Key words – Variables – Data types – Declaration of Variables – Assigningvaluestovariables . 1.2 I/O statements:	6
	Formatted input, Formatted output, Unformatted I/O statements.	
II	C OPERATORS , DECISIONMAKING, BRANCHING AND LOOPING STATEMENTS:	
	2.1 C operators: Arithmetic, Logical, Assignment, Relational,Increment,Decrement,Conditional,Bitwise and Special operators –Precedence and Associativity – C expressions: Arithmeticexpressions, Evaluation of expressions.	7
	2.2 Decisionmaking, branching and looping statements:	
	Simpleifstatement ,if- else,else-if ladderand nestedif-else statement – switchstatement – while, do-while statements – for loop, go to, break& continuestatement – Programtofindwhetherthegivennumberiseven or odd – ProgramtoperformtheArithmeticoperationsusingswitchstatement – Program to find sum of series using "while" loop .	8
III	ARRAYS AND STRINGS:	
	3.1 Arrays: Definition of array – Declaration andinitializationofOnedimensional,Two dimensional arrays – Accessing array elements –Program to find sum of the elements of array – Program for matrix addition.	8
	3.2 STRINGS:	7
	Declaration and initialization of string variables, String handling Functions: strlen (), strcpy(), strcat(), strcmp() – Program to sort the set of strings using string handling functions.	

IV	STRUCTURE AND UNION	
	4.1 Structure: Definition of structure – Need of structure – Defining and initializing structure – Arrays of structures, Arrays within structures, structures within structures – ProgramtopreparethetotalmarksforNstudentsbyreadingtheName,Reg. No,Marks1toMarks5usingarrayofstructure.	8
	4.2 Union: Declaring and Initializing unions – Program to declare, initialize an UNION – Advantages of unions – DifferencebetweenUnionandstructure.	7
V	 FUNCTION AND C FILES I/O: 5.1 Function: Types – Inbuilt functions – User defined functions – Function definition – Function call: call by value – Program to find factorial of given N numbers using function– Program to count the number of digits in a number using function. 5.2 C Files I/O: Opening, Reading, Writing and closing a file – Program using file. 	7 7

REFERNCE BOOKS:

- 1. "Prof. E. BALAGURUSAMY" "Programming in ANSI C", TATA Mc Graw HILL publications 2008.
- 2. "YashavantKanetkar"" LetusC", BPBPublications 2002.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronics and Communication Engineering

Subject code : 4040340

Semester : III

Subject title : ELECTRONIC DEVICES ANDCIRCUITS PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION:

No.ofweeks/ Semester: 16weeks

	Instruction		Examination			
			Marks		Marks	
Subject	Hours Hours /week /semester	Internal Assessment	Board Examination	Total	Duration	
Electronic Devices and Circuits Practical	4	64	25	100*	100	3 Hours

*Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

EveryElectronicsEngineershouldhavesoundknowledgeaboutthecomponentsused in Electronics Industry.This is vitalin R&DDepartment for chip level troubleshooting. To meet theindustrialneeds,diplomaholders mustbetaughtaboutthemostfundamentalsubject, ElectronicdevicesandCircuits Practical.Bydoing practical experience in this,theywillbeskilledinhandlingall types ofelectronic circuits and ableto applythe skill in electronic systems.

OBJECTIVES:

On completion of the following experiments, the students must be able to

- > Know the Cold Checking of Active and Passive Component
- > Find out the Unknown Resistance value of a Resistor using Colour Coding
- > Find out the Unknown Capacitance value of a Capacitor using Colour Coding
- > Find out the Unknown Inductance value of an Inductor using Colour Coding

- > Understand the concept, working principle and applications of PN Junction diode
- > Understand the concept, working principle and applications of Zener diode
- > Understand the concept, working principle and applications of BJT and FET
- > Understand the concept, working principle and applications of UJT
- > Understand the concept, working principle and applications of SCR
- > Understand the concept, working principle and applications of DIAC and TRIAC
- Understand the concept, working principle and applications of Clippers and Clampers
- Understand the concept, working principle and applications of various types of Negative feedback amplifiers
- > Understand the concept, working principle and applications of AstableMultivibrator

4040340 ELECTRONIC DEVICES AND CIRCUITS PRACTICAL

DETAILED SYLLABUS

Contents: Practical

Exercises

Note: At least 5 experiments should be done using Soldering board / Bread board

- Construct a circuit to test the forward and reverse bias characteristics of a PN Junction Silicon diode. Find the value of its cut-in voltage
- Construct a circuit to test the forward and reverse bias characteristics of a Zener diode.
 Find the value of its reverse breakdown voltage
- 3. Construct a Full wave (center tapped) rectifier and test its input and output waveforms with and without Capacitor filter. Find its maximum voltage.
- 4. Construct a Full wave (Bridge) rectifier and test its input and output waveforms with and without Capacitor filter. Find its maximum voltage.
- 5. Construct a Common Emitter Transistor circuit and test its input and output characteristic curves.
- 6. Construct a Common Source Field Effect Transistor circuit and test its drain and transfer characteristic curves.
- 7. Construct a circuit to test the Turning on and Turning off characteristics of SCR and find out the forward break over voltage, the value of Latching and Holding currents.
- 8. Construct a circuit to test the bidirectional characteristics of DIAC and plot its switching characteristics.
- 9. Construct a circuit to test the bidirectional characteristics of TRIAC and plot its switching characteristics.
- 10. Construct a Common emitter amplifier circuit and test its frequency response characteristics with and without Current series feedback introduced in it.
- 11. Construct a circuit to test the switching characteristics of AstableMultivibrator
- 12. Construct a circuit totest the negative resistance Characteristics of UJT.

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CIRCUIT DIAGRAM	:	25
CONNECTION	:	25
EXECUTION & HANDLING OF EQUIPMENT		25
OUTPUT / RESULT	:	15
VIVA – VOCE :		10
TOTAL	:	100

MODEL QUESTION PAPER 4040340ELECTRONICDEVICES&CIRCUITSPRACTICAL

Note: At least 5 experiments should be done using Soldering board / Bread board

- Construct a circuit to test the forward and reverse bias characteristics of a PN Junction Silicon diode. Find the value of its cut-in voltage
- Construct a circuit to test the forward and reverse bias characteristics of a Zener diode.
 Find the value of its reverse breakdown voltage
- 3. Construct a Full wave (center tapped) rectifier and test its input and output waveforms with and without Capacitor filter. Find its maximum voltage.
- 4. Construct a Full wave (Bridge) rectifier and test its input and output waveforms with and without Capacitor filter. Find its maximum voltage.
- 5. Construct a Common Emitter Transistor circuit and test its input and output characteristic curves.
- 6. Construct a Common Source Field Effect Transistor circuit and test its drain and transfer characteristic curves.
- 7. Construct a circuit to test the Turning on and Turning off characteristics of SCR and find out the forward break over voltage, the value of Latching and Holding currents.
- 8. Construct a circuit to test the bidirectional characteristics of DIAC and plot its switching characteristics.
- 9. Construct a circuit to test the bidirectional characteristics of TRIAC and plot its switching characteristics.
- 10. Construct a Common emitter amplifier circuit and test its frequency response characteristics with and without Current series feedback introduced in it.

- 11. Construct a circuit to test the switching characteristics of Bistable Multivibrator .
- 12. Construct a circuit to generate Sawtooth waveform using UJT Relaxation oscillator and test its performance.

LIST OF EQUIPMENTS

Name of the Equipments	Range Requi	redNos.
DCRegulated powersupply	0-30V,1A	10
High VoltagePowerSupply	0-250V,1A	2
SignalGenerator	1MHz	4
DualtraceCRO	20MHz/ 30MHz	5
DigitalMultimeter	-	10
DCVoltmeter(Analog/Digital)	DifferentRanges	15
DCAmmeter(Analog/Digital)	DifferentRanges	15
	Name of the Equipments DCRegulated power supply High Voltage Power Supply Signal Generator Dual trace CRO Digital Multimeter DCV oltmeter (Analog/Digital) DCAmmeter (Analog/Digital)	Name of the EquipmentsRangeRequireDCRegulated powersupply0-30V,1AHigh VoltagePowerSupply0-250V,1ASignalGenerator1MHzDualtraceCRO20MHz/ 30MHzDigitalMultimeter-DCVoltmeter(Analog/Digital)DifferentRangesDCAmmeter(Analog/Digital)DifferentRanges

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronics and Communication Engineering

Subject code : 4040350

Semester : III

Subject title : ELECTRICAL CIRCUITS AND INSTRUMENTATION PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION

No.ofweeks/ Semester: 16weeks

	Instruction		Examination			
Subject	Hours Ho	Hours /semester	lours Internal mester Assessment	Board Examination	Total	Duration
Electrical Circuits and Instrumentation Practical	4	64	25	100*	100	3 Hours

*Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

This subject enables the students with concepts of DC circuits & network theorems, AC circuits. The subject also deals with principles and working of different Measuringinstruments and Electrical Machines.Theintroductionofthissubjectimpart the knowledge forstudents to analyze the electrical circuits.

OBJECTIVES:

Oncompletion of all the experiments, the students must be able to

- Verify Ohm'slaw.
- Verify Kirchoff'slaws
- Verify network theorems.
- > Test the performance of electric circuit.
- > Determine the characteristics of measuring instruments.
- ➢ Use CRO.

4040350 ELECTRICAL CIRCUITS AND INSTRUMENTATION PRACTICAL DETAILED SYLLABUS

Contents: Practical

Exercises

Note: Atleast 9experiments should be constructed using breadboard

- 1. Constructa circuitto verifyOhm's law.
- 2. Constructa circuitto verifyKirchoff's voltage and currentlaw.
- 3. Constructacircuit toverifySuperposition theorem.
- 4. Constructa circuitto verifyThevenin's Theorem.
- 5. ConstructacircuittoverifyMaximumpowertransferTheorem.
- 6. Construct and test the performance of series resonant circuit.
- 7. Calibratethegivenammeterandvoltmeter.
- 8. ConstructandtesttheperformanceofWheatstonebridge.
- 9. Measuretheamplitude and frequency of signals using CRO.
- 10. TesttheperformanceofLVDT.
- 11. Measurestrainusingstraingauge.
- 12. Determine the characteristics of a thermistor.

BOARD EXAMINATION

DETAILED ALLOCATIONOFMARKS

TOTAL	:	100
VIVA-VOCE	:	05
OUTPUT/RESULT	:	10
EXECUTION&HANDLINGOFEQUIPMENT:		25
CONNECTION	:	30
CIRCUITDIAGRAM	:	30

MODEL QUESTION PAPER 4040350 ELECTRICAL CIRCUITS AND INSTRUMENTATION PRACTICAL

1.Constructa circuitto verifyOhm's law.

2. Constructa circuitto verifyKirchoff's voltage and currentlaw.

3. Constructacircuit toverifySuperposition theorem.

4. Constructa circuitto verifyThevenin's Theorem.

5. ConstructacircuittoverifyMaximumpowertransferTheorem.

6.Construct and test the performance of series resonant circuit.

7. Calibrate the given ammeter and voltmeter.

8. Construct and test the performance of Wheats to nebridge.

9. Measure the amplitude and frequency of signal susing CRO.

10.TesttheperformanceofLVDT.

11.Measurestrainusingstraingauge.

12. Determine the characteristics of a thermistor.

S No	Name of the Equipments	Range	Required No's
1.	DCregulatedpowersupply	(0- 30V),1A	8
2.	Signalgenerators	1MHZs	3
3.	CRO	20MHZ	4
4.	DCVoltmeter	(0-15V)	8
5.	DCAmmeter	(0-	6
		300µA)	
6.	DCAmmeter	(0-	8
		100mA)	
7.	Multimeter	-	4
8.	Galvanometer	-	1
9.	DecadeResistanceBox	-	1

LIST OF EQUIPMENTS

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronics and Communication Engineering

Subject code : 4040360

Semester : III

Subject title : PROGRAMMING IN C PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION

No.ofweeks/ Semester: 16weeks

	Inst	ruction	Examination			
				Marks	Marks	
Subject	HoursHours/week/semester	Internal Assessment	Board Examination	Total	Duration	
Programming in C Practical	4	64	25	100*	100	3 Hours

*Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE: To Provide the platform for software

OBJECTIVES:

At the end of the Course, the students will be able to

- Thinkthelogictosolvethegivenproblem.
- Know the concepts of constants, variables, data types and operators
- Developprograms to evaluate expression by knowing 'c' precedence rule.
- Write programs using different decision making, looping statements.
- Writeprogramsusingarrays, function and structure.

4040360PROGRAMMINGINCPRACTICAL

DETAILED SYLLABUS

Contents:Practical

Exercises

- 1. Write Cprogramtocalculate simple interest and compound interest.
- 2. WriteCprogramtofindthesolutionofaquadraticequation.
- 3. WriteCprogramtofindwhetherthegivennumberiseven or odd.
- 4. WriteCprogramtofindthesumof seriesusing 'While'loop.
- 5. WriteCprogramtoperformtheArithmeticoperationbasedonthenumerickeypressusingswit chcasestatement.(1-Addition,2-Subtraction,3–multiplication,4 -Division).
- 6. Write C program to find the biggest number among three numbers.
- 7. WriteCprogramto print Fibonacci series.
- 8. WriteCprogramtofindfactorialofgivenNnumbersusingfunction.
- 9. WriteCprogramtopreparethetotalmarksforNstudentsbyreadingtheName,Reg.No,Marks 1toMarks6usingarrayofstructure.
- 10. WriteCprogramtoswapthevaluesoftwovariables.
- 11. WriteCprogramtocalculate the sum and average of given three numbers using function.
- 12. Write C program to sort the names in alphabetical order.
- 13. WriteCprogramtocount the number of digits in a given integer and print the reverse number.
- 14. WriteCprogramfor matrix addition.
- 15. WriteCprogram to print multiplication table.

BOARD EXAMINATION

DETAILED ALLOCATIONOFMARKS

No.	Allocation	Marks
1	Algorithm/Flowchart	30
2	Program	30
3	Executingprogram	25
3	Result	10
4	VivaVoce	05
	Total	100

MODEL QUESTION PAPER 4040360 PROGRAMMINGINCPRACTICAL

- 1. Write Cprogramtocalculate simple interest and compound interest.
- 2. WriteCprogramtofindthesolutionofaquadraticequation.
- 3. WriteCprogramtofindwhetherthegivennumberiseven or odd.
- 4. WriteCprogramtofindthesumof seriesusing 'While'loop.
- WriteCprogramtoperform theArithmeticoperationbasedonthenumerickeypressusingswitchcasestate ment.(1-Addition,2-Subtraction,3-multiplication,4-Division).
- 6. Write C program to find the biggest number among three numbers.
- 7. WriteCprogramto print Fibonacci series.
- 8. WriteCprogramtofindfactorialofgivenNnumbersusingfunction.
- 9. WriteCprogramtopreparethetotalmarksforNstudentsbyreadingtheName,R eg.No,Marks1toMarks6usingarrayofstructure.
- 10. WriteCprogramtoswapthevaluesoftwovariables.
- 11. WriteCprogramtocalculate the sum and average of given three numbers using function.
- 12. Write C program to sort the names in alphabetical order.
- 13. WriteCprogramtocount the number of digits in a given integer and print the reverse number.
- 14. WriteCprogramfor matrix addition.
- 15. WriteCprogram to print multiplication table.

LIST OF EQUIPMENTS

Hardware Requirement:

Desktop / Laptop Computers: 15 Nos

Laserprinter:1no

Softwarerequirement:

C-compilerandeditor

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1040:Electronics and Communication Engineering
- Subject code : 4040370
- Semester : III

Subject title : SIMULATION PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION

No.ofweeks/ Semester: 16weeks

	Instruction		Examination			
			Marks			
Subject	Hours Hou /week /seme:	Hours /semester	Internal Assessment	Board Examination	Total	Duration
Simulation Practical	4	64	25	100*	100	3 Hours

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

EveryElectronicEngineershouldhavesoundknowledgeaboutthecomponentsused in Electronic Industry.This is vitalin R&DDepartment for chip level troubleshooting. To meet theindustrialneeds,diplomaholdersmustbetaughtaboutthemostfundamentalsubject,

ElectronicdevicesandCircuits Practical.Bydoing practical experience in this, they will be skilled inhandling all types of electronic circuits and able to apply the skill in electronic systems. While designing electronic circuits to test a particular application we have to experiment it in a trial and error manner. In this situation, simulating the circuit is very useful to find out the results and select the suitable circuit elements.

OBJECTIVES:

To study the Simulation Softwares (Multisim / PSpice) and using the simulation of the given Circuits to design and verify the various electronic circuits and can further design the PCBs in the Computer.

4040370 SIMULATION PRACTICAL

DETAILED SYLLABUS

Contents: Practical

Exercises

Note:

All experiments should be designed and verified through simulation tools like Multisim/PSpice/Lab View/TINA

- 1. Zener diode (Forward and Reverse bias characteristics)
- 2. Rectifier circuits (Half wave and Full wave Bridge Rectifiers with Capacitor filter)
- 3. Power supply with Zener diode as Regulator
- 4. Common Base transistor output characteristics
- 5. Common emitter amplifier (Implementation of Current Series negative feedback)
- 6. Emitter follower (Implementation of Voltage Series negative feedback)
- 7. RC Coupled amplifier (Implementation of the concept of multistage amplifier)
- 8. Clippers and Clampers
- 9. RC Phase shift oscillator (Medium frequency Sine wave generators)
- 10. Hartley oscillator (High frequency Sine wave generator)
- 11. Astable Multivibrator (Square or Rectangular wave generator)
- 12. Gate triggering of SCR with various gate currents.

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CONNECTION	::	35
EXECUTION & HANDLING OF EQUIPMENT	:	40
OUTPUT / RESULT	:	15
VIVA – VOCE	:	10
TOTAL		100

MODEL QUESTION PAPER

4040370SIMULATIONPRACTICAL

Note:

All experiments should be designed and verified through simulation tools like Multisim/PSpice/Lab View/TINA

- 1. Zener diode Forward and Reverse bias characteristics
- 2. Rectifier circuits (Half wave and Full wave Bridge Rectifiers with Capacitor filter)
- 3. Power supply with Zener diode as Regulator
- 4. Common Base transistor output characteristics
- 5. Common emitter amplifier (Implementation of Current Series negative feedback)
- 6. Emitter follower (Implementation of Voltage Series negative feedback)
- 7. RC Coupled amplifier (Implementation of the concept of multistage amplifier)
- 8. Clippers and Clampers
- 9. RC Phase shift oscillator (Medium frequency Sine wave generators)
- 10. Hartley oscillator (High frequency Sine wave generator)
- 11. Astable Multivibrator (Square or Rectangular wave generator)
- 12. Gate triggering of SCR.

LIST OF EQUIPMENTS

S.NO	Name of the Equipments	Range/Spec	RequiredNos.
1.	Simulation Tool	Multisim/PSpice	20 Nos
۷.	Desk top Computers		20 NOS.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	: 1040:Electronics and Communication Engineering
Course Code	: 4040410
Semester	: IV Semester
Subject Title	: INDUSTRIAL ELECTRONICS

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	Hours / Semester	Marks			
			Internal Assessment	Board Examinations	Total	Duration
INDUSTRIAL ELECTRONICS	5	80	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
	POWER DEVICES AND TRIGGER CIRCUITS	15
=	CONVERTERS AND CHOPPERS	15
=	INVERTERS & APPLICATIONS	14
IV	PROGRAMMABLE LOGIC CONTROLLER	14
V	BUILDING BLOCKS OF A ROBOT	15
	REVISION – TESTS – MODEL	7
	Total	80

RATIONALE:

The rationale behind the modifying this subject is to give clear explanation of power devices and circuits that are widely used today in modern industry. It also gives exposure to PLCs & ROBOT's which can perform various control functions in industrial environments.

OBJECTIVES:

On completion of the following units of the syllabus contents, the students must be able to

- Study working principle of MOSFET, IGBT
- Study the methods of triggering
- > Learn about converters and its types.
- > understand commutation concepts in SCR
- > Learn about choppers.
- > Study about inverters and types.
- > Understand the concept of HVDC.
- Know about SMPS.
- > Understand about UPS and its types.
- > Learn about PLC.
- > Discuss about ladder diagrams.
- To understand the basic concepts associated with the design, functioning, applications and social aspects of robots
- To study about the electrical drive systems and sensors used in robotics for various applications

4040410 INDUSTRIAL ELECTRONICS

DETAILED SYLLABUS

Contents:Theory

Unit	Name of the Topics	Hours
	POWER DEVICES AND TRIGGER CIRCUITS	
	1.1 POWER DEVICES Insulated gate bipolar transistor (IGBT), MOSFET and GTO - Symbol, principle of working, VI characteristics and applications. Comparison between power MOSFET, power transistor and power IGBT.	7
I	1.2 TRIGGER CIRCUITS Triggering of SCR - Gate triggering – Types –Concepts of DC triggering, AC triggering, Pulse gate triggering – Pulse transformer in trigger circuit – Electrical isolation by opto isolator - Resistance capacitor firing circuit and waveform, Synchronized UJT triggering (ramp triggering) circuit and waveform.	8
	CONVERTERS AND CHOPPERS (Qualitative treatment only)	
II	 2.1 CONVERTERSConverters – Definition – Single phase Half controlled bridge converter with R load and RL load - importance of flywheel diode – Single phase fully controlled bridge converter with resistive load – voltage and current waveforms – Single phase fully controlled bridge converter with RL load – voltage and current waveforms Commutation- Natural commutation – Forced commutation – Types 2.2 CHOPPERS Chopper – Definition –principle of DC chopper operation – Typical chopper circuit (Jones chopper) – Applications of DC chopper – Principle of working of single phase AC chopper - Chopper using MOSFET. 	9 6
	INVERTERS & APPLICATIONS	
111	 3.1 INVERTERS inverter with resistive load – Single phase inverter with RL load – Methods to obtain sine wave output from an inverter- Output voltage control in inverters - McMurray inverter – advantages – Parallel 3.2 INVERTER APPLICATIONS SMPS Types - Block diagram of SMPS – advantages and disadvantages. UPS-Type (ON Line, 	8 6
	OFF Line), Comparison Battery Banks.	

	PROGRAMMABLE LOGIC CONTROLLER	
IV	4.1 BASICS OF PLC Evolution – advantages over relay logic- Introduction to PLC – Relays- Block diagram of PLC - PLC Programming Languages - Arithmetic Functions (add, sub, mul, div, sqr) – Comparison of functions - Basics of Input and output module.	7
	4.2 PLC FUNCTIONS (digital input and output module) - Logic functions- AND logic, OR logic, NAND logic, EX-OR logic - symbols used in ladder logic diagram. Ladder programming – Ladder diagram for simple systems – Star delta starter, Conveyer control and Lift control. PLC interface with GSM	7
	INTRODUCTION TO ROBOT	
V	5.1 BUILDING BLOCKS OF A ROBOT Types of electric motors - DC, Servo, Stepper; specification, drives for motors - speed & direction control and circuitry, Selection criterion for actuators, direct drives, non-traditional actuators.	8
	5.2 ROBOT SENSOR Sensors for localization, navigation, obstacle avoidance and path planning in known and unknown environments – optical, inertial, thermal, chemical, biosensor, other common sensors; Case study on choice of sensors and actuators for maze solving robot and self-driving cars	7

REFERENCE BOOKS:

1. Power Electronics by M.H.Rashid - PHI Publication-3 rd Edition-2005

2. Industrial Electronics and control by Biswanath Paul –PHI publications2 nd Edition -2010

3. Programmable Logic Controllers - "Frank D.Petruzela "PHI publications 4. Power Electronics

by Dr.P.S.Bimbhra, Khanna publishers -2 nd Edition1998

4. Saeed. B. Niku, Introduction to Robotics, Analysis, system, Applications, Pearson educations, 2002

5. Roland Siegwart, Illah Reza Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, 2011.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name :1040:Electronics and Communication Engineering

Subject Code : 4040420

Semester : IV

Subject title : COMMUNICATION ENGINEERING

TEACHINGAND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instruction		Examination			
Subject	Hours	Hours	Marks			
	/Week /Semester	/Semester	Internal	Board	Total	Duration
		Assessment	Examination			
Communication Engineering	5	80	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and allocation of hours

Unit	Торіс	Hrs				
I	Networks, Filters, Antenna and Propagation	16				
II	Amplitude Modulation	15				
	Frequency Modulation	15				
IV	Pulse Modulation	13				
V	Audio, Video Systems and Displays	14				
	Tests and Model Exam	7				
	Total					

RATIONALE:

Todaycommunication engineering has developed to a great extent that there isalways the need for studyofvarious communication concepts. This subject fulfills the need forstudents to have a thorough knowledge of Filters, various types of Antennas, modulations, audio systems, video systems and displays

OBJECTIVES:

On completionofthefollowing units of the syllabus contents, the students must

be able to

- > Understand the concepts of networks
- > Understand the applications of Filters
- > Know the Electro Magnetic Frequency Spectrum
- > Know the relationship between Wave length and Frequency
- > Understand the principlesofworking ofantennas
- > Understand the theoryofPropagation
- Understand the conceptof modulation
- StudyAmplitude Modulation Process
- > Learn about different types of AM Transmitters&receivers
- Studythe FrequencyModulation Process
- > Learn about different types of FM Transmitters & Receivers
- Understand the conceptPulse Modulation
- > Learn about different type of Pulse Analog modulation Techniques
- > Learn about different type of Pulse Digital modulation Techniques
- Learn Different typesofMicrophones
- Learn Different typesofLoudspeaker
- Understand the principlesofMonochrome & colourTV fundamentals
- Understand the concept of Colour transmission and reception in PAL COLOUR TV Receiver
- > Understand the concept of various types of displays

4040420 COMMUNICATION ENGINEERING

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the topics	Hours			
I	NETWORKS, FILTERS, ANTENNA AND PROPAGATION.				
	1.1: SYMMETRIACAL AND ASYMMETRICAL NETWORKS	3			
	Definition – Comparison – Characteristic impedance and Propagation constant				
	1.2: FILTERS	3			
	Definition,Types-circuitelements andcut-offfrequencies of Constant K-				
	LPF, HPF and BPF (Qualitative analysis only) - applications.				
	1.3: ELECTROMAGNETIC FREQUENCY SPECTRUM	2			
	Electromagnetic Frequency Spectrum - Types of Electro Magnetic Radiation				
	and their applications				
	1.4: RELATIONSHIP BETWEEN WAVELENGTH AND FREQUENCY	1			
	1.5: ANTENNA	3			
	Definition-types of antenna:Monopoleanddipole antenna, directionaland				
	Omnidirectionalantenna, Dipolearrays-Yagi antenna, parabolic antenna-Antenna				
	parameters:radiation pattern andpolarization-applications.	Л			
	1.6: PROPAGATION				
	Types of Propagation - Concept, Frequency Range, Advantages, Applications of				
	Ground wave, Skywave and Spacewave propagation – Factors affecting the field				
	strength in Ground wave propagation – Effects of Atmosphere in Space wave				
	propagation – Definition of the terms in Sky wave propagation: Critical				
	Frequency, MUF(Maximum Usable Frequency and Skip distance)				
II					
	2.1: Introduction to Modulation	3			
	Definition- Need for modulation - Types of modulation - Electromagnetic				
	frequency spectrum - Relationship between Wavelength and Frequency.				
	2.2: Amplitude modulation (AM)				
	Definition - Waveform representation of AM - Expression for AM and modulation	4			
	index - Frequency spectrum of AM - AM sidebands: DSB, SSB and VSB.				
	2.3: AM Transmitter				
		4			

	Types of transmitters: High level AM transmitter, Low level AM transmitter and	
	SSB transmitter.	
	2.4: AM Receiver	
	Super Heterodyne receiver - Importance of IF in AM Receiver. Selection of IF	4
	(Intermediate Frequency)	
	FREQUEENCY MODULATION	
	3.1: Frequencymodulation	6
	Definition-Waveform representation of Frequencymodulation, Expression	U
	forFrequencymodulation andmodulationindex. Frequency spectrum of FM -	
	Effects of modulation index in frequency spectrum.	
	3.2: FMTransmitter	
	Types-DirectFMtransmitter–IndirectFMtransmitterandStereophonicFMtransmitter.	5
	3.3: FMReceiver	5
	Stereophonic FMreceiver-AFC - Comparison of FMandAM.	4
		-
IV	PULSEMODULATION TECHNIQUES	_
	4.1: INTRODUCTION	4
	Definition- Types of Pulse modulation- Sampling and Quantization- Sampling	
	theorem- Nyquist sampling rate	
	4.2:PULSE ANALOG MODULATION TECHNIQUES	5
	GenerationanddetectionofPAM,PWM,PPM	
	4.3: PULSE DIGITAL MODULATION TECHNIQUES	_
	PCM&DPCM- Delta modulation-Adaptive Delta modulation	4
V		
v	5 1: Microphones	3
	Definition-Construction and performance of the following microphones:	
	Carbon MovingcoilandVelocityribbon	
	5 2 · Loudspeakers	
	Construction and workingof dynamic cone type -Surround-soundsystems	3
	5.3: MonochromeTelevision	
	Scanning principles-synchronization -aspect ratio-Composite Video Signal - TV	3
	broadcastingstandards.	
		•

5.4: ColorTV Principlesofcolortransmissionandreception-Block diagram and working of PAL Colour TV Receiver 5.5: DISPLAYS Construction and working principle of LED ,OLED and Plasma display

REFERENCE BOOKS:

- 1. Networkslines and fields John D.Ryder, PHI
- 2. Electronic communication Systems- Kennedy-TMH
- 3. Electronic Communication- Dennis RoddyandJohn colen- PHI
- 4. Fundamentals of Acoustics-Kingsler&frey-WileyEastern ltd.
- 5. TV and Video engineering– Arvind M.Dhake TMH.
- 6. CommunicationElectronics–Principlesandapplication–LouisEFrenzel, Third Edition, Tata McGrawhillpublication
- AudioandVideosystem–Principles,maintenanceandTroubleshooting byR.Gupta Second Edition McGrawHill Education(P) Ltd.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name :1040:Electronics and Communication Engineering

Subject Code : 4040430

Semester :IV

Subject title : ANALOG AND DIGITAL ELECTRONICS

TEACHINGAND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instruction		Examination			
Subject	Hours	Hours	Marks			
	/Week /Semester	Internal Assessment	Board Examination	Total	Duration	
Analog and Digital Electronics	4	64	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of hours

Unit	Торіс	Hrs
I	Linear ICs and OP-amps	10
II	A/D, D/A,Special Function ICs and IC Voltage Regulators	13
III	Boolean Algebra and Arithmetic operations	10
IV	Combinational and Sequential Logic Circuits	12
V	Memories	12
	Tests and Model Exam	7
	Total	64

RATIONALE:

The subject Analog and Digital Electronics holds applications in all branches of engineering instrumentation and Industrial Automation. This will impart indepth knowledge of Number Systems, Logics of Combinational & Sequential circuits and memories.

OBJECTIVES:

On completionofthefollowing units of he syllabus contents, the students must be able to

- > Understand the basicsofoperational amplifier.
- ➤ Know the op-amp applications.
- > Know the waveform generator and Active filter.
- Know the concept of D/A and A/D converters
- > Know the applications of Special function IC, IC 555 Timer.
- > Understand various Number Systems used in Digital Circuits
- > Understand basic Boolean postulates and laws.
- > Understand the De-Morgan's theorem.
- > Understand the concept of Karnaugh Map.
- > Learn about Basic logic Gates.
- Studyabout Boolean techniques.
- > Learn the different digital logic families
- > Learn arithmetic circuits- Adder/Subtractor
- > Understand the encoder/decoder & MUX / DEMUX
- > Understand the concept of parity Generator and checker
- Understand various types of flip-flops.
- Understand various types of counters
- > Understand various modes of shift registers
- Understand various types of memories

4040430 ANALOG AND DIGITAL ELECTRONICS

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the topics	Hours
1	LINEAR ICS AND OP-AMPS	
	1.1: OPERATIONAL AMPLIFIER	4
	Ideal Op-Amp – Block diagram and Characteristics – Op-amp parameters	
	CMRR – Slew rate – Concept of Virtual ground	
	1.2: APPLICATIONS OF OP-AMP	4
	Inverting amplifier –Summing amplifier – Non inverting amplifier – Voltage	
	follower - Comparator – Zero crossing detector – Integrator – Differentiator-	
	waveform generation (SchmittTrigger only)–RC Low pass Active filter.	
	1.3: OP-AMP SPECIFICATIONS	2
	OP-amp 741 – Symbol – Pin diagram – Specifications	
П	A/D. D/A SPECIAL FUNCTION ICS AND IC VOLTAGE REGULATORS	
	2.1: SAMPLING AND QUANTIZATION	2
	2.2: A/D CONVERTER	
	Analog to digital conversion using Ramp method – Successive approximation	
	method – Dual slopemethod – Specifications of A/D converter	3
	2.3: D/A CONVERTER	
	Basic concepts – Weighted Resistor D/A converter – R-2R Ladder	
	D/Aconverter – Specifications of DAC IC	2
	2.4:SPECIAL FUNCTION ICs	
	2.4.1:IC555 Timer – Pin diagram - Functional Block diagram of IC 555 in	
	Astable and MonostableMultivibrator mode - Schmitt trigger using IC 555	3
	2.4.2:IC 565-PLL-Pin diagram-Functional Block diagram of IC 565	
	2.4.3:IC 566-VCO-Pin diagram-Functional Block diagram of IC 566	
	2.5.: IC VOLTAGE REGULATORS	
	Positive IC Voltage Regulators: 78XX - Negative IC Voltage Regulators: 79XX	3
	and General purpose IC Voltage Regulatorsusing LM 723.	

	 BOOLEAN ALGEBRA AND ARITHMETIC OPERATIONS 3.1: NUMBER SYSTEMS Decimal – Binary – Octal – Hexadecimal – BCD – Conversion from one number system to other – Boolean Algebra – Basic laws and Demorgan's Theorems 3.2: UNIVERSAL GATES Realization of basic logic gates using universal gates NAND and NOR -Tristate Buffer circuit 3.3: PROBLEMS USING 2, 3, AND 4 VARIABLES Boolean expression for outputs – Simplification of Boolean expression using Karnaugh map (up to 4 variable)- Constructing logic circuits for the Boolean expressions 3.4:ARITHMETIC OPERATIONS Binary Addition-Binary Subtraction-1's compliment and 2's compliment-Signed binary numbers 3.5: ARITHMETIC CIRCUITS Half Adder-Full Adder-Half Subtractor-Full Subtractor 	2 2 2 2 2
IV	 COMBINATIONAL ANDSEQUENTIALLOGIC CIRCUITS 4.1: PARITY GENERATOR AND CHECKER 4.2: DECIMAL to BCD ENCODER 4.3: 3 to 8 DECODER 4.4: MULTIPLEXER: 4 to 1 Multiplexer 4.5: DEMULTIPLEXER :1 to 4 Demultiplexer 4.6: FLIP-FLOPS (FF) RS FF– JK FF: Master Slave FF and Edge triggered FF – D and T FF 4.7: COUNTERS 4 bit Asynchronous Up Counter –Mod N counter – Decade counter – 4 bit Synchronous up counter 4.8:SHIFT REGISTER 4 bit shift register – Serial in Serial out 	1 1 1 1 2 3 2

V	MEMORIES	
	5.1:CLASSIFICATION OF MEMORIES	6
	5.2:RAM RAMorganization-AddressLines and MemorySize- Read/writeoperations-Static RAM-BipolarRAMcell- Dynamic RAM- SD RAM- DDR RAM. 5.3:ROM ROM organization-Expanding memory- PROM- EPROM- and EEPROM- Flash memory- Anti Fuse Technologies.	6

Reference books:

- 1. Albert Paul Malvino and Donold P. Leach Digital Principles and Applications
- 2. Roger L. Tokheim Macmillan Digital Electronics McGraw Hill –1994.
- 3. William H.Goth Mann Digital Electronics An introduction to theoryand practice PHI 1998.
- 4. Linear integrated circuits by B. Suseela & T. R. Ganeshbabu Scitech publications 2018
- 5. Integrated circuits by K.R.Botkar-Khanna publisher's-1996.
- 6.D.Roychoudhury&shail. B.Jain- Linear Integrated Circuits -New age International publishers II Edition -2004.
- 7.R.P.Jain Modern Digital Electronics TMH 2003.

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	: 1040:Electronics and Communication Engineering
Course Code	: 4040440
Semester	: IV Semester
Subject Title	: INDUSTRIAL ELECTRONICS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks					6 weeks		
	Instructions		Examination				
Subject	Ubject	Hours /	Marks				
	/ Week	/ semester	Internal Assessment	Board Examinations	Total	Duration	
INDUSTRIAL							
ELECTRONICS PRACTICAL	5	80	25	100*	100	3 Hrs.	

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The rationale behind the modifying this subject is to give clear explanation of power devices and circuits that are widely used today in modern industry. It also gives exposure to PLCs &Inverters which can perform various control functions in industrial environments.

OBJECTIVES:

- All the experiments given in the list of experiments should be completed and given for the endSemester practical examination.
- In order to develop best skills in handling Instruments/Equipment and taking readings in the practicalclasses, every three students should be provided with a separate experimental setup for doingexperiments in the laboratory.
- The external examiners are requested to ensure that a single experimental question should not begiven to more than three students while admitting a batch of 30 students during Board Examinations.

4040440 INDUSTRIAL ELECTRONICS PRACTICAL DETAILED SYLLABUS

Contents:Practical

Exercises

1. Phase control characteristics of SCR and testing a commutation circuit.

2. Construct a Lamp dimmer using TRIAC (in Bread Board Only)

3. Construct and test a MOSFET based PWM chopper circuit

4. Construct and test an IC based buck converter using PWM

5. Write and implement a simple ladder logic program using digital inputs and outputs for PLC

6. Write and implement a simple ladder logic program for interfacing a lift control with PLC.

7. Write and implement a simple ladder logic program for interfacing a conveyer control with PLC.

8. Write and implement a simple ladder logic program using timer and counter with branching and subroutines with PLC.

9. Construct and draw the VI characteristics of IGBT.

10. Construct and draw the VI characteristics of Power MOSFET.

11. Construct and draw single phase half controlled bridge converter with resistive load.

12. Construct and designa fan regulator using TRIAC and DIAC.

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CIRCUIT DIAGRAM	: 25
CONNECTION	: 25
EXECUTION & HANDLING OF EQUIPMENT	: 25
OUTPUT / RESULT	: 15
VIVA – VOCE	:10

TOTAL : 100

MODEL QUESTION PAPER

4040440 INDUSTRIAL ELECTRONICS PRACTICAL

1 Phase control characteristics of SCR and testing a commutation circuit.

2. Construct a Lamp dimmer using TRIAC (in Bread Board Only)

3. Construct and test a MOSFET based PWM chopper circuit

4. Construct and test an IC based buck converter using PWM

5. Write and implement a simple ladder logic program using digital inputs and outputs for PLC

6. Write and implement a simple ladder logic program for interfacing a lift control with PLC.

7. Write and implement a simple ladder logic program for interfacing a conveyer control with PLC

8. Write and implement a simple ladder logic program using timer and counter with branching and subroutines with PLC..

9. Construct and draw the VI characteristics of IGBT.

10. Construct and draw the VI characteristics of Power MOSFET.

11. Construct and draw single phase half controlled bridge converter with resistive load.

12. Construct and designafan regulator using TRIAC and DIAC.

LIST OF EQUIPMENTS

S.NO	Name of the Equipment	Range	Required Nos
1	Regulated Power supply	0-30v	5
2	Dual trace CRO	-	2
3	Signal generator	-	2
4	PAM kit	-	1
5	Pcm kit	-	1
6	PLC's	-	5
7	Computers	-	5
8	Software For PLC	-	-
9	Multimeter		10

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040 :Electronics and Communication Engineering

Subject code : 4040450

Semester : IV

Subject title : COMMUNICATION ENGINEERING PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION

No. of weeks/ Semester: 16weeks

	Inst	ruction		Examination				
				Marks				
Subject	Hours /week	Hours /semester	Internal Assessment	Board Examination	Total	Duration		
Communication Engineering Practical	4	64	25	100*	100	3 Hours		

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

EveryElectronicsEngineershouldhavesoundknowledgeaboutthecomponentsused in Electronics Industry.This is vitalin R&DDepartment for chip level troubleshooting. To meet the telecommunication industrialneeds,diplomaholders mustbetaughtaboutthefundamentalsubject, Communication Engineering Practical.Bydoing practical experience in this,theywillbeskilledinhandlingall types of Communication circuits and ableto applythe skill in trouble shooting of Audio and Video Systems and all electronic systems in various applications.

OBJECTIVES:

On completion of thefollowing experiments, the students must be able to understand the concept, working principle and applications of all Analog and Digital modulation techniques and all types of transmitters.

4040450 COMMUNICATION ENGINEERING PRACTICAL

DETAILED SYLLABUS

Contents: Practical

Exercises

Note: At least 5experiments should be constructed using breadboard /soldering

- 1. Construct and test the performance of symmetrical T and π attenuators
- 2. Construct and test the performance of passive Low pass and High pass filters. Find out the cut-off frequency from the frequency response characteristics
- 3. Construct and test the performance of Band pass filter. Find out the cut-off frequencies and find the Bandwidth from the frequency response characteristics
- 4. Construct and test the performance of series and shunt equalizers.
- 5. Construct and test the performance of Amplitude modulator
- 6. Construct and test the performance of AM linear diode detector.
- 7. Construct and test the performance of Pulse Width Modulator (PWM)
- 8. Construct and test the performance of Pulse Position Modulator(PPM)
- 9. Determine the directional characteristics of Moving Coil Microphone.
- 10. Determine the directional characteristics of Dynamic cone Loudspeaker
- 11. Determine the frequency response characteristics of Two way cross over network
- 12. Design the PCB of AM modulator using simulation tools like Multsim/OrCAD

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CIRCUIT DIAGRAM	:	25
CONNECTION	:	25
EXECUTION & HANDLING OF EQUIPMENT	:	25
OUTPUT / RESULT	:	15
VIVA – VOCE	:	10
TOTAL	:	100
MODEL QUESTION PAPER

4040450COMMUNICATION ENGINEERING PRACTICAL

Note: At least 5 experiments should be done using Soldering board / Bread board

- 1. Construct and test the performance of symmetrical T and π attenuators
- 2. Construct and test the performance of passive Low pass and High pass filters. Find out the cut-off frequency from the frequency response characteristics
- 3. Construct and test the performance of Band pass filter. Find out the cut-off frequencies and find the Bandwidth from the frequency response characteristics
- 4. Construct and test the performance of series and shunt equalizers.
- 5. Construct and test the performance of Amplitude modulator
- 6. Construct and test the performance of AM linear diode detector.
- 7. Construct and test the performance of Pulse Width Modulator (PWM)
- 8. Construct and test the performance of Pulse Position Modulator(PPM)
- 9. Determine the directional characteristics of Moving Coil Microphone.
- 10. Determine the directional characteristics of Dynamic cone Loudspeaker
- 11. Determine the frequency response characteristics of Two way cross over network
- 12. Design the PCB of AM modulator simulation tools like Multsim /OrCAD

LIST OF EQUIPMENTS

S.NO	Name of the Equipment	Range	Requ	ired No.
1.	Regulated Power Supply	0-30V	10	
2.	Dual trace CRO	60 MHz	5	
3.	Signal Generator	-	10	
4.	Desk Top Computer	-	2	
5.	Decade Resistance Box	0 - 100KOhm	5	
6.	Decade Capacitance Box	0 - 100uF	5	
7.	Decade Inductance Box	0 - 10H	5	
8.	Dynamic cone Loud speak	er -	2	
9.	Moving coil Microphone	-	1	
10.	Velocity Ribbon Micro pho	ne -	1	
11.	Software Tool	Multisim/O	rCAD	

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronics and Communication Engineering

Subject code : 4040460

Semester : IV

Subject title : ANALOG AND DIGITAL ELECTRONICS PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION

No.ofweeks/ Semester: 16weeks

	Instruction		Examination			
			Marks			
Subject	Hours Hours /week /semester	Hours /semester	Internal Assessment	Board Examination	Total	Duration
Analog and Digital Electronics Practical	5	80	25	100*	100	3 Hours

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

EveryElectronic Engineershouldhavesoundknowledgeaboutthe ICs used in Electronics Industry.This is vitalin R&DDepartment for Chip level troubleshooting. To meet theindustrialneeds,diplomaholders mustbetaughtaboutthemostfundamentalsubject, Analog and Digital Electronics Practical.Bydoing practical experience in this,theywillbeskilledinhandlingall types of ICs and ableto applythe skill in electronic system design and the designing of PCBs.

OBJECTIVES:

On completion of thefollowing experiments, the students must be able to

- > Know the Verification of truth table of OR, AND, NOT, NOR, NAND, EX-OR gates
- > Know the Realization of basic gates using NAND & NOR gates.

- > Know the verification of Half Adder and Full Adder using IC's.
- > Know the verification of Half Subtractor and Full Subtractor using IC's.
- > Know the Verification of Truth Table for Decoder/Encoder.
- > Know the Verification of truth table for RS, D, T & JK flip-flop.
- > Test Inverting Amplifier and Non inverting amplifier using Op-amp
- > Test Summing Amplifier, Difference Amplifier and Voltage Comparator using Op-amp.
- > Test Integrator and Differentiator.
- > Test Astablemultivibrator using IC 555
- > Design IC Voltage RegulatorPower Supplies using IC 7805, IC 7912
- > Design the PCB of4- bit ripple counter using FF

4040460 ANALOG AND DIGITAL ELECTRONICS PRACTICAL DETAILED SYLLABUS

Contents: Practical

Exercises

Note: At least 6 experiments should be constructed using breadboard

- 1. Realization of basic gates using NAND & NOR gates.
- 2. Realization of logic circuit for De-Morgans Theorems
- 3. Test the performance of Half Adder and Full Adder.
- 4. Test the performance of Half Subtractor and Full Subtractor.
- 5. Test the performance of Decoder/Encoder.
- 6. Test the performance of RS, D, T & JK flip-flops.
- 7. Test the performance of Parity generator and checker using parity checker/ generator IC's.
- 8. Test the performance of Multiplexer/De-multiplexer using IC 4051
- Test the performance of Inverting Amplifier and Non inverting amplifier using Op-amp IC 741.
- 10. Test the performance of Summing Amplifier, Difference Amplifier.
- 11. Test the performance of Zero Crossing Detector and VoltageComparator using Opamp IC 741.
- 12. Test the performance of Integrator and Differentiator using Op-amp IC 741.
- 13. Test the performance of Astablemultivibrator using IC 555.
- 14. Test the performance of IC Voltage Regulator Power Supplies using IC 7805, IC 7912.

15. Design the PCB of4- bit ripple counter using FF using Software tool Multisim/OrCAD etc

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CIRCUIT DIAGRAM		25
CONNECTION	:	30
EXECUTION & HANDLING OF EQUIPMENT	:	20
OUTPUT / RESULT	:	15
VIVA – VOCE	:	10
TOTAL	:	100

MODEL QUESTION PAPER 4040460 ANALOG AND DIGITAL ELECTRONICSPRACTICAL

Note: At least 6 experiments should be done using Bread board

1.Realization of basic gates using NAND & NOR gates.

2. Realization of logic circuit for De-Morgans Theorems.

3.Test the performance of Half Adder and Full Adder.

4. Test the performance of Half Subtractor and Full Subtractor..

5.Test the performance of Decoder/Encoder.

6.Test the performance of RS, D, T & JK flip-flops.

7.Test the performance of Parity generator and checker using parity checker/ generator IC's.

8.Test the performance of Multiplexer/De-multiplexer using IC 4051.

9.Test the performance of Inverting Amplifier and Non inverting amplifier using Opamp IC 741.

10.Test the performance of Summing Amplifier, Difference Amplifier.

11.Test the performance of Zero Crossing Detector and VoltageComparator using Op-amp IC 741.

12.Test the performance of Integrator and Differentiator using Op-amp IC 741.

13.Test the performance of Astablemultivibrator using IC 555.

14.Test the performance of IC Voltage Regulator Power Supplies using IC 7805, IC 7912.

15.Design the PCB of4- bit ripple counter using FF using Software tool Multisim/OrCAD etc.

S NO	Name ofthe Equipments	Range	Required Nos
1	DCRegulated powersupply	0-30V,1A	5
2	IC VoltagePowerSupply	0-5V,1A	5
<u> </u>		15-0-15V, 1A	5
3	SignalGenerator	1MHz	4
4	DualtraceCRO	20MHz/ 30MHz	5
5	DigitalTrainer	-	10
6	DC	DifferentRanges	E
	Voltmeter(Analog/Digital)		5
7	DCAmmeter(Analog/Digital)	DifferentRange	5
8	DeskTop Computer	-	5
9	Simulation Tool	Multisim/OrCAD	1

LIST OF EQUIPMENTS

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1020 : Mechanical Engineering

Subject Code : 4020620

Semester : VI

Subject Title : E Vehicle Technology & Policy

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions Examination					
4020620			Marks			
E Vehicle Technology & Policy	Hours / Week	Hours / Semester	Internal Assessme nt	Board Examinations	Total	Duration
	4	64	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit	Topics	Hours
I	Environmental impact and history & Electric vehicle Types	12
II	Electric vehicle & Drive System	12
	Energy Storages, Charging System, Effects and Impacts	11
IV	Electric Mobility Policy Frame Work	11
V	Tamilnadu E-Vehicle Policy 2019	11
Test And Revision		7
	Total	64

RATIONALE:

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and auto-components. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. Due the rapid depletion of fossil fuel and increase in fuel cost, environmental pollution, the shift to clean transport is necessary. This subject introduced by keeping all the above factors.

OBJECTIVES:

- To learn the environmental impact and history of Electric Vehicles.
- To understand the concept of Electric Vehicle and its types.
- To study the configurations of Electric Vehicles
- To acquire knowledge about Energy Storages, Charging System, Effects and Impacts
- To appreciate the Electric Mobility Policy Frame work India and EV Policy Tamil Nadu 2019.

4020620 E Vehicle Technology & Policy DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
l	Environmental impact and history:	12
	Environmental impact of conventional vehicle - Air pollution - Petroleum	
	resources - History of Electric vehicles & Hybrid Electric Vehicles -	
	Conventional drive train system - Rear Wheel, Front Wheel and All	
	wheel - Parts of Drive train system	
	Electric vehicle Types:	
	Introduction to Battery Electric Vehicle (BEV) - Definition BEV -	
	Necessity BEV - Different between BEV and Conventional Vehicle -	
	Advantages of BEV - Block diagram of BEV - Hybrid electric Vehicle	
	(HEV) - Plug-in Hybrid Electric Vehicle (PHEV) - Fuel Cell Electric	
	Vehicle (FCEV) – Description.	
	Electric Vehicles:	12
	Configurations of Electric Vehicle – Performance of Electric Vehicles –	
	Tractive Effort in Normal Driving – energy consumption.	
	Hybrid Electric Vehicles: Concept of Hybrid electric drive trains -	
	Architecture of Hybrid Electric Drive trains – Series, Parallel and Series &	
	Parallel	
	Electric Propulsion Systems:	
	Types of EV motors - DC motor drives- Permanent Magnetic Brush Less	
	DC Motor Drives (BLDC) - Principles, Construction and Working - Hub	
	motor Drive system - Merits and Demerits of DC motor drive, BLDC	
	motor drive	
	Energy Storages:	11
	Electrochemical Batteries - Battery Technologies - Construction and	
	working of Lead Acid Batteries, Nickel Based Batteries and Lithium	
	Based Batteries Role of Battery Management System (BMS)- Battery	
	pack development Technology- Cell Series and Parallel connection to	
	develop battery pack.	
	Charging:	

	Battery Charging techniques - Constant current and Constant voltage,	
	Trickle charging - Battery Swapping Techniques - DC charging -	
	Wireless charging - Maintenance of Battery pack - Latest development	
	in battery chemistry.	
	Effects and Impacts:	
	Effects of EV - Impacts on Power grid - Impacts on Environment -	
	Impacts on Economy.	
IV	Electric Mobility Policy Frame Work	11
	Government of India Electric Mobility Policy Frame work – Global	
	Scenario of EV adoption - Electric mobility in India - National Electric	
	Mobility Mission Plan 2020 – Action led by Original Equipment	
	Manufacturers - Need of EV Policy - Advantage of EV Eco system -	
	Scope and Applicability of EV Policy - ARAI Standards for Electric	
	Vehicle – AIS 038, AIS 039 & AIS 123 - Key Performance Indicator -	
	Global impact – Trends and Future Developments	
V	Tamil Nadu E-Vehicle Policy 2019	11
	Tamil Nadu E-vehicle Policy 2019: Vehicle Population in Tamil Nadu -	
	Objectives of EV Policy – Policy Measures – Demand side incentives –	
	Supply side incentives to promote EV manufacturing - Revision of	
	Transport Regulation of EV - City building codes - Capacity Building and	
	Skilling - Charging structure - implementing agencies - R&D and	
	Business Incubation – Recycling Ecosystem – Battery and EVs	

Reference Books

- 1. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York.
- Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal
- A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development (MDPI), Fuad Un-Noor, SanjeevikumarPadmanaban, Lucian Mihet-Popa, Mohammad NurunnabiMollah and Eklas Hossain.
- 4. Electric Vehicles: A future Projection CII October 2020 report.
- 5. Design and analysis of aluminum/air battery system for electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.

- 6. Propelling Electric Vehicles in India, Technical study of Electric Vehicles and Charging Infrastructure
- ZERO EMISSION VEHICLES (ZEVs): TOWARDS A POLICY FRAMEWORK NTI Aayog.
- 8. FASTER ADOPTION OF ELECTRIC VEHICLES IN INDIA: PERSPECTIVE OF CONSUMERS AND INDUSTRY, The Energy and Resources Institute, New Delhi.
- 9. India EV Story: Emerging Opportunities by Innovation Norway.
- 10. Automotive Industry Standards AIS 038, AIS 039 & AIS 123 Manual

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name :1040: Electronics and Communication Engineering

Subject Code :4040510

Semester :V

Subject title : ANALOG AND DIGITAL COMMUNICATION SYSTEMS

TEACHINGAND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instru	ction	Examination			
Subject	Hours	Hours	Marks			
Cubject	/Week /Semester	Internal Assessment	Board Examination	Total	Duration	
Analog and Digital communication systems	5	80	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and allocation of hours

Units	TOPIC	Hrs
I	Radar, Navigational Aids, Telephony	14
II	Digital Communication	14
III	Optical Communication	15
IV	Satellite Communication	15
V	Mobile Communication	15
	Tests and Model Exam	7
	Total	80

RATIONALE:

The subject Analog and Digital communication systems will enable the students to learn about the advancement in communication systems. it will give exposure to the various modes of communication viz Radar, Telephone, digital communication, digital codes, optical communication, satellite communication, microwave communication, mobile communication and satellite multiple access techniques.

OBJECTIVES:

On completionofthefollowing units of the syllabus contents, the students must be able

- > To understand principles of Radar.
- > To understand principles of navigational aids .
- > To study Electronic Exchange .
- > To study basic digital communication system and discuss the characteristics of data transmission circuits.
- To learn Error detection and correction codes and various digital modulation techniques
- > To learn optical sources, optical detectors.
- > To discuss the applications of fiber optic communication
- > To Study satellite system, orbits, launching, Antennas
- > To Study earth segment and space segment components
- > To study about satellite services
- > To study fundamental cellular concepts such as frequency reuse, handoff.
- > To learn multiple access techniques.
- > To learn digital cellular system-GSM

4040510 ANALOG AND DIGITAL COMMUNICATION SYSTEMS

DETAILED SYLLABUS

Unit	Name of the topics	Hour
I	ADAR AND NAVIGATIONAL AIDS:	
		7
	1.1 RADAR :	
	Basic Radar System– Applications – Radar Range Equation(Qualitative Treatment Only) – Factors Influencing Maximum Range – Basic Pulsed Radar System – Block Diagram – Display Methods- A - Scope, PPI Display - Instrument Landing System –Ground Controlled Approach System.	•
	1.2 TELEPHONY :	7
	Telephone System–Public Switched Telephone Network (PSTN) - Electronic Switching System – Block Diagram – ISDN –Architecture, Features - Video Phone – Block Diagram	
	DIGITAL COMMUNICATION:	
	2.1 BASICS OF DIGITAL COMMUNICATION SYSTEM:	
	Basic Elements Of Digital Communication System – Block Diagram- Characteristics Of Data Transmission Circuits -Bandwidth Requirement – Speed – Baud Rate – Noise -Crosstalk – Distortion.	5
	2.2 DIGITAL CODES:	
	ASCII Code – EBCDIC Code – Error Detection Codes – Parity Check Codes – Redundant Codes – Error Correction Codes -Retransmission- Forward Error Correcting Code – Hamming Code – Digital Modulation Techniques – ASK, FSK, PSK, QPSK Modulation/Demodulation Techniques (Only Block Diagram And Operation)	8

111	OPTICAL COMMUNICATION :	
	3.1 BASICS OF OPTICAL COMMUNICATION AND LOSSES: Optical Communication System – Block Diagram – Advantages Of Optical Fiber Communication Systems – Principles Of Light Transmission In A Fiber Using Ray Theory – Single Mode Fibers, Multimode Fibers – Step Index Fibers, Graded Index Fibers (Basic Concepts Only) – Attenuation In Optical Fibers -Absorption Losses, Scattering Losses, Bending Losses, Core And Cladding Losses	7
	3.2 OPTICAL SOURCES AND APPLICATIONS:	
	Optical Sources – LED – Semiconductor LASER – Principles – Optical Detectors – PIN And APD Diodes - Optical Transmitter – Block Diagram – Optical Receiver – Block Diagram – Application Of Optical Fibers – Networking, Industry And Military Applications.	7
IV	SATELLITE COMMUNICATION:	
	4.1SATELLITE SYSTEM:	
	Kepler's I,II,II laws – orbits – launching orbits – types - Geostationary synchronous satellites - Advantages – Apogee – Perigee - Active and passive satellite - Earth eclipse of satellite	4
	4.2ANTENNA:	1
	Parabolic reflector antenna	
	4.3SPACE SEGMENT:	0
	Space segment: Power supply- Attitude control- station keeping – Transponders – TT and C subsystem – Antenna subsystem.	3
	4.4 EARTH SEGMENT:	3
	Earth segment: Block diagram of Transmit receive earth station - Satellite mobile services - Basics of GPS.	5
	4.4 MICROWAVE COMMUNICATION:	
	Microwave frequency ranges - microwave devices – Parametric amplifiers – Travelling wave tubes – simple block diagram of microwave transmitter, receiver	4

	and microwave link repeater	
V	MOBILE COMMUNICATION AND MUTIPLE ACCESS TECHNIQUES:	
	5.1MOBILE COMMUNICATION: (Qualitative Treatment only)	7
	Cellular telephone– fundamental concepts – Simplified Cellular telephone system - frequency reuse – Interference – Co-channel Interference – Adjacent Channel Interference – Improving coverage and capacity in cellular systems –	
	cell splitting – sectoring – Roaming and Handoff – Basics of blue tooth technology	
	5.2SATELLITE MULTIPLE ACCESS TECHNIQUES:	7
	TDMA, FDMA, CDMA. Digital cellular system – Global system for mobile communications (GSM) –GSM services – GSM System Architecture – Basics of GPRS.	

Reference Books:

- 1. Electronic communication systems Kennedy Davis fourth Edition Tata McGraw Hill 1999.
- 2. Electronics communication Dennis Roddy and John coolen Third Edition PHI 1988
- 3. Optical fiber communication Gerd Keiser Third Edition McGraw Hill 2000
- 4. Satellite communication Dr. D.C. Agarwal Third Edition Khannapublishers– 1995
- 5. Satellite communication Dennis Roddy Third Edition McGraw Hill 2001
- 6. Electronic communication systems-Fundamentals through Advanced –Wayne Tomasi-fifth Edition –pearson Education-2005

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1040: Electronics and Communication Engineering
- Subject Code : 4040520
- Semester : V

Subject Title : Microcontroller and its applications

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Hours Week Semest	Hours /	Marks			
•		Semester	Internal Assessment	Board Examinations	Total	Duration
Microcontroller and its Applications	5	80	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.		
I	Architecture of 8051 Microcontroller	15		
II	8051 Instruction set and Programming	16		
	Peripherals of 8051	15		
IV	Interfacing techniques	16		
V	Advanced Microcontrollers	11		
Test & Model Exam				
	Total	80		

RATIONALE:

The introduction of this subject will enable the students to learn about microcontroller 8051 architecture, Pin details, Instruction sets, Programming and interfacing. This subject enables the students to do the project effectively. It also helps the students to choose the field of interest. If the student is aiming for higher studies, this subject is foundation.

OBJECTIVES:

On completion of the syllabus, the students must be able to

- -> Know the difference between microprocessor and microcontroller.
- -> Understand the architecture of 8051.
- -> Write programs using 8051 ALP.
- -> Understand the programming of I/O ports, Timer, Interrupt and Serial Programming.
- -> Use the interfacing techniques
- -> Know the types of microcontrollers
- -> Explain IoT.

4040520 MICROCONTROLLER AND ITS APPLICATIONS DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Architecture Of 8051 Microcontroller	15
	1.1 : Architecture	
	Microprocessor-Microcontroller-Comparison of microprocessor and	
	microcontroller-Architecture diagram of microcontroller 8051-Functions of	
	each block-Pin details of 8051-ALU- ROM-RAM-Memory organization of	
	8051- Special function registers-Program counter-PSW register-Stack-	
	I/O ports-Timer-Interrupt-serial port-External memory- Oscillator and	
	Clock-Reset-Power on reset-Clock cycle-machine cycle-Instruction cycle-	
	Overview of 8051 family.	
	8051 Instruction set and programming	8
	2.1: Instruction Set Of 8051	
	Instruction set of 8051-Classification of 8051 instructions-data transfer	
	instructions-Arithmeticinstructions-Logical instructions-Branching	
	instructions-Bit manipulation instructions- Assembling and running an	
	8051 program-Structure of Assembly language-Assembler directives-	
	Different Addressing modes of 8051-Time delay routines.	
	2.2: Assembly language programs	
	16 bit addition and 16 bit subtraction-8 bit multiplication and 8 bit division-	
	BCD to HEX code conversion-HEX to BCD code conversionSmallest	8
	number/ Biggest number.	
	Peripherals of 8051	
	3.1: I/O Ports	3
	Bit addresses for I/O ports-I/O port programming-I/O bit manipulation	
	programming.	
	3.2: Timer/Counter	
	SFRS for Timer- Modes of Timers/counters- Programming 8051	4
	Timer(Simple programs).	
	3.3: Serial Communication	4
	Basics of serial communication-SFRs for serial communication-RS232	

	standard-8051 connection to RS 232-8051 serial port programming						
	3.4: Interrupts						
	8051 interrupts-SFRs for interrupt-Interrupt priority.						
		4					
IV	Interfacing Techniques						
	4.1: IC 8255	3					
	IC 8255-Block diagram-Modes of 8255-8051 interfacing with 8255						
	4.2: Interfacing						
	Interfacing external memory to 8051-Relay interfacing- Sensor	13					
	interfacing -Seven segment LED display interfacing-Keyboard						
	interfacing-Stepper motor interfacing-ADC interfacing- DAC interfacing-						
	DC motor interfacing using PWM-LCD interfacing.						
V	Advanced Microcontrollers	8					
	5.1: Types of microcontrollers						
	PIC microcontroller-General Block diagram-Features-Applications-						
	Arduino- General Block diagram-Variants-Features-Applications-						
	Raspberry pi-General Block diagram-Features-Applications-Comparison						
	of microcontrollers.						
	5.2: IoT						
	Introduction to IoT-Block diagram of home automation using IoT.	3					

Reference Books :

- 1. "Ajit pal" "Microcontrollers, Principles and Applications ",PHI Ltd,-2011.
- 2 ."Mazidi,Mazidi and D.MacKinlay" "8051 Microcontroller and Embedded Systems using Assembly and C",2006 Pearson Education Low Price Edition.
- 3. "R. Theagarajan" "Microprocessor and Microcontroller", Sci Tech Publication, Chennai.
 - 4. www.microchip.com, www.raspberrypi.org, www.arduino.org.
 - 5. "J.B. Peatman" "Design with PIC microcontrollers".
- 6. "Michael McRoberts", "beginning Arduino.
- 7. "Matt Richardson", "Getting started with Raspberry Pi".
- 8."Samuel Greengard", "The Internet of Things".

STATE BOARD OF TECHNICAL EDUCATION ANDTRAINING, TAMILNADU

DIPLOMAINENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040: Electronics and Communication Engineering

Subjectcode: 4040531

Semester:V

SubjectTitle:VERYLARGESCALEINTEGRATION

TEACHINGANDSCHEMEOFEXAMINATION

Noofweekspersemester:16weeks

	Instru	uctions	Examination			
Subject	Hours/	Hours/	Marks			
	Week Sei	Semester	Internal Assessment	Board Examination	Total	Duration
VERYLARGES CALEINTEGR ATION	4	64	25	100*	100	3Hours

*Examination will be conducted for 100 marks and it will be reduced to 75 marks

TopicsandAllocationofHours

Unit	Торіс	Hours
I	INTRODUCTION TO VLSI	12
II	INTRODUCTION TO VHDL	10
	COMBINATIONAL CIRCUIT DESIGN	12
IV	SEQUENTIAL CIRCUIT DESIGN	12
V	PROGRAMMABLE LOGIC DEVICES	11
	Test& Model Exam	7
	Total	64

RATIONALE:

Very Large Scale Integration technology, when especially used fordesigning digital systems, it is mandatory that thebehaviorof therequired system to be described (modeled) and verified (simulated)before synthesis, translate the design into real hardware fabricationin the foundry (gates and wires). Hardware DescriptionLanguage (HDL) allows designs to be described using any methodology- top down,bottomup approach. VHDLcan be used to describe hardware atthe gatelevel or in a more abstract way. This course is to introduce the digital system design conceptsthrough hardware descriptionLanguage,VHDL programming, design flow of VLSI andarchitectures ofCPLD, FPGA.Itis mainlyaimedatdesignofcombinational andsequentialfunctions and simulates or verifiestheirfunctionalityusingtheHardwaredescriptionLanguage(HDL).

OBJECTIVES:

Onsuccessful completion of the course, the students must be able to

- > Understand the concepts of VLSIdesignprocess.
- > DevelopaVHDLcodeforcombinationalcircuit
- > DevelopaVHDLcodeforsequentialcircuit.
- > ExplaintheimportanceofPROM,PLA,and PAL.
- > DifferentiatePROM, PLAandPAL.
- > Developthecircuitusing PROM, PALandPLA.
- > Understand CPLDandFPGAhardware.
- > Differentiate ASIC, CPLD, FPGA.

4040531 VERY LARGE SCALE INTEGRATION DETAILEDSYLLABUS

Contents:Theory

Unit	NameoftheTopic	Hours
I	INTRODUCTION TO VLSI: 1.1 NMOS,CMOS logic: NOT, AND, OR, NAND, and NOR Gates using NMOS – NOT, AND, OR, NAND, and NOR Gates using CMOS – Implementation of logic	6
	function (SOP, POS) in CMOS. 1.2 VLSI design process: Different level of abstractions in VLSI design – steps involved in VLSI design process: Design Entry,Simulation, Synthesis, Placement and Routing – Layout rules, Stick diagram.	6
II	INTRODUCTION TO VHDL: 2.1 Introduction: HDL – Different types of modeling – General format for VHDL program.	2
	2.2 VHDL statements: Syntax for process statement, if statement, if else statement, if elsif else statement, case statement –Syntax for signal declaration and signal assignment statement –Syntax for variable declaration and	4
	variable assignment statement –Syntax for variable declaration and variable assignment statement, component declaration. 2.3 VHDL code example: VHDL code for Logic gatesAND, OR, NOT, NAND, NOR gate and XOR gates.	4
Ш	COMBINATIONAL CIRCUIT DESIGN:	
	 3.1 Combinational circuit: Half adder, Full adder, Half subtractor and Full subtractor – 4 to 1 Mux, 1 to 4 Demux, 4 to 2 Encoder, 2 to 4 decoder and comparator – FourbitArithmeticadder – FourbitArithmeticsubtractor. 	6
	3.2 VHDL program for Combinational circuit:	
	VHDL program for Half adder, Full adder – VHDL program for Hall subtractor and Full subtractor – 4 to 1 Mux, 1 to 4 Demux, 4 to 2 Encoder, 2 to 4 decoder and comparatorinVHDL – VHDL program forFourbitArithmeticadder (structural) – VHDL program forFourbitArithmeticsubtractor (structural).	6

IV	SEQUENTIAL CIRCUIT DESIGN:	
	4.1 Sequential circuit: Flip-flops: D,JKandTFlip-flops – counters:3 bit up Counter,3 bit down counter and 3 bit up/down counter,Decadecounter, ring counter and JohnsonCounter.	6
	 4.2 VHDL program for Sequential circuit: VHDLprogramforD,JKandTFlip-flopswith resetinput, withoutresetinput VHDL program for 3 bit up Counter,3 bit down counter and 3 bit up/down counter,Decadecounter, ring counter and JohnsonCounter. 	6
V	PROGRAMMABLE LOGIC DEVICES:	_
	5.1 PROM, PLA and PAL :	5
	Introduction to PROM, PLA and PAL –	
	(upto/yariables) – Comparisonbetween PROM PAL and PLA	
	5.2 CPLD,FPGA and ASIC :	6
	Architecture of Complex Programmable Logic device (CPLD) –	
	Architecture of FieldProgrammableGateArrays(FPGA) – Introduction to Application Specific Integrated Circuit(ASIC) – TypesOf ASIC – ASIC	
	design flow.	

ReferenceBooks:

1. "M.MorrisMano, MichaelDCiletti ""DigitalDesign" PearsonEducation2008.

2. "BhaskerJ ""VHDLPrimer"PrenticeHallIndia-2009.

3. "NEIL H.E.WESTE, KAMRAN ESRHAGHIAN" "Principles of CMOS VLSI design", Addison – Wesley professional, second edition 1994.

4. "NigelP.Cook" "DigitalElectronicswithPLDIntegration", Pearson 2000.

5."Ashok K.Sharma"

"ProgrammableLogicHandbook:PLDs,CPLDs,andFPGAs",Mcgraw-Hill,1998.

6. "Michael John Sebastian Smith""Application Specific Integrated Circuits", Addison – Wesley professional, first edition 1997.

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU **DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME**

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	: 1040:Electronics and Communication Engineering
Course Code	: 4040532
Semester	: V Semester
Subject Title	: CONSUMER ELECTRONICS

TEACHING AND SCHEME OF EXAMINATION No of wooks n

TEACHING AND SCHEME OF EXAMINATION							
				No of weeks	per ser	mester: 16	weeł
	Instru	uctions	Examination				
Subject	Hours /	Hours /	Marks				
-	Week	Semester	Internal Assessment	Board Examinations	Total	Duration	
Consumer Electronics	4	64	25	100*	100	3 Hrs.	

*Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Audio system	11
II	Audio recording and reproducing system	12
	Colour TV	12
IV	Digital Transmission and reception	12
V	Consumer Appliances	10
	Test & Model Exam	7
	Total	64

RATIONALE:

The objective of teaching this subject is to give students in depth knowledge of various electronic audio and video devices and systems. Further, this subject will introduce the students with working principles, block diagram, main features of consumer electronics Gadgets/goods/devices. This in-turn will develop in them capabilities of assembling, fault Diagnosis and rectification in a systematic way.

OBJECTIVES:

- > Understand the various types of microphones and loud speakers.
- > To identify the various digital and analog signal.
- > Describe the basis of television and composite video signal.
- > Describe the various kinds of colour TV standards and system.
- > Compare the various types of digital TV system.
- > Understand the various types of consumer goods.
- > Maintain various consumer electronic appliances.

4040532 CONSUMER ELECTRONICS DETAILED SYLLABUS

Contents: Theory

UNIT	NAME OF THE TOPICS	HOURS
	INTRODUCTION TO AUDIO SYSTEM	6
I	 1.1 Audio System Microphones and Loudspeakers: Carbon, moving coil, cordless microphone,Direct radiating and horn loudspeaker, Multi-speaker system. 1.2 Sound Recording Magnetic Recording, Digital Recording, Optical Recording (CD system, DVD, Blu-ray Disc). 	5
II	 2.1 Reproducing system Sound reproducing Systems: Monophonic, Stereophonic, Surround System. Hi-Fi system, block diagram and use of Home Theatre Systems . 2.2 Audio recording Sound Recording: Principles of Sound recording: Magnetic Recording/ Reproduction. Audio CD Recording/ Reproduction, Study of working principle of audio and VCD, Digital sound recording on CD system, MP3. 	6 6
111	 3.1 Colour TV Primary colours, concepts of additive and subtracting mixing of colours, concepts of luminance, Hue and Saturation, Representation of a colour in colour triangle, non-spectral colour, visibility curve. 3.2 TV ENCODERS:Compatibility of colour TV system with monochrome system. Basic colour TV system-NTSC, SECAM, and PAL their advantages and disadvantages. Construction and working principles of Trinitron and PIL types of colour picture tubes. 	6 6
IV	 4.1 DIGITAL TRANSMISSION Digital satellite television, Direct-To-Home (DTH) satellite television, Introduction to: Video on demand, CCTV, High Definition (HD)-TV. 4.2 RECEPTION Introduction to Liquid Crystal and LED Screen Televisions Basic block diagram ofLCD and LED Television and their comparison. 	6

	5.1 CONSUMER APPLIANCES	
V	Basics principle and working of Microwave Oven and Photostat Machine and Digital Camera, Cam CorderWashing Machine: wiring diagram, electronic controller for washing machine, technical specifications, types of washing machine, fuzzy logic	10

REFERENCE BOOKS:

- 1. Consumer Electronics- Bali S.P.- Pearson Education India, 2010, latest edition
- 2. Colour TV by A.Dhake
- 3. Audio Video Systems by R. G. Gupta; McGraw Hill Education System.
- 4. Consumer Electronics by Yagnik & Jain Ishan Publication.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name :1040: Electronics and Communication Engineering

Subject Code : 4040533

Semester :V

Subject title : BASICS OF DIGITAL SIGNAL AND IMAGE PROCESSING

TEACHING AND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instruction			Examination			
Subject	Hours	Hours	Marks				
	/Week	/Semester	Internal Board	Board	Total	Duration I	
Paging of Digital			Assessment	Examination			
Signal and Image Processing	4	64	25	100*	100	3 Hrs	

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and allocation of hours

Unit	TOPIC	Hrs			
I	I Classification of Signals and systems				
II	II Analysis of continuous time Signals				
	Digital Image Fundamentals	10			
IV	Image Enhancement and Image Restoration	12			
V	Image Segmentation and compression	12			
	Tests and Model Exam	7			
	Total	64			

RATIONALE:

The subject basic of digital signal and image processing introduce visualization and mathematical representation of continuous time and discrete time signals and ability to analyses LTI system and give clear explanation of image compression, restoration, enhancement, segmentation. The student will have depth of knowledge about signal and image processing which will help in industries and in bio medical field.

OBJECTIVES:

On completion of the following units of the syllabus contents, the students must be able to

- > Know about basic knowledge of signals and system
- > Know fourier representation of periodic signals
- > Be able to characterize LTI system
- Steps in image processing
- Simple image fundamental
- > Various image enhancement techniques
- Histogram processing
- Spatial filtering
- > Understand various compression models
- Study JPEG techniques
- > Detection of point, line, edge in images

4040533 BASICS OF DIGITAL SIGNAL AND IMAGE PROCESSING DETAILED SYLLABUS

Contents: Theory

Unit	Name of the topics	Hours
	CLASSIFICATION OF SIGNALS AND SYSTEMS	
I	 1.1 SIGNALS: Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids_ Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals 1.2 SYSTEMS: Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable. 	5
	ANALYSIS OF CONTINUOUS TIME SIGNALS	
II	2.1 FOURIER TRANSFORM: Fourier series for periodic signals – Fourier Transform – properties	7
	2.2 LAPLACE TRANSFORM: Laplace Transforms and properties	6
111	DIGITAL IMAGE FUNDAMENTALS 3.1 BASICS OF IMAGE PROCESSING; Steps in Digital Image Processing – Components – Elements of Visual Perception – Image Sensing and Acquisition – Relationships between pixels 3.2 IMAGE SAMPLING AND QUANTIZATION	6
	3.3 COLOR IMAGE FUNDAMENTALS RGB, HSI models.	2

	IMAGE ENHANCEMENT AND IMAGE RESTORATION	
IV	4.1 IMAGE ENHANCEMENT: Spatial Domain: Gray level transformations – Histogram processing Basics of Spatial Filtering–Smoothing and Sharpening Spatial filtering.	7
	4.2 IMAGE RESTORATION :	5
	Image Restoration – degradation model, Noise models	
v	IMAGE SEGMENTATION AND COMPRESSION	
	5.1 IMAGE SEGMENTATION:	6
	Edge detection, Region based segmentation – Region growing – Region splitting	
	and merging	
	5.2 IMAGE COMPRESSION:	6
	Need for data compression, Huffman, Run Length Encoding, Shift codes,	
	Arithmetic coding, JPEG standard, MPEG	

REFERENCE BOOKS:

- 1. Signals, System and communication -B.P.Lathi, B.S Publication 2003
- 2. Signals and Systems A.V. Oppenheim, A.S. willsky and S.H. Nawab, PHI 2nd Edition
- 3. Signals and Systems Simon Haykin and van. Veen.Wiley, 2nd Edition
- RafelC.Gonzalez and Richard Ewoods Digital Image processing –Pearson Inc- 4th Edition – 2018
- Anil K-Jain Fundamental of Digital Image processing Pearson Education, Inc 2002

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1040:Electronics and Communication Engineering
- Subject code : 4040540

Semester : V

Subject title : ANALOG AND DIGITAL COMMUNICATION PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION

No. of weeks/ Semester: 16weeks

	Instruction		Examination			
		Hours /semester	Marks			
Subject	Hours /week		Internal Assessment	Board Examination	Total	Duration
ANALOG AND DIGITAL COMMUNICATION PRACTICAL	5	80	25	100*	100	3 Hours

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

This laboratory is based on communication system based on analog and digital system. The Student will able to test various communication equipments including transmitter and receiver. This lab system enable students to apply many experiments and activities covers various topics in analog and digital communication system of different types which gain the various skill in day today life.

OBJECTIVES:

On completion of the following experiments, the students must be able to

- > know the concept of analog transmitter and receiver
- know the concept of digital (ASK/ FSK/ PSK)
- know about TDM
- Knowthe fiber optical link

- know the losses in optical fiber
- > Test the performance of Manchester encoder and decoder
- know about DTH system

4040540 ANALOG AND DIGITAL COMMUNICATION PRACTICAL DETAILED SYLLABUS

Contents: Practical

Exercises

- 1. Construct a sample and hold circuit, test and trace its waveforms.
- 2. Test the performance of ASK modulator and demodulator &drawits input and output waveform
- 3. Test the performance of FSK modulator and demodulator &drawits input and output waveform
- 4. Test the performance of PSK modulator and demodulator &drawits input and output waveform
- 5 Test the performance of Time Division Multiplexer and draw its input and output waveforms
- 6. Test the performance of analog transmitter and receiver and draw its input and output waveforms
- 7. Test the performance of a fiber optic analog link and draw its input and output waveforms
- 8. Test the performance of a fiber optic digital link and draw its input and output waveforms
- 9. Find the bending loss and propagation loss in fiber with two different fiber lengths
- 10. Test the performance of Manchester encoder and decoder using optical communication.
- 11. Test the performance of a voice link using optical fiber.
- 12. Test the Horizontal and Vertical deflection sensitivity of CRT.
- 13. Install a DTH system and test its performance.

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CIRCUIT DIAGRAM/BLOCK DIAGRAM:		25
CONNECTION	:	30
EXECUTION & HANDLING OF EQUIPMENT	:	20
OUTPUT / RESULT	:	15
VIVA – VOCE	:	10
TOTAL	:	100

MODEL QUESTION PAPER

4040540 ANALOG AND DIGITAL COMMUNICATION PRACTICAL

- 1. Construct a sample and hold circuit, test and trace its waveforms.
- 2. Test the performance of ASK modulator and demodulator & drawits input and output waveform
- 3. Test the performance of FSK modulator and demodulator & drawits input and output waveform
- 4. Test the performance of PSK modulator and demodulator & drawits input and output waveform
- 5 Test the performance of Time Division Multiplexer and draw its input and output waveforms
- 6. Test the performance of analog transmitter and receiver and draw its input and output waveforms
- 7. Test the performance of a fiber optic analog link and draw its input and output waveforms
- 8. Test the performance of a fiber optic digital link and draw its input and output waveforms
- 9. Find the bending loss and propagation loss in fiber with two different fiber lengths
- 10. Test the performance of Manchester encoder and decoder using optical communication.

- 11. Test the performance of a voice link using optical fiber.
- 12. Test the Horizontal and Vertical deflection sensitivity of CRT
- 13. Install a DTH system and test its performance.

S.NO	Name oftheEquipments	Range	RequiredNos.
1	DualtraceCRO	100MHz	2
2	PSK Modulation Kit		1
3	PSK Demodulation Kit		1
4	Fiber optic demonstration kit		2
5	DTH		1

LIST OF EQUIPMENTS

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronicsand Communication Engineering

Subject Code : 4040550

Semester : V

Subject Title : Microcontroller Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions			Examination			
Subject	Hours / Week S	Hours / Semester	Marks				
			Internal Assessment	Board Examinations	Total	Duration	
Microcontroller Practical	4	64	25	100*	100	3 Hrs.	

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The introduction of this subject will enable the students to have hands on experience in using 8051 trainer kit. The students are exposed to learn simple programs using assembly language. They can also get familiar with the C compiler platform. They also gain knowledge by using application specific interfacing boards.

OBJECTIVES:

The students are able to

- -> Understand the use of instruction set by writing and executing simple ALP.
- -> Know the connection details between microcontroller and peripherals.
4040550 MICROCONTROLLER PRACTICAL DETAILED SYLLABUS

Contents:Practical

Exercises

Part A

The following experiments should be written using 8051 assembly language program and should be executed in the 8051 microcontroller trainer kit.

- 1.8 / 16 bit addition
- 2.8 / 16 bit subtraction
- 3.8 bit multiplication
- 4.8 bit division
- 5. BCD to Hex code conversion
- 6. Hex to BCD code conversion
- 7. Smallest / Biggest number
- 8. Time delay routine (Demonstrate by Blinking LEDS).
- 9. Using Timer/ counter of 8051

Part B (Interfacing Application Boards)

The following experiments can be written using C compiler or 8051 assembly language and to be executed.

- 10. Interfacing Digital I/O board
- 11. Interfacing DAC
- 12. Interfacing Stepper motor
- 13. Interfacing Seven segment LED display or LCD
- 14. Sending data through the serial port between microcontroller kits
- 15. Interfacing DC motor using PWM.

BOARD EXAMINATION

Note:

1.Students are provided with Hex code sheet for manual hand assembly.

DETAILED ALLOCATION OF MARKS

Ι.	Algorithm or Flow cha	rt	:	20 marks
II.	Program		:	30 marks
III.	Execution		:	30 marks
IV.	Result		:	10 marks
V.	Viva		:	10 marks
		TOTAL	:1	00 marks

MODEL QUESTION PAPER 4040550 MICROCONTROLLER PRACTICAL

- 1.Write an assembly language program for adding two 8 bit / 16 bit numbers and execute the same using 8051 trainer kit. Store the output result in memory. Input numbers can be given as immediate data or can be stored in the memory.
- 2.Write a program to interface stepper motor with microcontroller 8051 and execute. Check the execution for varying the speed of the motor and also the forward/reverse rotation of the motor.
- 3.Write a 8051 Assembly Language program to use Timer/ Counter of 8051 microcontroller to generate time delay and observe the output.
- 4.Write a 8051 Assembly language program to generate 1 second time delay using Time delay routine and verify the output at LEDS.
- 5.Write a program to interface DAC interface board with microcontroller and verify the analog output.
- 6. Write a program to interface LCD interface board with microcontroller and observe the output at LCD.
- 7.Write a program to interface Digital I /O board with microcontroller and verify all input and output operations.

- 8.Write an assembly language program using 8051 to convert the given BCD number to hexadecimal number and store the result in memory. The input can be given as an immediate data or can be stored in the memory.
- 9. Write an assembly language program using 8051 to convert the given hexadecimal number to BCD number and store the result in memory. The input can be given as an immediate data or can be stored in the memory.
- 10.Write an assembly language program using 8051 to find the smallest number of the array of given numbers and store the result in the memory. The size of the array and the input numbers can be stored in the memory.
- 11.Write an assembly language program using 8051 to perform 8 bit multiplication and store the result in the memory. The input numbers can be given as immediate data or can be stored in the memory.
- 12. Write an assembly language program for subtracting two 8 bit / 16 bit numbers and execute the same using 8051 trainer kit. Store the output result in memory. Input numbers can be given as immediate data or can be stored in the memory.
- 13. Write an assembly language program using 8051 to perform 8 bit division and store the result in the memory. The input numbers can be given as immediate data or can be stored in the memory.
- 14.Write a program to perform serial communication between two 8051 microcontroller kits and verify the output.
- 15.Write a program to interface seven segment LED interface with microcontroller and verify the output at seven segment display .
- 16.Write a program to interface a DC motor with microcontroller and verify the rotation of motor in both directions using PWM method.

LIST OF EQUIPMENTS

S.NO	Name of the Equipments	Required Nos
1.	8051 Microcontroller kit	14
2.	Digital I/O Interface board	2
3.	Seven segment LED display interface board	2
4.	8 bit DAC interface board	2
5.	Stepper motor control interface board	2
6.	DC motor control interface board	2
7.	RS 232 serial port cable	2
8.	LCD interface board	2
9.	Laptop / Desktop Computer	6

STATE BOARD OF TECHNICAL EDUCATION ANDTRAINING, TAMILNADU

DIPLOMAINENGINEERING / TECHNOLOGY SYLLABUS

N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name:1040:Electronics and Communication Engineering

SubjectCode: 4040561

Semester :V

SubjectTitle: VeryLarge Scale IntegrationPractical

TEACHINGANDSCHEMEOFEXAMINATION

Noofweekspersemester:16weeks

	Instruction		Examination			
Subject	Hours/ Hours/S		Marks			
	Week emester	emester	Internal	Board	Total	Duration
			Assessment	Examination		
VeryLargeSc aleIntegratio nPractical	5	80	25	100*	100	3Hrs

*Examination will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

VHDL is a versatile and powerful hardware description language which isuseful for modeling digital systems at various levels of design abstraction. This language is mainly for describing the hardware. Execution of a VHDL program results in asimulation of the digital system allows us to validate the design prior tofabrication of Digital Integrated circuit. This practical will enable the students to have hands on experience in using FPGA kit. The students are exposed to do programming in VHDL.

OBJECTIVES:

Thestudentswillbeableto

- > Understand the use of VHDL statements by writing program in VHDL.
- > DevelopaVHDLcodeforany digital circuits.
- Understand the concepts of digital circuits / logic function by simulating VHDL programs through XILINX software.
- > Understand the concepts of digital circuits by using FPGA kit.
- To know the usage of input switches, output LEDs and seven segment display in FPGA kit.

4040561VERYLARGESCALEINTEGRATIONPRACTICAL DETAILED SYLLABUS

Contents: Practical

Exercises

NOTE: Behavioral or structural model can be used for allexperiments

1.SIMULATIONOFVHDLCODEFOR LOGIC GATES (AND GATE, OR GATE)

Develop code for logic gates. Simulate the code in the software.

2.SIMULATIONOFVHDLCODEFORCOMBINATIONALFUNCTION

Optimize a 4 variable combinational function (SOP), describe it inVHDL codeandsimulateit.Example:F=(0,1,4,5,8,9,12)insop

3.SIMULATIONOFVHDLCODEFOR HALF ADDER AND FULL ADDER

Develop code for half adder and full adder. Simulate the code in the software .

4.SIMULATIONOFVHDLCODEFOR HALF SUBTRACTOR AND FULL SUBTRACTOR

Develop code for half subtractor and full subtractor. Simulate the code in the software.

5.SIMULATIONOFVHDLCODEFOR SINGLE BIT DIGITAL COMPARATOR

Develop Boolean expression for A>B, A=B, A<B, write a VHDL code and simulate the code in the software.

6.VHDLIMPLEMENTATIONOF8 TO 1 MULTIPLEXER

Develop the code for a 8 to 1 multiplexer and implement it in FPGA kit in which switches are connected for select inputs and for data inputs, a LED is connected to the output.

7.VHDLCODE FOR JK FLIPFLOP (SIMULATION/IMPLEMENTATION)

Develop the code for JK flipflop and simulate using software or implement it in FPGA kit.

8.VHDLIMPLEMENTATIONOF 1 TO 8 DEMULTIPLEXER

Develop the code for a 1 to 8 Demultiplexer and implement it in FPGA kit in which Switches are connected for select inputs and a data input, Eight LEDs are connected to the output of the circuit.

9.VHDLIMPLEMENTATIONOF7SEGMENTDECODER – BOOLEAN EXPRESSION

DevelopBooleanexpressionfor4inputvariablesand7outputvariables.Develop a seven segment decoder in VHDL for 7 equations. A seven segment display is connected to the output of the circuit. Four switches areconnectedtotheinput.The4bitinputisdecodedto7segmentequivalent.

10.VHDLIMPLEMENTATIONOF7SEGMENTDISPLAY - WITH COUNTER

Design and develop a seven segment decoder in VHDL. Design and developa 4 bit BCD counter, the output of the counter is given to seven segment decoder. A seven segment display is connected to the output of the decoder. The displayshows0,1,2..9foreveryonesecond

11.VHDLIMPLEMENTATIONOF 8 TO 3ENCODER

Develop code for 8 to 3 encoder. There willbe 8 switches and 3 LEDs in the FPGA kit. The input givenfrom switches and it is noted that any one of the switch is active. The binaryequivalentforthecorrespondinginputswitchwillbeglowingintheLEDasoutput.

12.VHDLIMPLEMENTATION OF2 TO 4 DECODER

Develop code for 2 to 4 decoder and implement it in FPGA kit in which 2 Switches are connected for inputs , four LEDs foroutput.

13.VHDLIMPLEMENTATIONFORBLINKINGALED

Develop a VHDL Code for delay .Delay is adjusted in such a way that LED blinks for every 1 or 2seconds.

14.VHDLIMPLEMENTATIONFORBLINKINGANARRAYOFLEDS

Design and develop a VHDL Code for 4 bit binary up counter. Four LEDs areconnected at the output of the counter. The counter should up for every onesecond.

15.VHDLIMPLEMENTATIONOFASPELLERWITHANARRAYOFLEDS

Design and develop VHDL Code for a 5 bit Johnson ring counter 4 bit TheLEDs are connected at the output of the counter. The speller should work foreveryonesecond.

BOARD EXAMINATION

NOTE:

- 1.All the experiments given in the list of experiments should be completed and given for the endsemester practical examination.
- 2.In order to develop best skills in handling Instruments/Equipment practical classes, every three students should be provided with a separateexperimentalsetupfor doingexperiments in the laboratory.
- 3. The external examiners are requested to ensure that a single experimental question should not be given to more than three students while admitting abatchof30studentsduringBoardExaminations.

DETAILED ALLOCATIONOFMARKS

Algorithm orflowchart			30marks
	Program		30Marks
	Execution	25marks	
Res	ult		10 marks
Viva	aVoce		5marks
Total			100Marks

MODEL QUESTION PAPER 4040561 VERYLARGESCALEINTEGRATIONPRACTICAL

1.Write aVHDLcodefor logic gates (AND gate, OR gate) and simulate the code.

2. Simplify the function f=(0,1,4,5,8,9,12). Write aVHDLcodeforthe simplified function and simulate it.

3.Write aVHDLcodefor half adder and full adder and simulate the code.

4.Write aVHDLcodeforhalf subtractor and full subtractor and simulate the code.

5.Write aVHDLcodefor single bit digital comparator and simulate the code.

6.Write aVHDLcodefor8 to 1 multiplexer and implement it in FPGA kit.

7.Write aVHDLcodeforJK flipflop and simulate using software or implement it in FPGA kit.

8.Write aVHDLcodefor1 to 8 demultiplexer and implement it in FPGA kit.

- 9.Write aVHDLcodefor7segmentdecoder Boolean expression and implement it in FPGA kit.
- 10.Write aVHDLcodefor7segmentdisplay with counter and implement it in FPGA kit.
- 11.Write aVHDLcodefor 8 to 3 encoder and implement it in FPGA kit.
- 12.Write aVHDLcodefor2 to 4 decoder and implement it in FPGA kit.
- 13.Write aVHDLcodeforblinkingaLED and implement it in FPGA kit.
- 14.Write aVHDLcodeforblinkinganarrayofLEDs and implement it in FPGA kit.
- 15.Write aVHDLcodeforspellerwithanarrayofLEDs and implement it in FPGA kit.

LISTOFEQUIPMENTS

1. FPGA KIT with atleast 10 switches for input, 8 LEDs for output, a 7 segmentdisplay, debounced push switch (2 Nos) for manual clock input and external clocksource–10Nos with software.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	: 1040:Electronics and Communication Engineering
Course Code	: 4040562
Semester	: V Semester
Subject Title	: Consumer Electronics Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	uctions	Examination			
Subject	Hours / H Week Se	Hours /	Marks			
		Semester	Internal Assessment	Board Examinations	Total	Duration
Consumer Electronics Practical	5	80	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The objective of teaching this subject is to give students an in depth knowledge of various electronic audio and video devices and systems. Further this subject will introduce the students with working principles, block diagram, main features of consumer electronics gadgets/goods/devices. This in-turn will develop in them capabilities of assembling, fault diagnosis and rectification in a systematic way.

OBJECTIVES:

On completion of the following experiments, the students must be able to

- > Troubleshoot different types of Microphones and loudspeakers.
- > Maintain and troubleshoot of audio systems.
- > Troubleshoot LED TV Receiver.
- > Know about installation and troubleshoot of CCTV and Dish antenna.

- > Know about various sensors and their functionalities of washing machine.
- > Know about Installation and troubleshoot of A/C
- > Maintain various consumer Electronic appliances.

4040562 CONSUMER ELECTRONICS PRACTICAL DETAILED SYLLABUS

Contents:Practical

Exercises

- 1. <u>To study public address system and its components.</u>
- 2. To plot the directional response of a Microphone.
- 3. To plot the directional response of a Loud Speaker.
- 4. Trouble shooting of CD/DVD Player.
- 5. To perform fault identification in LED TV.
- 6. Installation of Dish Antenna for best reception.
- 7. Installation of CCTV system.
- 8. Demonstration of Microwave Oven.
- 9. Demonstration of Automatic Washing Machine and locate various sensors used in that washing machines.
- 10. To study the various parameters in the Smartphone and Tablet.
- 11. Explore digital cameras settings.
- 12. To build and test temperature control system.
- 13. To build and test circuit for A/C motor control.
- 14. Verify functions of Camcorder.
- 15. Installation of LCD/LED Projector and verify the functionalities.

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CIRCUIT DIAGRAM	: 25
PROCEDURE	: 30
EXECUTION & HANDLING OF EQUIPMENT	: 20
OUTPUT / RESULT	: 15
VIVA – VOCE	: 10

TOTAL : 100

MODEL QUESTION PAPER 4040562 CONSUMER ELECTRONICS PRACTICAL

- 1. To study public address system and its components.
- 2. To plot the directional response of a Microphone.
- 3. To plot the directional response of a Loud Speaker.
- 4. Trouble shooting of CD/DVD Player.
- 5. To perform fault identification in LED TV.
- 6. Installation of Dish Antenna for best reception.
- 7. Installation of CCTV system.
- 8. Demonstration of Microwave Oven.
- 9. Demonstration of Automatic Washing Machine and locate various sensors used in that washing machines.
- 10. To study the various parameters in the Smartphone and Tablet.
- 11. Explore digital cameras settings.
- 12. To build and test temperature control system.
- 13. To build and test circuit for A/C motor control.
- 14. Verify functions of Camcorder.
- 15. Installation of LCD/LED Projector and verify the functionalities.

LIST OF EQUIPMENTS

S.NO	Name of Equipment with specification	Quantity
1.	Digital Multimeter	10
2.	Microphone (Different types)	10
3.	Loud Speaker	10
4.	LED TV	2
5.	Dish Antenna	1
6.	Microwave Oven, Washing machine, A/C	2
7.	Digital Camera, Smart Phone/Tablet, Camcorder	2
8.	LCD/LED Projector.	2
9.	CCTV Cameras	5

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	: 1040:Electronics and Communication Engineering
Subject code	: 4040563
Semester	: V
Subject title	: SIGNAL AND IMAGE PROCESSING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No. of weeks/ Semester: 16weeks

	Instruction		Examination			
• • • •			Marks			
Subject	Hours /week	Hours /semester	Internal Assessment	Board Examination	Total	Duration
Signal and Image Processing Practical	5	80	25	100*	100	3 Hours

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

This laboratory makes the student to understand the basic concepts of signal and image processing .signal processing focuses on analyzing, modifying and synthesizing signals such as sound, images and scientific measurements. The need to extract information from images and interpret their contents has been one of the driving factors in the development of image processing and computer vision during the past decades .Image processing application cover a wide range of human activities such as Medical application, Industrial, Military, Consumer Electronics, Law Enforcement and security, The internet particularly the world wide web.

OBJECTIVES:

On completion of the following experiments, the students must be able to

- > know to generate discrete sequence signal.
- > knowabout fourier transform
- > know first order low pass filter and first order high pass filter
- know about spatial domain
- know about contrast stretching.
- know graylevel slicing and bitplane slicing
- know about masking
- > know frequency domain of ideal lowpass filter and ideal high pass filter

4040563 SIGNAL AND IMAGE PROCESSING PRACTICAL DETAILED SYLLABUS

Contents: Practical

Exercises

- 1. Write a MATLAB program to generate the discrete sequence unit step and unit impulse. Plot all sequences
- 2. Write a MATLAB program to generate the discrete sequence ramp and periodic sinusoidal signal.plot all sequences.
- 3. Find the Fourier transform of a square pulse using MATLAB .Plot its amplitude and phase spectrum.
- 4. Write a MATLAB program to generate a random sinusoidal signal and plot four possible realizations of random signals
- 5. Write a MATLAB program to find the magnitude and phase response of first order low pass filter. Plot the responses in logarithmic scale.
- 6. Write a MATLAB program to find the magnitude and phase response of first order high pass filter. Plot the responses in logarithmic scale.
- 7. Write a MATLAB program in spatial domain for image negatives and log transformation
- 8. Obtain the power law transformation in spatial domain using MATLAB.
- 9. Write a MATLAB program for contrast stretching.
- 10. Write a MATLAB program in spatial domain for linear filter
- 11. Write a MATLAB program for graylevel slicing andbitplane slicing.
- 12. Write a MATLAB program for histogram equalization

- 13. Write a MATLAB program for unsharp masking.
- 14. Obtain the frequency domain of ideal lowpass filter in MATLAB.
- 15. Obtain the frequency domain of ideal high pass filter in MATLAB.

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

WRITING PROGRAM:			40
EXECUTION OF PROGRAM :			35
OUTPUT / RESULT :			15
VIVA – VOCE		:	10
TOTAL	:		100

MODEL QUESTION PAPER 4040563SIGNAL AND IMAGE PROCESSINGPRACTICAL

- 1. Write a MATLAB program to generate the discrete sequence unit step and unit impulse. Plot all sequences
- 2. Write a MATLAB program to generate the discrete sequence ramp and periodic sinusoidal signal.plot all sequences.
- 3. Find the Fourier transform of a square pulse using MATLAB .Plot its amplitude and phase spectrum.
- 4. Write a MATLAB program to generate a random sinusoidal signal and plot four possible realizations of random signals
- 5. Write a MATLAB program to find the magnitude and phase response of first order low pass filter. Plot the responses in logarithmic scale.
- 6. Write a MATLAB program to find the magnitude and phase response of first order high pass filter. Plot the responses in logarithmic scale.
- 7. Write a MATLAB program in spatial domain for image negatives and log transformation
- 8. Obtain the power law transformation in spatial domain using MATLAB.
- 9. Write a MATLAB program for contrast stretching.
- 10. Write a MATLAB program in spatial domain for linear filter
- 11. Write a MATLAB program for gray level slicing and bit plane slicing
- 12. Write a MATLAB program for histogram equalization
- 13. Write a MATLAB program for unsharp masking.
- 14. Obtain the frequency domain of ideal lowpass filter using MATLAB.

15. Obtain the frequency domain of ideal high pass filter using MATLAB.

LIST OF EQUIPMENTS

S.NO	Name oftheEquipments	Range	RequiredNos.
1.	Desk Top Computer		15
2.	Simulation Tool	MATLAB	1

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic Year 2020-2021 onwards)

Course Name :1020:Mechanical Engineering

: V

- Subject Code
- : 4020570
- Semester
- Subject Title : ENTREPRENEURSHIP AND START-UPS

TEACHING AND SCHEME OF EXAMINATION

Subject	No. of Weeks per Semester: 16 W Instruction Examination					er: 16 Wee
	Hours/ Hours/ Week Semester		Marks			Duration
			Internal Assessment	Board Examinations	Total	-
Entrepreneurship and Startups	4 hours	64 hours	25	100*	100	3 Hours

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hours
1	Entrepreneurship – Introduction and Process	10
2	Business Idea and Banking	10
3	Start ups, E-cell and Success Stories	10
4	Pricing and Cost Analysis	10
5	Business Plan Preparation	10
Revision	, Field visit and Preparation of case study report	14
	Total	64

RATIONALE:

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socioeconomic environments; to ensure equity of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

OBJECTIVES:

At the end of the study of 5th semester the students will be able to

- To excite the students about entrepreneurship
- Acquiring Entrepreneurial spirit and resourcefulness
- Understanding the concept and process of entrepreneurship
- Acquiring entrepreneurial quality, competency and motivation
- Learning the process and skills of creation and management of entrepreneurial venture
- Familiarization with various uses of human resource for earning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- Survey and analyze the market to understand customer needs
- Understand the importance of generation of ideas and product selection
- Learn the preparation of project feasibility report
- Understand the importance of sales and turnover
- Familiarization of various financial and non financial schemes
- Aware the concept of incubation and starts ups

DETAILED SYLLABUS

Unit	Name of the Topics				
1	ENTREPRENEURSHIP – INTRODUCTION AND PROCESS				
	Concept, Functions and Importance				
	Myths about Entrepreneurship	10			
	Pros and Cons of Entrepreneurship				
	Process of Entrepreneurship				
	Benefits of Entrepreneur				
	Competencies and Characteristics				
	Ethical Entrepreneurship				
	Entrepreneurial Values and Attitudes				
	Motivation				
	Creativity				
	Innovation				
	Entrepreneurs - as problem solvers				
	 Mindset of an employee and an entrepreneur 				
	Business Failure – causes and remedies				
	Role of Networking in entrepreneurship				
2	BUSINESS IDEA AND BANKING				
	Types of Business: Manufacturing, Trading and Services				
	Stakeholders: Sellers, Vendors and Consumers	10			
	E- Commerce Business Models				
	 Types of Resources - Human, Capital and Entrepreneurial tools 				

	•	Goals of Business and Goal Setting	
	•	Patent, copyright and Intellectual Property Rights	
	•	Negotiations - Importance and methods	
	•	Customer Relations and Vendor Management	
	•	Size and Capital based classification of business enterprises	
	•	Role of Financial Institutions	
	•	Bole of Government policy	
	•	Entrepreneurial support systems	
	•		
	•	Incentive schemes for State Government	
	•	Incentive schemes for Central Government	
3	STA	ARTUPS, E-CELL AND SUCCESS STORIES	
	•	Concept of Incubation centre's	
	•	Activities of DIC, financial institutions and other relevance institutions	10
	•	Success stories of Indian and global business legends	
	•	Field Visit to MSME's	
	•	Various sources of Information	
	•	Learn to earn	
	•	Startup and its stages	
	•	Role of Technology – E-commerce and Social Media	
	•	Role of E-Cell	
	•	E-Cell to Entrepreneurship	
4		PRICING AND COST ANALYSIS	
	•	Calculation of Unit of Sale, Unit Price and Unit Cost	

	٠	Types of Costs - Variable and Fixed, Operational Costs	10
	•	Break Even Analysis	
	•	Understand the meaning and concept of the term Cash Inflow and Cash Outflow	
	٠	Prepare a Cash Flow Projection	
	٠	Pricing and Factors affecting pricing	
	•	Understand the importance and preparation of Income Statement	
	•	Launch Strategies after pricing and proof of concept	
	٠	Branding - Business name, logo, tag line	
	•	Promotion strategy	
5	BUSI	NESS PLAN PREPARATION	
	٠	Generation of Ideas,	10
	•	Business Ideas vs. Business Opportunities	
	•	Selecting the Right Opportunity	
	•	Product selection	
	•	New product development and analysis	
	•	Feasibility Study Report – Technical analysis, financial analysis and commercial analysis	
	•	Market Research - Concept, Importance and Process	
	٠	Marketing and Sales strategy	
	٠	Digital marketing	
	•	Social Entrepreneurship	
	٠	Risk Taking-Concept	
	•	Types of business risks	

REFERNCE BOOKS:

- 1. Dr. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra - 282002
- 2. Dr. G.K. Varshney, Business Regulatory Framework , Sahitya Bhawan Publications, Agra - 282002
- Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship, McGraw Hill (India) Private Limited, Noida - 201301
- 4. M.Scarborough, R.Cornwell, Essentials of Entrepreneurship and small business management, Pearson Education India, Noida 201301
- 5. Charantimath Poornima M. Entrepreneurship Development and Small Business Enterprises, Pearson Education, Noida - 201301
- Trott, Innovation Management and New Product Development, Pearson Education, Noida - 201301
- M N Arora, A Textbook of Cost and Management Accounting, Vikas Publishing House Pvt. Ltd., New Delhi-110044
- 8. Prasanna Chandra, Financial Management, Tata McGraw Hill education private limited, New Delhi
- 9. I. V. Trivedi, RenuJatana, Indian Banking System, RBSA Publishers, Rajasthan
- 10. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai 600018
- 11. Ramani Sarada, The Business Plan Write-Up Simplified A practitioners guide to writing the Business Plan, Notion Press Media Pvt. Ltd., Chennai 600095.

Board Examination – Evaluation Pattern

Internal Mark Allocation

Assignment (Theory portion)* - 10 Seminar Presentation - 10 Attendance - 5 TOTAL - 25

Note: * Two assignments should be submitted. The same must be evaluated and converted to 10 marks.

Guidelines for assignment:

First assignment – Unit I

Second assignment - Unit II

Guidelines for Seminar Presentation--Unit III

Each assignment should have five three marks questions and two five marks questions.

BOARD EXAMINATION

Note

- 1. The students should be taught all units and proper exposure and field visit also arranged. All the portions should be completed before examinations.
- The students should maintain theory assignment and seminar presentation. The assignment and seminar presentation should be submitted during the Board Practical Examinations.
- 3. The question paper consists of theory and practical portions. All students should write the answers for theory questions (40 Marks) and practical portions (60 Marks) should be completed for board examinations.
- 4. All exercises should be given in the question paper and students are allowed to select by lot. If required the dimensions of the exercises may be varied for every batch. No fixed time allotted for each portion and students have liberty to do the examination for 3Hrs.
- For Written Examination: theory question and answer: 45 Marks Ten questions will be asked for 3 marks each. Five questions from each unit 1 & 2. (10 X 3 = 30).

Three questions will be asked for 5 marks each. One question from each unit 1, 2 & 3. $(3 \times 5 = 15)$

 For Practical Examination: The business plan/Feasibility report or Report on Unit 4 & 5 should be submitted during the board practical examinations. The same have to be evaluated for the report submission (40 marks).

SI.	Description	Marks
No		
Part A	Written Examination - Theory Question and answer	45
	(10 questions x 3 marks:30 marks & (3 questions x 5	
	marks: 15 marks)	
Part B	Practical Examination – Submission on Business	40
	Plan/Feasibility Report or Report on Unit 4 & 5	
Part C	Viva voce	15
	Total	100

DETAILED ALLOCATION OF MARKS

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1040:Electronics and Communication Engineering
- Subject code : 4040610
- Semester : VI

Subject title : COMPUTER HARDWARE SERVICING AND NETWORKING

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 Weeks

	Insti	ruction		Examination			
			Marks				
Subject	Hours /week	Hours /semester	Internal Assessment	Board Examination	Total	Duration	
Computer hardware Servicing and Networking	5	80	25	100*	100	3 Hours	

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours		
I	MOTHERBOARD COMPONENTS AND MEMORY STORAGE DEVICES	16		
П	I/O DEVICES AND INTERFACE	14		
	TROUBLE SHOOTING OF DESKTOP AND LAPTOPS	15		
IV	COMPUTER NETWORK DEVICES AND OSI LAYERS	14		
V	802.X AND TCP/IP PROTOCOLS	14		
	Tests and Model			
	Total	80		

RATIONALE:

Maintaining and servicing the computers, laptops and peripherals are essential requirements of the computer students. The clear understanding of computer network devices and protocols are also taught in this subject.

OBJECTIVES:

On completion of the following units of syllabus contents, the students can

- > Identify the major components of CPU.
- Understand the principle of operations of all the interfacing boards, IO/Memory slots and interfacingdevices.
- > Know the use of diagnostic Software.
- > Trouble shoot the problems inLaptop.
- Understand the different layers of OSI and their functions. Compare different LANprotocols.
- Identify the protocols used in TCP /IP and compare with OSI model. Use of IP addressing and TCP/ IP protocolsbriefly.

4040610 COMPUTER HARDWARE SERVICING AND NETWORKING

DETAILED SYLLABUS

Contents : Theory

Unit No.	Name of the Topic	Hours
	MOTHERBOARD COMPONENTS AND MEMORY	
	STORAGEDEVICES	
	1.1 Introduction:	
	Hardware, Software and Firmware. Mother board, IO and memory expansion slots, SMPS, Drives, front panel and rear panel connectors.	3
	1.2 Processors:	0
	Architecture and block diagram of multicore Processor, Features of	3
	new processor (Definition only)-chipsets (Concepts only)	2
	Overview and features of PCI. AGP. PCMCIA	_
	1.4 Primary Memory:	3
	Introduction-Main Memory, Cache memory – DDR2, DDR3, DDR4	
	1.5 Secondary Storage:	2
	Hard Disk – Construction – Working Principle Specification of IDE,	3
	Ultra ATA, Serial ATA; HDD Partition - Formatting, SSD	0
	Introduction.	2
	CD-R, CD-RW, DVD –ROM and DVD –RW: construction and reading & writing operations, Zip Drive; Blu-ray – Introduction – Disc Parameters.	
II	I/O DEVICES AND INTERFACE	
	2.1 Keyboard: Signals – operation of membrane and mechanical keyboards–	2
	troubleshooting; wireless Keyboard.	
	2.2Mouse:	2
	Printers:	
	Introduction – Types of printers- Dot Matrix, Inkjet, Laser, MFP	2
	Construction and Features - Troubleshooting	_
	2.4 I/O Ports:	
	Serial, Parallel, USB, Game Port and HDMI.	2
	2.5 DISPIAYS: Principles of LED (OLED, AMOLED, POLED), LCD & TET Displays	
L		1

	2.6 Graphic Cards:	2
	2.7 Modem:	1
	Working principle.	0
	Servo Stabilizers, online and offline UPS - working principles;	2
	SMPS: Principles of Operation and block diagram of ATX Power supply Connector Specifications	
III	MAINTENANCE AND TROUBLE SHOOTING OF DESKTOP AND	
		2
	3.1 Bios-setup:	
	advanced chipset features, PC Bios communication – upgrading	
	BIOS, Flash BIOS - setup.	2
	3.2 POST: Definition – IPL hardware – POST Test sequence – beep codes	
	3.3 Diagnostic Software and Viruses:	
	Computer Viruses – Precautions –Anti-virus Software – identifying the signature of viruses – Firewalls and latest diagnostic softwares	2
	3.4 Laptop:	
	Types of laptop – block diagram – working principles – configuring laptops and power settings - SMD components, ESD & precautions	2
	3.5 Laptop components:	
	Adapter – types, Battery – types, Laptop Mother Board - block	3
	3.6 Installation and Troubleshooting:	
	Formatting, Partitioning and Installation of OS - Trouble Shooting	4
	Laptop Hardware problems - Preventive maintenance techniques for laptops.	
	COMPUTER NETWORK DEVICES AND OSI LAYERS	
IV	4.1 Data Communication: Components of a data communication.	1
	4.2 Data flow: Simplex – half duplex – full duplex;	1
	and Disadvantages of each topology.	2
	4.4 Networks: Definition -Types of Networks: LAN – MAN – WAN	
	Peer Networks.	
	4.5 Network devices: Features and concepts of	3
	Switches – Routers (Wired and Wireless) – Gateways.	
	4.6 Network Models: Protocol definition - standards - OSI Model -	3
	layered architecture – functions of alllayers.	

V 802.X AND TCP/IP PROTOCOLS	
5.1 Overview of TCP / IP: TCP/IP – Transport Layers Protocol – connection oriented a connectionless Services – Sockets - TCP & UDP.	and 3
5.2 802.X Protocols: Concepts and PDU format of CSMA/CD (802.3) – Token bus (802)	2.4) 4
 Token ring (802.5) – Ethernet – type of Ethernet (Fast Ethernet) gigabit Ethernet) – Comparison between 802.3, 802.4 and 802.5 5.3 Network Lavers Protocol: 	net, 3
IP – Interior Gateway Protocols (IGMP, ICMP, ARP, RARP Conce	pt
only). 5.4 IP Addressing:	2
Dotted Decimal Notation – Subnetting & Supernetting. 5.5 Application Layer Protocols:	2
FTP - Unmanageable Switch - manageable Switch – Telnet – SM ⁻ HTTP – DNS – pop	P–

REFERENCEBOOKS:

- 1. IBM PC and CLONES, B. Govindrajalu, Tata McGraw-Hill Publishers, IBM PC and CLONES
- 2 Computer Installation and Servicing, D. Balasubramanian, Tata McGraw Hill
- 3. Computer Installation and Servicing
- 4. The complete PC upgrade and Maintenance, Mark Minasi, BPB Publication, The complete PC upgrade and Maintenance
- 5. Troubleshooting, Maintaining and Repairing PCs, Stephen J Bigelow, Tata McGraw Hill Publication, Troubleshooting Maintaining and Repairing PCs
- 6. Upgrading and repairing laptops, Scott Mueller, QUE Publication, Upgrading and repairing laptops
- 7. Data Communication and networking, Behrouz A. Forouzan, Tata Mc-Graw Hill, New Delhi,
- 8. Data and Computer Communications, William Stallings, Prentice-Hall of India, Eighth Edition
- 9. Computer Networks, Andrew S. Tanenbaum, Prentice-Hall of India, New Delhi,
- 10.Computer Networks, Achyut Godbole, Tata McGraw Hill New Delhi

11.Principles of Wireless Networks– A unified Approach, Kaveh Pahlavan and Prashant Krishnamurty, Pearson Education, 2002

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name :1040: Electronics and Communication Engineering

Subject Code : 4040620

Semester :VI

Subject title : BIOMEDICAL INSTRUMENTATION

TEACHINGAND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instr	ruction	Examination			
Subject	Hours	Hours	Marks			
	/Week	/Semester	Internal Assessment	Board Examination	Total	Duration
Biomedical instrumentation	5	80	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and allocation of hours

UNIT	ΤΟΡΙϹ	Hours
I	Bio-electric potentials, Electrodes and Clinical measurements	14
II	Diagnostic Instruments	15
III	Therapeutic Instruments	16
IV	Biotelemetry and Patient Safety	15
V	Modern Imaging Techniques	13
	Tests and Model Exam	7
Total		

RATIONALE:

Every year, there is a tremendous increase in the use of Modern Electronic medical equipment in the hospital and health care industry. Therefore it is necessary for every student to understand the functioning of various medical equipments.

OBJECTIVES:

After learning this subject the studentwill beable to understand the about

- The generation of Bio-potential and its measurement using various electrodes.
- > The measurement ofblood pressure.
- > The measurement oflung volume.
- > The measurement of respiration rate.
- > The measurement ofbodytemperature and skin temperature.
- > The principleofoperation of ECG recorder and the analysis of ECG waves
- > The principle of operation of EEG recorder and the analysis of EEG waves
- > The principle of operation of EMG recorder.
- > Theworking principles of audio meter.
- > The principleofoperation ofpacemaker.
- > The basic principle ofdialysis.
- > The basic principle ofventilators.
- > Theworking principles of telemetry.
- > The basic principle oftelemedicine.
- > To learn about patient safety.
- > The various methods of accident prevention.
- > The basic principle of various types of lasers and their applications
- > The basic principle of various types of Medical Imaging Systems.

4040620 BIOMEDICAL INSTRUMENTATION

DETAILED SYLLABUS

Unit	-	Name of	the topics			Hour		
Ι	BIO-ELECTRIC	POTENTIALS,	ELECTRODES	AND	CLINICAL	-		
	MEASUREMENTS	i i i i i i i i i i i i i i i i i i i						
	1.1: BIOPOTENTIA		DDES			7		
	Elementaryideas of	cell structure, Bio-e	electric potentialsand	l their origi	n-			
	Resting and action potentials- Propagation ofaction potential - Electrodes							
	– Micro – Skinsurfa	– Micro – Skinsurface– needle electrodes.						
	1.2: CLINICAL ME	ASUREMENTS:						
	Measurement ofB	ood pressure : S	phygmomanometer-	- Blood fle	owmeter	7		
	(Electromagnetic&	ultrasonic blood	flowmeter)- Acid b	ase balan	nce: pH,			
	Measurement of pH value of various body fluids- Measurement of Respiration							
	rate · Impedance	Pneumograph- M	leasurement of Lu	na volume	e: Spiro			
	Tate : impedance	i noumographi n		3	•			
	meter- Heart rate r	nonitor- Medical la	boratory equipment:	Auto analy	/zer			
11	meter- Heart rate r	nonitor– Medical la	boratory equipment:	Auto analy	yzer			
II	DIAGNOSTIC INST 2.1: Electro- Card	RUMENTS:	boratory equipment: 2 Lead system of EC	Auto analy	yzer	3		
II	DIAGNOSTIC INST 2.1: Electro- Cardi Analysis of abnorm	RUMENTS: io Graph (ECG) : 1	boratory equipment: 2 Lead system of EC	Auto analy	vzer	3		
11	DIAGNOSTIC INST 2.1: Electro- Cardi Analysis of abnorm 2.2: Nervous syste	RUMENTS: io Graph (ECG) : 1 al ECG waves. em: Electro- Enche	boratory equipment: 2 Lead system of EC phaloGraph(EEG) -	Auto analy CG– ECG r 10-20 EE0	vzer recorder G lead	3		
II	DIAGNOSTIC INST 2.1: Electro- Cardi Analysis of abnorm 2.2: Nervous system System – EEG reco	RUMENTS: io Graph (ECG) : 1 al ECG waves. em: Electro- Enche order-EEGwave typ	boratory equipment: 2 Lead system of EC phaloGraph(EEG) - es– Clinical uses of	Auto analy CG– ECG r 10-20 EEG EEG	vzer recorder- G lead	3		
II	DIAGNOSTIC INST 2.1: Electro- Cardi Analysis of abnorm 2.2: Nervous syste system– EEG reco 2.3: Electro– Myo	RUMENTS: io Graph (ECG) : 1 al ECG waves. em: Electro- Enche order-EEGwave typ Graph (EMG) : EM	boratory equipment: 2 Lead system of EC phaloGraph(EEG) - es– Clinical uses of IGwaves– Measuren	Auto analy CG– ECG r 10-20 EEC EEG nent of con	recorder- G lead	3		
II	DIAGNOSTIC INST 2.1: Electro- Cardi Analysis of abnorm 2.2: Nervous syste system– EEG reco 2.3: Electro– Myo velocity– EMG reco	RUMENTS: io Graph (ECG) : 1 al ECG waves. em: Electro- Enche order-EEGwave typ Graph (EMG) : EM	boratory equipment: 2 Lead system of EC phaloGraph(EEG) - es– Clinical uses of IGwaves– Measuren	Auto analy CG– ECG r 10-20 EEC EEG nent of con	recorder- G lead	3		
II	DIAGNOSTIC INST 2.1: Electro- Cardi Analysis of abnorm 2.2: Nervous syste system– EEG reco 2.3: Electro– Myo velocity– EMG reco 2.4: Electro- Retin	RUMENTS: io Graph (ECG) : 1 al ECG waves. em: Electro- Enche order–EEGwave typ Graph (EMG) : EM order	boratory equipment: 2 Lead system of EC phaloGraph(EEG) - es- Clinical uses of Gwaves- Measuren	Auto analy CG– ECG r 10-20 EEC EEG nent of con	recorder- G lead	3		
II	DIAGNOSTIC INST 2.1: Electro- Cardi Analysis of abnorm 2.2: Nervous syste system– EEG reco 2.3: Electro– Myo velocity– EMG reco 2.4: Electro- Retin 2.5: Audiometer: I	RUMENTS: io Graph (ECG) : 1 al ECG waves. em: Electro- Enche order-EEGwave typ Graph (EMG) : EM order bo Graph (ERG) : E Principle- types - B	boratory equipment: 2 Lead system of EC phaloGraph(EEG) - es- Clinical uses of Gwaves- Measuren ERG recorder - ERC asics audiometer wo	Auto analy CG– ECG r 10-20 EEC EEG nent of con G wave orking- Air	recorder- G lead duction	3 3 3		

	THERAPEUTIC INSTRUMENTS	
	3.1: Cardiac pacemaker	0
	Need for Pacemaker-Classification – R-wave triggered and Ventricular inhibited	۷
	implantable pacemakers– Programmable pacemaker	3
	3.2: Cardiac defibrillators	0
	Need for Defibrillator - Classification – AC and DC defibrillators	
	3.3: Heart lung machine :	
	Need for Heart Lung Machine –Blockdiagram – working	3
	3.4: Dialysis	
	Need for Dialysis – Processes involved in Dialysis - Hemo dialysis– peritoneal	3
	dialysis - Comparison of Hemodialysis and Peritonael dialysis	
	3.5: Lithitripsy	3
	Need for Lithotriptor- block diagram and working	
	3.6: Ventilators	2
	Need for Ventilators - Types – modern ventilator blockdiagram – Working	
IV	BIOTELEMETRY AND PATIENTSAFETY:	
	4.1: Biotelemetry	5
	Physiological parameters adaptable to biotelemetry - componentsofa	5
	biotelemetrysystem- applications of biotelemetry-Radio telemetry with sub	
	carrier: single channel and multi channel telemetry system- Telemedicine:	
	concept and applications.	
	4.2: Patient safety	5
	Physiological effects ofelectric current- Micro and macro shock-Hazardous	
	situations of micro and macro shocks- leakage current- lethal effects of leakage	
	current	
	4.3:Methods of Accident Prevention	
	Grounding – Double Insulation – Ground fault circuit interrupter (GFI)-	5
	Safetyaspectsin electrosurgicalunits:burns -Highfrequency currenthazard-	
	explosionhazard. Precautionstominimize electric shock hazards	

V		
	5.1: LASER	2
	Laser beamproperties- Blockdiagram and explanation of ND-Yag LASER -	3
	Applications of LASER inpatient care.	
	5.2: X ray	
	Properties of X-Rays - Working of X ray apparatus- Special techniques inX-	3
	rayimaging: C arm image intensifier- Computerized Axial tomography– CT	
	scanner- Angiography	
	5.3: Ultrasonic imaging techniques:	3
	Pulse echo system - Echo Cardiography – Operating modes – Working	
	5.4: Magnetic Resonance Imaging techniques – Working – Superiority of MRI	
	Scan	4

Reference Books:

- 1. LeslieCromwell– Fredj.Wibell,ErichA.PFeither- Biomedical Instrumentation andmeasurements,IIEdition Jacobson andWebstar–Medicine andclinicalEngineering.
- 2. R.S.Khandpur-HandbookofBiomedical Instrumentation.
- 3. Medical Electronics Kumara doss
- 4. Introduction to Medical Electronics. B.R. Klin
- 5. Introduction to Biomedical Instrumentation Mandeep SinghPrintice Hall India 2010.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1040:Electronics and Communication Engineering
- Subject Code : 4040631
- Semester : VI
- Subject Title : Television Engineering.

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Hours / Week Semester	Hours /	Marks			
•		Internal Assessment	Board Examinations	Total	Duration	
Television Engineering	5	80	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Television Fundamentals.	15
	Camera Tubes and Picture Tubes.	14
	Television Transmitter and Television Receiver.	17
IV	Modern Television Technology.	14
V	Advanced Television Systems.	13
	Test & Model Exam	7
	Total	80

RATIONALE:

This subject makes the students to understand from the basic concepts of TV to advanced techniques of TV. It also enables the students to have the knowledge about the Modern Technology including flat panel display. This subject makes the students to understand about Color TV fundamentals .The subject also introduces troubleshooting techniques. It gives the clear understanding about TV standards.

OBJECTIVES:

On completion of the syllabus, the students must be able to

- ->Understand CVS and CCVS signal. .
- -> Understand the different types of scanning.
- -> Study the types of camera tubes and picture tubes.
- -> Explain about TV transmitter and TV receiver(Monochrome and PAL).
- -> Study the Modern TV technology.
- ->Understand the use of Advanced TV systems.

4040631 TELEVISION ENGINEERING DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Television Fundamentals	
	1.1 : Monochrome TV	8
	Basic block diagram of monochrome TV transmitter and receiver -	
	scanning process -horizontal, vertical and sequential scanning -Flicker-	
	Interlaced scanning(qualitative treatment only) -need for synchronization	
	-blanking pulses-Aspect ratio -Resolution -vertical and horizontal	
	resolution -video bandwidth -composite video signal (CVS) -Definitions	
	for vertical sync pulse, serrated vertical pulse, Equalizing pulse -Positive	
	and negative modulation -TV standards .	
	1.2 : Colour TV Fundamentals	7
	Additive mixing of colours -colour perception -Chromaticity diagram-	
	Definition for Luminance, Hue ,Saturation and Chrominance- Formation	
	of chrominance signal in PAL system with weighting factors- colour	
	composite video signal(CCVS).	
II	Camera tubes and Picture Tubes	7
	21 : Camera Tube	
	Characteristics-Types of camera tube-working principle of Vidicon	
	camera tube-study of Target plate (only) of plumbicon camera tube -	
	CCD camera-Video processing of camera pick up signal-Block diagram	
	and principle of working of colour TV camera tube.	
	2.2 : Picture Tube	7
	Magnetic deflection and Electrostatic focusing -Screen phosphor -	
	Screen burn-screen persistence-Aluminized screen- types of colour	
	picture tubes-Construction and working principle of Trinitron colour	
	picture tube -Automatic degaussing.	
	Television Transmitter and Receiver	
	3.1:Television Transmitter	
----	--	----
	Types-Comparison-principle-Block diagram of low level IF modulated TV	9
	Transmitter -Visual Exciter-Aural Exciter -Principle of working of CIN	
	Diplexer-colour compatibility -PAL colour Coder working operation-	
	merits and demerits of PAL system.	
	3.2:Television Receiver	
	Block diagram of monochrome receiver- functions of each block-need	8
	for AGC-merits of AGC-Video Amplifier Requirements -High and low	
	frequency compensationBlock diagram of PAL colour receiver-need for	
	sync separator -Basic sync separator circuit- Integrator and	
	Differentiator -AFC-need for AFC-Horizontal AFC.	
IV	Modern Television Technology	14
	4.1:Modern TV	
	Flat panel Display-Principles of operation-Large screen display -Types	
	of TV-projection TV-plasma TV-merits of plasma TV-construction and	
	working operation of LCD TV-LED TV -Types of LED TV -working	
	operation of LED TV-merits of LED TV-LCD projector working operation -	
	set top box-principles of DTH-Trouble shooting of set top box-	
	communication cables-Types-Feeder wire-coaxial cable and optical fiber	
	cable-RF TV Tuner card.	
V	Advanced Television Systems	
	5.1:Advanced TV	10
	Block diagram of a digital colour TV receiver -Remote control IR	
	transmitter and receiver -closed circuit TV System -Applications of	
	CCTV -scrambler-necessity-basic principle -types- descrambler block	
	diagram -Telecine equipment -Digital CCD telecine system-Introduction	
	to high definition TV(HDTV) and 3DTV.	
	5.2:TV connector Ports	
	HDMI port-USB port-RF in-AV Jack.	3

Reference Books:

1."R.R. Gulati","Modern Television Practice-Transmission,Reception,Applications ",New age international 5th Edition 2015.

2."A.M.Dhake" "TV and Video Engineering" ,Second Edition TMH-2003

3."R.R Gulati" "Monochrome and Color TV ", New Age Publishers-2003

4."S.P.bali" "color TV, Theory and Practice" TMH-1994.

5." Manohar Lotia& Pradeep Nair " "Modern VCD-Video CD player Introduction, servicing and troubleshooting ",BPB Publications 2002

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING/TECHNOLOGY SYLLABUS N SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name :1040:Electronics and Communication Engineering

Subject Code : 4040632

Semester : VI

Subject title : MOBILE AND OPTICAL COMMUNICATION

TEACHINGAND SCHEME OF EXAMINATION

No ofweeks/ semester: 16weeks

	Instruction		Examination			
	Hours	Hours	Marks			
Subject	nours	nours	Internal	Board	Total	
	/week	Semester	Assessment	Examination	Total	Duration
Mobile and Optical Communication	5	80	25	100*	100	3 Hrs

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and allocation of hours

UNIT	TOPIC	Hours
I	Mobile Communication concepts	14
II	Equalization, Diversity, Channel coding and Speechcoding	15
	Wireless Networking, Personal Communication Services/ Networks(PCS/PCNS) and Network data bases	16
IV	Optical Cables, Connectors, Splicers, Optical Digital and Analog link	14
V	WDM Concepts and Components	14
	Tests and Model Exam	7
	Total	80

RATIONALE:

Communication is one of the integral parts of science that has always been afocuspoint forexchanging informationamong parties at locations

physicallyapart.Afteritsdiscovery, telephones havereplacedthetelegrams andletters.Similarly,theterm'mobile'hascompletely revolutionized the communication by openingupinnovative applications that are limited to one's

imagination.Today,mobilecommunicationhas becomethebackboneofthe society.Allthe mobile systemtechnologieshaveimprovedtheway ofliving.Usually Mobile cellular networks have both Circuit Switching and Packet Switching for handling calls. For Circuit Switching ,Optical fiber using WDM is employed. Hence inthis subject, with Mobile communication , Optical communication is added.

OBJECTIVES:

On completion of the following units of syllabus contents, the students must be able to:

- > Know the concept of Mobile Communication
- > Know the concept of Channel Assignments
- > Know about the Handoff processes performed in Mobile Communication
- > Know the interferences and system capacity
- Know the methods of improving coverage and capacity to avoid network congestion
- > Know the concept of equalization, diversity , channel coding and speech coding
- > Know the concept of LTE and VoLTE (Voice over Long Term Evolution
- Know about wireless networking , Personal Communication Services/ Networks(PCS/PCNS) and network data bases
- Know about Universal Mobile Telecommunication System (UMTS)
- Know about Fiber optic cables
- > Know about Power launching and coupling
- Know about Fiber-to-fiber joints
- > Know about Fiber splicing techniques
- Know aboutOptical fiber connectors
- > Know about Digital transmission systems
- > Know about WDMconcepts and components
- Know about Opticalnetworks

4040632 MOBILE AND OPTICAL COMMUNICATION DETAILED SYLLABUS

Contents:Theory

Unit	Name of the topics	Hours
Ι	MOBILE COMMUNICATION	0
	1.1: CELLULAR CONCEPTS	3
	CHANNEL ASSIGNMENT STRATEGIES	3
	1.2: HANDOFF STRATEGIES	0
	Prioritizing Handoffs-Practical Handoff Considerations	
	1.3: INTERFERENCE AND SYSTEM CAPACITY	4
	Co-channel interference and System Capacity- Channel Planning for wireless	
	Systems- Adjacent Channel Interference-Power Control for Reducing	
	Interference	4
	1.4: IMPROVING COVERAGE AND CAPACITY	
	Cell splitting and Cell sectoring - Repeaters for Range Extension – Micro cell	
	Zone Concept	
II	EQUALIZATION, DIVERSITY , CHANNEL CODING AND SPEECH CODING	
	2.1: FUNDAMENTALS OF EQUALIZATION	3
	Introduction – Training a Generic Adaptive Equalizer – Equalizers in	
	Communication Receiver – Survey of Equalization Techniques	3
	2.2: DIVERSITY TECHNIQUES	
	Practical considerations in space diversity – Polarization diversity – Frequency	
	diversity – Time diversity – RAKE Receiver - Interleaving.	2
	2.3: FUNDAMENTALS OF CHANNEL CODING	5
	2.4: SPEECH CODING	3
	Introduction – Characteristics of Speech signals – Probability Density Function –	0
	Autocorrelation function - Frequency Domain Coding of Speech - Sub band	
	Coding – Adaptive Transform Coding – Vocoders – The GSM Codec.	3
	2.5: LTE AND VoLTE(Voice over Long Term Evolution)	

	WIRELESS NETWORKING , PERSONAL COMMUNICATION SERVICES/ NETWORKS(PCS/PCNs) AND NETWORK DATA BASES	
	3.1: INTRODUCTION TO WIRELESS NETWORKS	3
	S.2. DIFFERENCE DETWEEN WIRELESS NETWORKS AND FIXED	U
	I imitations in wireless networking – Merging wireless network and PSTN	3
	Development of Wireless Networks	
	3.3: WIRELESS DATA SERVICES	3
	Cellular Digital Packet Data (CDPD) – Advanced Radio Data Information	
	Systems (ARDIS) – RAM Mobile Data (RMD)	
	3.4: PERSONAL COMMUNICATION SERVICES/ NETWORKS(PCS/PCNs)	3
	Packet Vs Circuit Switching for PCN – Cellular Packet Switched Architecture	
	3.5: NETWORK DATABASES	2
	Distributed Database for Mobility Management	
	3.6:UNIVERSAL MOBILE TELECOMMUNICATION SYSTEM (UMTS)	2
IV	OPTICAL COMMUNICATION	
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES	2
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING	2
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of	2 3
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling	2 3
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement	2 3
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement 4.3: FIBER-TO-FIBER JOINTS	2 3 2
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement 4.3: FIBER-TO-FIBER JOINTS 4.3: FIBER SPLICING TECHNIQUES	2 3 2 2
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement 4.3: FIBER-TO-FIBER JOINTS 4.3: FIBER SPLICING TECHNIQUES 4.4: OPTICAL FIBER CONNECTORS	2 3 2 2 2
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement 4.3: FIBER-TO-FIBER JOINTS 4.3: FIBER SPLICING TECHNIQUES 4.4: OPTICAL FIBER CONNECTORS 4.5: DIGITAL TRANSMISSION SYSTEMS	2 3 2 2 2
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement 4.3: FIBER-TO-FIBER JOINTS 4.3: FIBER SPLICING TECHNIQUES 4.4: OPTICAL FIBER CONNECTORS 4.5: DIGITAL TRANSMISSION SYSTEMS Simplex point to point transmission link – System consideration	2 3 2 2 2
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement 4.3: FIBER-TO-FIBER JOINTS 4.3: FIBER SPLICING TECHNIQUES 4.4: OPTICAL FIBER CONNECTORS 4.5: DIGITAL TRANSMISSION SYSTEMS Simplex point to point transmission link – System consideration 4.6: ANALOG TRANSMISSION SYSTEMS	2 3 2 2 2 3
IV	OPTICAL COMMUNICATION 4.1: FIBER OPTIC CABLES 4.2: POWER LAUNCHING AND COUPLING Source to Fiber Power Launching - Source Output Pattern- Schematic diagram of an optical source coupled to an optical fiber-Lensing scheme for coupling improvement 4.3: FIBER-TO-FIBER JOINTS 4.3: FIBER SPLICING TECHNIQUES 4.4: OPTICAL FIBER CONNECTORS 4.5: DIGITAL TRANSMISSION SYSTEMS Simplex point to point transmission link – System consideration 4.6: ANALOG TRANSMISSION SYSTEMS Over view of Analog links	2 3 2 2 2 3

V	WDMCONCEPTS AND COMPONENTS	
•	5.1: OPERATIONAL PRINCIPLES OF WDM	
	5.2: WDM COMPONENTS	2
	2x2 Fiber couplers - Star matrix representation - 2x2 Waveguide couplers - Star	
	couplers	2
	5.3: OPTICALNETWORKS	
	Basic Networks - Network topologies –Performance of Star Architecture	
	5.4: SONET / SDH	2
	Basic concepts -Transmission Formats and Speeds - OpticalInterfaces -	
	SONET/SDH rings - SONET/SDH Networks	2
	5.5: WAVELENGTH - ROUTED NETWORKS	2
	Optical Cross – connects	2
	5.6: OPTICAL CDMA	
	5.7: ULTRAHIGH CAPACITY NETWORKS	2
	Ultrahigh Capacity WDM Systems – Bit- interleaved Optical TDM-Time-Slotted	_
	Optical TDM.	2

REFERNCE BOOKS:

- 1.Wireless Communication Principles and Practice Theodore S. Rappaport Pearson Education, 2003
- 2.Mobile CellularCommunications W.C.Y. Lee 2nd Edition, MC GrawHill, 1995
- 3. Mobile Communications Jochen Schiller Pearson Education, 2009, Second edition
- 4.Optical fiber communication- Gerd Keiser Third Edition McGraw Hill -2000

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1040:Electronics and Communication Engineering
- Subject Code : 4040633
- Semester : VI
- Subject Title : Embedded Systems

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Hou Week Seme	Hours /	Marks			
•		Semester	nester Internal Assessment	Board Examinations	Total	Duration
Embedded Systems	5	80	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Introduction to Embedded systems and ARM processor	16
	ARM Instruction Set	16
III	LPC 2148 controller	16
IV	LPC 2148 peripherals	15
V	Operating System	10
	Test & Model Exam	7
	Total	80

RATIONALE:

This subject makes the students to understand the definition for Embedded Systems. It also enables the students to have the knowledge about the different architectures, RISC and CISC processors. This subject makes the students to understand about RTOS. To specific, the subject deals with ARM7 RISC processor and the on chip peripherals of LPC2148.

OBJECTIVES:

On completion of the syllabus, the students must be able to

- -> Understand ARM7 processor .
- -> Understand the architecture of LPC 2148.
- -> Understand ARM7 instruction set.
- -> Understand the types of buses.
- -> Explain On chip peripherals.
- -> Have clear knowledge about RTOS concepts.

4040633 EMBEDDED SYSTEMS

DETAILED SYLLABUS

Note: Bit level details in registers should not be asked in board theory examination. Contents: Theory

Unit	Name of the Topics	Hours
I	Introduction to Embedded Systemsand ARM Processor	
	1.1 : Embedded Systems	8
	Definition of Embedded System - Features of Embedded System -	
	Types of Embedded System - List of Embedded System Devices-	
	Harvard and Von-Neumann architectures-RISC and CISC Processors.	
	1.2:ARM Processor Architecture Fundamentals	8
	Block diagram of ARM based embedded system with hardware	
	components - Pipeline-Data Flow Model-CPU registers - Modes of	
	Operation - PSW -Processor State and Instruction Set-Exceptions-	
	Interrupts-Vector table-Little Endian and Big Endian.	
	ARM Instruction Set	12
	2.1:Instruction Set	
	ARM state instruction set- Thumb State Instruction sets(Brief	
	introduction only)-Data processing instructions-Branch instructions-	
	Load-store instructions-Software interrupt instruction-Program status	
	register instructions-stack instructions-Conditional execution.	
	2.2:Simple programs	
	Addition, Subtraction and Multiplication using ARM processor assembly	4
	language.	
III	LPC 2148 Controller	
	3.1:Introduction to LPC 2148 ARM controller	8
	LPC 2148 ARM Controller – Features-Block diagram – Memory and on	
	chip peripheral devices – ARM 7 TDMI-S Nomenclature– Memory Map –	
	Memory re-map and boot block-Types of buses.	
	3.2:System control functions	8
	Crystal oscillator-PLL-Power control-RESET-VPB Divider-Wakeup timer-	
	Vector Interrupt controller-(VIC)-Register description-External Interrupts.	
IV	LPC 2148 Peripherals	
	4.1:Peripherals	

	Pin connect block-Features-pin connect block register description-GPIO	10
	(Slow)- Features-register description Timer/Counter Block diagram	
	Register descriptionPWM-features-register description-ADC -features-	
	register description-DAC-features-register description.	
	4.2:Serial communication in LPC 2148	5
	UART features – UART0 Block diagram—UART0 register description.	
V	Operating System	10
	5.1:Embedded OS and RTOS	
	Introduction to OSFunctions of OS-Embedded OS-	
	Foreground/background systems -Real time system concepts-	
	Resources-shared resources-Critical section- multitasking-Tasks-kernel-	
	Scheduler-Round Robin-Non Pre-emptive and Pre-emptive scheduling-	
	Context switch- re-entrancy- task priorities- Event flag-mutual exclusion-	
	semaphores and types-Message mail box-Message Queues.	

Reference Books

1."Andrew N Sloss""ARM System Developer's Guide Designing and Optimizing" Elsevier publication, 2004.

2."B.Kanta Rao" "Embedded systems", PHI publishers.

3. "TammyNoergaard" "Embedded Systems Architecture", Newness edition.

4."SteveFurbe " "ARM System on chip Architecture", 2ndedition,Pearson Education,2000.

5."Dr.K.V.K.K Prasad""Embedded Real Time Systems", Dream tech press, 2009.

6."David Seal" "ARM Architecture Reference Manual".

7.LPC 2148 User Manual.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	: 1040:Electronics and Communication Engineering
Subject Code	: 4040640
Semester	: VI Semester
Subject Title	: COMPUTER HARDWARE SERVICING AND
	NETWORKING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

Instruction		uctions	Examination			ster. TO week	
Subject	Hours /	Hours / Semester	Marks				
	Week		Internal Assessment	Board Examinations	Total	Duration	
Computer Hardware Servicing and Networking Practical	6	96	25	100*	100	3 Hrs.	

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The course aims at making the students familiar with various parts of computers and laptops and how to assemble them and the different types of peripherals desired. In addition, the course will provide the students with necessary knowledge and skills in computer and laptop software installation and maintenance and to make him diagnose the software faults. This subject also gives the knowledge and competency to diagnose the problems in computer hardware and peripherals and gives the knowledge for trouble shooting for systematic repair and maintenance of computers and laptops

OBJECTIVES:

On completion of the following exercises, the students must be able to

- Know the various indicators, switches, SMPS, motherboard , connectors and various disk drives used in Computers.
- > Install various secondary storage devices with memory partition and formatting.
- Acquire the practical knowledge about the installation of various devices like printer, scanner, web camera and bio-metricdevices.
- > Assemble PC system and laptop and checking
- > Install Dual OS in asystem.
- > Enable to perform different cabling in anetwork.
- Configure Internet connection and able to debug network issues.

4040640 COMPUTER HARDWARE SERVICING AND NETWORKING PRACTICAL DETAILED SYLLABUS

Contents:Practical

Exercises

Part A – Computer Hardware servicing

1.IDENTIFICATION OF SYSTEMLAYOUT

- i) Identify front panel indicators & switches and Front side & rear side connectors
- ii) Familiarize the computer system layout by marking positions of SMPS, Motherboard, FDD, HDD, CD, DVD and add on cards.

2.HARDDISK

i) Configure bios setup program and troubleshoot the typical problems using BIOS utility.

ii) Install, Configure, Partition and Format Hard disk.

3.DVD/BLU-RAYWRITER

- i) Install and Configure a DVD Writer and record a blank DVD.
- ii) Install and Configure a Blu-ray Writer and record a blank Blu-ray Disc.

4.Printer Installation

- i) Install and configure Dot matrix printer
- ii) Install and configure Laser printer
- **5.** i) Install and configure Scanner
 - ii) Install and configure Web cam and bio-metric device
- **6.** i) Assemble a system with add on cards and check the working condition of the system
 - ii) Install OS in the assembled system.
- 7. Install Dual OS in a system
- **8.** i) Assemble and Disassemble a Laptop to identify the parts.
 - ii) Installation of different device drivers and Installation of different Application Software.

Part B – Computer networking

- **9.** Do the following Cabling works for establishing a network
 - i) Crimp the network cable with RJ 45 connector in Standard cabling mode and cross cabling mode.
 - ii) Test the crimped cable using a cable tester.
- **10.** Use IPCONFIG, PING, TRACERT and NETSTAT utilities to debug the network issues.

- **11.** Interface two PCs to form Peer To Peer network using the connectivity devices Switch or Router in a LAN.
- **12.** i) Share the files and folders in a LAN ii) Share a printer in a LAN.
- 13. Remote Desktop, Remote Assistance, Telnet, HyperTerminal, TeamViewer
- 14. Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address
- **15.** i) Install and configure Network Devices: HUB, Switch (4/8/16/24 ports), Routers ii) Install and Configure NIC.

BOARD EXAMINATION

	Max. Marks		
CONTENT	Part A	Part B	
Procedure	20	20	
Execution	20	20	
Result with printout	5	5	
Viva	10		
Total	100		

DETAILED ALLOCATION OF MARKS

MODEL QUESTION PAPER

4040640 COMPUTER HARDWARE SERVICING AND NETWORKING PRACTICAL

1. IDENTIFICATION OF SYSTEMLAYOUT

- i) Identify front panel indicators & switches and Front side & rear side connectors
- ii) Familiarize the computer system layout by marking positions of SMPS, Motherboard, FDD, HDD, CD, DVD and add on cards.

2.HARDDISK

i) Configure bios setup program and troubleshoot the typical problems using BIOS utility.

ii) Install, Configure, Partition and Format Hard disk.

3.DVD/BLU-RAYWRITER

- i) Install and Configure a DVD Writer and record a blank DVD.
- ii) Install and Configure a Blu-ray Writer and record a blank Blu-ray Disc.

4. Printer Installation

- i) Install and configure Dot matrix printer
- ii) Install and configure Laser printer
- **5.** .i) Install and configure Scanner
 - ii) Install and configure Web cam and bio-metric device
- 6. i) Assemble a system with add on cards and check the working condition of the system.
 - ii) Install OS in the assembled system.

7. Install Dual OS in a system

- a. i) Assemble and Disassemble a Laptop to identify the parts.
 ii) Installation of different device drivers and Installation of different Application Software.
- 9. Do the following Cabling works for establishing a network
 i) Crimp the network cable with RJ 45 connector in Standard cabling mode and cross cabling mode.
 ii) Test the crimped cable using a cable tester.
- **10.** Use IPCONFIG, PING, TRACERT and NETSTAT utilities to debug the network issues.
- **11.** Interface two PCs to form Peer To Peer network using the connectivity devices Switch or Router in a LAN.
- 12. i) Share the files and folders in aLAN ii) Share a printer in a LAN.
- **13.** Remote Desktop, Remote Assistance, Telnet, HyperTerminal, TeamViewer.
- **14.** Configure DNS to establish interconnection between systems and describe how a name is mapped to IP Address
- **15.** i) Install and configure Network Devices: HUB, Switch (4/8/16/24 ports), Routers ii) Install and Configure NIC.

LIST OF EQUIPMENTS

Hardware Requirements :

Computer with Pentium / Core pro Hard disk drive CD / DVD Writer	ocessors with inbuilt NIC -30 Nos -02 Nos -02Nos
Blu Ray writer	-01 No
Blank DVD,Blu-ray disk	-30 Nos
Web camera	-02 Nos
Laser Printer Dot matrix Printer Blank DVD Scanner Laptop Biometric device Crimping Tool Network Cables RJ45Tester Modem with internet connection Hub Switch 2x2/4x4 Router	-02 Nos -02Nos -30Nos -02Nos -02Nos -06Nos -06Nos -02Nos -02Nos -02Nos -02Nos -02Nos -02Nos -02Nos

Software Requirements:

Windows XP operating system/ Windows 7 OS DVD/ CD Burning S/W (Ahead Nero or latest S/W)

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040: Electronics and Communication Engineering.

Subject Code : 4040651

Semester : VI

Subject Title : Television Engineering Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	uctions	Examination		l		
Subject	Hours / Hours /			Marks			
	Week	Semester	Internal Assessment	Board Examinations	Total	Duration	
Television Engineering Practical	5	80	25	100*	100	3 Hrs.	

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The introduction of this subject will enable the students to get familiar with basic methods used for trouble shooting, servicing and measurement. The Simple methods are used to find the faults in the servicing of TV. The students can find the career in servicing.

OBJECTIVES:

The students are able to

- -> Understand the assembling of Antenna.
- -> Construct and test the deflection circuits.
- -> Construct and test the sync circuits.
- ->Service TV remote.
- -> Check faults in power supply.
- -> Find the faults in video section and audio section
- -> Understand about DTH connection
- -> Study the use of set of box
- -> Service the monitors.

.4040651 TELEVISION ENGINEERING PRACTICAL DETAILED SYLLABUS

Contents:Practical

Exercises

- 1.Assembling of yagiuda antenna.
- 2.Construct and test the sync separator circuit.
- 3. Construct a horizontal sawtooth generator and measure its frequency .
- 4. Construct a vertical sawtooth generator and measure its frequency.
- 5. Trouble shooting of IR TV Remote control unit.
- 6. Fault finding in SMPS and measure its different voltage levels.
- 7. Trouble shooting of EHT section in TV.
- 8. Trouble shooting of sound section in TV.

9.Study of RF Tuner.

- 10. Trouble shooting of deflection yoke with controls.
- 11.Servicing of computer monitors (observe the VGA signals using CRO)
- 12.Servicing of LED /LCD monitors.
- 13.Measure the dc voltages at various points in TV receiver .

BOARD EXAMINATION

Note: All the experiments to be kept for the examination.

DETAILED ALLOCATION OF MARKS

Circuit Diagram	:	25 marks
Connection / Procedure	:	25 marks
Execution and handling of equipment	:	30 marks
Output / Result	:	10 marks
Viva	:	10 marks

TOTAL : 100 marks

MODEL QUESTION PAPER

4040651 TELEVISION ENGINEERING PRACTICAL

1. Construct a vertical sawtooth generator for the frequency of 50 hz and verify its output.

- 2. Troubleshoot the sound section in TV receiver and observe the values.
- 3. Troubleshoot the deflection yoke of TV receiver and draw the observed waveforms.
- 4. Troubleshoot the EHT section of TV receiver and measure the values.
- 5. Construct and test the sync separator circuit and observe the waveforms and draw.
- 6. Assemble the Yagi-uda antenna with the given antenna elements.
- 7. Service the given computer monitor and observe the VGA signals using CRO.
- 8. Service the TV remote and find the fault.
- 9. Troubleshoot the given LED / LCD monitor and find the faults.
- 10. Service the given SMPS and measure the voltage levels.

11. Construct the horizontal sawtooth generator for the frequency of 15,625 hz and verify its output.

12. Measure and write down the Voltage levels of the TV receiver given for troubleshooting .

13. Study the given RF tuner and explain the function of sections of RF tuner.

LIST OF EQUIPMENTS

- 1. Antenna elements (dipole, reflector, director) 2 Sets.
- 2. Audio oscillator -5 Nos.
- 3. CRO 2 Nos.
- 4. Power Supply (0 30v) 5 Nos.
- 5. Multi meters-5.
- 6. SMPS-4 Nos.
- 7. IR TV remote receivers 2 Nos.
- 8. B/W Television Receiver Trainer kit.
- 9. Color TV Receiver Trainer kit.
- 10. VGA Monitors- 2 Nos.
- 11. LCD / LED monitors -2 Nos.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040:Electronics and Communication Engineering

Subject code : 4040652

Semester : VI

Subject title : MOBILE AND OPTICAL COMMUNICATION PRACTICAL

TEACHINGAND SCHEME OFEXAMINATION

No.ofweeks/ Semester: 16weeks

	Inst	truction		Examination		
				Marks		
Subject	Hours /week	Hours /semester	Internal Assessment	Board Examination	Total	Duration
Mobile and Optical Communication Practical	5	80	25	100*	100	3 Hours

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

All types of Mobile Communication circuits are merged with Optical fiber links to get Broad band services to Home and all working environments. Hence in this subject Mobile Communication and Optical Communication related practical circuits are going to be tested by the students. By Practicing the following experiments the students can develop their skill which could be helpful for their self employment in future.

OBJECTIVES:

On completion of the following experiments, the students must be able to

- > Understand the concept of Mobile Communication
- > Know the working principle of Mobile Networks
- > Know the working of Transmitter and Receiver in GSM

- > Study the workingofSIMcardinGSMhandset and SIM card detection.
- > StudyandobserveTransmitted/ReceivedRFsignal.
- StudyandobserveTransmitted(I&Q)/Received(I&Q)signalsconstellations.
- > StudyandanalyzetheBuzzerin4GLTESmartPhoneTechBook.
- StudyandAnalyzetheVibratorin4GLTESmartphoneTechBook
- StudyofswitchfaultsinUserInterface Sectionof4GLTESmart Phone TechBook
- Studyandanalyzethe PowerManagementUnitin4GLTESmart PhoneTechBook
- > Generate the Pseudo random binary sequence
- > Test the VI characteristics of LED (Light emitter) and Photo diode (Light detector)
- > Test the VI Characteristics of anOpto coupler
- Test the performance of Time Division Multiple Access in Fiber optical communication link
- > Determine the Numerical aperture of the given optical fiber

4040652 MOBILE AND OPTICAL COMMUNICATION PRACTICAL DETAILED SYLLABUS

Contents: Practical

Exercises

MOBILE COMMUNICATION

(To understand the Basic circuit of Mobile phone (Transmitter,

ReceiverandBasebandcontrolSection).

- 1. Tostudy the workingofSIMcardinGSMhandset and SIM card detection.
- 2. ToStudyandobserveTransmitted/ReceivedRFsignal.
- 3. StudyandobserveTransmitted(I&Q)/Received(I&Q)signalsconstellations.
- 4. StudyandanalyzetheBuzzerin4GLTESmartPhoneTechBook.
- 5. TostudyandAnalyzetheVibratorin4GLTESmartphoneTechBook
- 6. StudyofswitchfaultsinUserInterface Sectionof4GLTESmart Phone TechBook
- 7. Studyandanalyzethe PowerManagementUnitin4GLTESmart PhoneTechBook
- 8. Generation of Pseudo random binary sequence

OPTICAL COMMUNICATION

9. Construct a circuit to test the VI characteristics of LED (Light emitter) and Photo diode

(Light detector)

- 10. Construct a circuit to test the VI Characteristics of anOpto coupler
- 11. Test the performance of Time Division Multiple Access in Fiber optical communication link
- 12. Determine the Numerical aperture of the given optical fiber

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

CIRCUIT DIAGRAM	:	25
CONNECTION	:	25
EXECUTION & HANDLING OF EQUIPMEN	Т:	25
OUTPUT / RESULT	:	15
VIVA – VOCE	:	10
TOTAL	:	100

MODEL QUESTION PAPER

4040652 MOBILE AND OPTICAL COMMUNICATION PRACTICAL

- 1. Studythe workingofSIMcardinGSMhandset and SIM card detection.
- 2. StudyandobserveTransmitted/ReceivedRFsignal.
- 3. StudyandobserveTransmitted(I&Q)/Received(I&Q)signalsconstellations.
- 4. StudyandanalyzetheBuzzerin4GLTESmartPhoneTechBook.
- 5. StudyandAnalyzetheVibratorin4GLTESmartphoneTechBook
- 6. StudyofswitchfaultsinUserInterface Sectionof4GLTESmart Phone TechBook
- 7. Studyandanalyzethe PowerManagementUnitin4GLTESmart PhoneTechBook
- 8. Generate Pseudo random binary sequence
- 9. Construct a circuit to test the VI characteristics of LED (Light emitter) and Photo diode (Light detector)

- 10. Construct a circuit to test the VI Characteristics of anOpto coupler
- 11. Test the performance of Time Division Multiple Access in Fiber optical communication link
- 12. Determine the Numerical aperture of the given optical fiber

LIST OF EQUIPMENTS

S.NO	Name of the Equipment	Range		Required No.
1.	Regulated Power Supply	0 - 30V		2
2.	Dual trace CRO	60 MHz		5
3.	Signal Generator -		5	
4.	Desk Top Computer	-		2
5.	Smart phone Techbook	-		3
6.	Digital Trainer Kit		2	
7.	Digital Multimeter	-		5

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1040:Electronics and Communication Engineering
- Subject Code : 4040653
- Semester : VI
- Subject Title : Embedded Systems Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Instructions		Examination				
Subiect	Hours / Hours /					
	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Embedded Systems Practical	5	80	25	100*	100	3 Hrs.

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The introduction of this subject will enable the students to have hands on experience in using ARM Based trainer kit. The students are exposed to use the on chip peripherals using embedded C language. They can also get familiar with the use of ARM instruction set. They are learning the different methods for providing time delay and u se of serial communication. 32 bit ARM is a RISC processor which makes the students to expose to the new dimension in the field of embedded systems.

OBJECTIVES:

.

The students are able to

-> Understand the use of instruction set by writing simple ARM ALP and simulate to see output.

-> Know the application details of on chip peripherals.

-> familiarize with the register map of on chip Timer / counter.

-> Know the use of serial communication concepts using on chip UART0.

-> understand the use of GPIO and the connection of peripheral devices using these on chip GPIO programmable port Pins.

- -> Use the interrupts with the help of VIC.
- -> Get used with pin connect block registers for programming the GPIO port pins.
- -> interface stepper motor and its operation.
- -> understand the multiplexing of seven segment LED display device.

4040653 EMBEDDED SYSTEMS PRACTICAL DETAILED SYLLABUS

Contents:Practical

Exercises

1. Study of ARM Processor kit.(Example LPC 2148 kit)

2. Write assembly language program for addition, subtraction and multiplication and simulate.

3. Write and execute C program to blink the LEDs using software delay routine.

4. Write and execute C program to blink the LEDs using on chip TIMER// COUNTER for the delay(Using Polling method).

5. Write and execute C program to blink the LEDs using on chip TIMER// COUNTER for the delay(Using interrupt method).

6. Write and execute C program to read the switch and display in the LEDs.

7. Write and execute C program to count external interrupt pulses EINTx (using VIC) and Show the binary count value in LEDs.

8. Write and execute C program to display a number in seven segment LED .

9. Write and execute C program for serial transmission and reception using on chip UART. Send the received character back to the PC by Polling method.

10. Write and execute C program for serial transmission and reception using on chip UART. Send the received character back to the PC by Interrupt method.

11.Write and execute C program for accessing an internal ADC and display the binary output in LEDs.

12. Write and execute C program to generate square wave using on chip DAC.

BOARD EXAMINATION

Note:

1.Manual for the ARM instruction sets and manual for the trainer kit (Excluding sample program) can be allowed for their board exam.

2.Definition for built in function for the board can be given to students for their board function.

3.manual containing procedure for program down loading through boot loader or JTAG can be given to students for their board exam.

4.Bit details of Registers of on chip peripheral devices can be given for the board practical examination.

DETAILED ALLOCATION OF MARKS

I.	Algorithm or Flow chart	:	20 marks
II.	Program	:	30 marks
III.	Execution	:	30 marks
IV.	Result	:	10 marks
V.	Viva	:	10 marks
	TOTAL	:	100 marks

MODEL QUESTION PAPER 4040653 EMBEDDED SYSTEMS PRACTICAL

1.Write a C program to blink a LED with the time delay of 1 second .Time delay can be generated using software delay routine.

2.Write a C program to blink the LEDS with the time delay. Generate the time delay using internal TIMER in polling method and verify.

3.Write a C program to display the following single digit number ------ at seven segment LED device.

4.Write a C program using on chip UART for serial transmission and reception using polling method and check the output .

5.Write an assembly language program to add / subtract 32 bit numbers and simulate the output result.

6. Write a C program to blink the LEDS with the time delay. Generate the time delay using internal TIMER in interrupt method and verify.

7. Write a C program using on chip UART for serial transmission and reception using interrupt method and verify the output.

8.Write a C program to convert analog signal to digital using internal ADC and verify the binary output at the LEDs.

9.Write a C program to use the internal DAC to generate a square wave output and observe the output at CRO.

10.Write a C program to get the input from a switch and display at the LEDs.

11.Write a C program to demonstrate the use of external interrupt using on chip VIC and observe the result at the LEDs.

12.Write an assembly language program to multiply two numbers and simulate the output result.

LIST OF EQUIPMENTS

1.ARM7 TDMI KIT – 15 numbers with interface boards for the above experiments

.The chip set may be TMS4701,LPC2138,LPC2148 or STR7 etc.

2.Desktop computer / Laptop -15 Nos

3.Interfaces :Seven segment display. LEDS ,switches and stepper motor .

4. Manual for the trainer kit and Interfaces.

5.Manual for the built in function for the board.

6.Bit details of registers of on chip peripherals.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1040: Electronics and Communication Engineering

Subject Code : 4040660

Semester : VI

Subject Title : Project Work & Internship

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16

	Instruction		Examination		
Subject	Hours/	Hours/	Assessment Marks		larks
	Week	Semester	Internal	Board	Total
				Exam	
PROJECT WORK &	6	96	25	100*	100
INTERNSHIP					

* Examination will be conducted for 100 marks and it will be reduced to 75 marks.

Minimum Marks for Pass is 50 out of which minimum 50 marks should be obtained out of 100 marks in the Board Examination alone.

OBJECTIVES:

- The project work and internship is aimed to assembleand test a photo type model of any one item/gadget.
- Real time application problems if any may be identified from any industry and maybe chosen.
- The knowledge and the skill sofar acquired may be made use of.
- The team spirit may be motivated.
- The entrepreneurship ideas may be motivated by conducting a career guidance programme.
- Learn and understand the gap between the technical knowledge acquired through curriculum and the actual industrial need through internship.

INTERNAL ASSESSMENT:

The internal assessment should be calculated based on the review of the progress of the work done by the student periodically as follows.

Detail of assessment	Period of assessment	Max. Marks
First Review	6 th week	10
Second Review	12 th week	10
Attendance	Entire semester	5
Total		25

EVALUATION FOR BOARD EXAMINATION:

Details of Mark allocation	Max Marks
Demonstration/Presentation	25
Report	25
Viva Voce	30
Internship report	20
Total	100

CURRICULUM DEVELOPMENT CENTRE

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI-600 025, TAMIL NADU

BLANK PAGE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS <u>N SCHEME</u>

(Implemented from the Academic Year 2020 - 2021 onwards)

<u>Chairperson</u>

Tmt G.LAXMI PRIYA I.A.S. Director

Directorate of Technical Education, Guindy, Chennai.

Co-ordinator

Thiru R.KANAGARAJ Principal

٦

Government Polytechnic College, Purasaiwakam, Chennai.

Г

1220 DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)	
Convener	
Dr. S.SELVARAJ	
HOD(I/C)	
Dept. of Tool & Die Making	
Murugappa Polytechnic College	
S.M Nagar, Chennai- 600 062	
<u>Members</u>	
Thiru A.N. Rajendiran,	Dr. R. Rajendran,
Managing Director,	Professor,
Nutech CNC Pvt Limited,	Department of Automobile Engineering,
Athipet, Chennai- 600 058	SRM Institute of Science & Technology,
	Kattankulathur- 603 203
Thiru G.Nallaiya,	Thiru G.Athi Pragash,
Lecturer, Dept. of Tool & Die Making,	Asst. Engineer (Industries),
Murugappa Polytechnic College	Department of Industries & Commerce,
Chennai- 600 062	Guindy, Chennai- 600 032
Thiru R.Ramachandran,	
Head of the Department,	
Mechanical Engg(Tool & Die),	
Er. Perumal Manimekalai Polytechnic College,	
Hosur-635 117	

BLANK PAGE
DIPLOMA COURSES IN ENGINEERING/TECHNOLOGY (SEMESTER SYSTEM)

(To be implemented for the students admitted from the year 2020 – 21 onwards) N – SCHEME R E G U L A T I O N S*

*Applicable to the Diploma Courses other than Diploma in Hotel Management & Catering Technology.

1. Description of the Course:

a. Full Time (3 years)

The Course for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 semesters* and the First Year is common to all Engineering Branches.

b. Sandwich (3¹/₂ years)

The Course for the Sandwich Diploma in Engineering shall extend over a period of three and half academic years, consisting of 7 semesters* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience.

During 4th and/or during 7th semester the students undergo industrial training for six months / one year. Industrial training examination will be conducted after completion of every 6 months of industrial training.

c. Part Time (4 years)

The course for the Part Time Diploma in Engineering shall extend over a period of 4 academic years containing of 8 semesters*, the subjects of 3-year full time diploma courses being regrouped for academic convenience.

* Each Semester will have 16 weeks duration of study with 35 hrs. / Week for Regular Diploma Courses and 18 hrs. / Week for Part-Time Diploma Courses. The Curriculum for all the 6 Semesters of Diploma courses (Engineering & Special Diploma Courses Viz. Textile Technology, Leather Technology, Printing Technology, Chemical Technology etc.) have been revised and revised curriculum is applicable for the candidates admitted from 2020 – 2021 academic year onwards.

2. Condition for Admission:

Condition for admission to the Diploma courses shall be required to have passed in the S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.

(Or)

The Anglo-Indian High School Examination with eligibility for Higher Secondary Course in Tamil Nadu.

(Or)

The Matriculation Examination of Tamil Nadu.

(Or)

Any other Examinations recognized as equivalent to the above by the Board of Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

3. Admission to Second year (Lateral Entry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for University Courses of study or equivalent examination & Should have studied the following subjects.

A pass in 2 Years ITI with appropriate Trade or Equivalent examination.

		H.Sc Academic	H.Sc Voca	ational	Industrial
SI.	Courses		Subjects S	Studied	Training
No	Courses	Subjects Studied	Related subjects	Vocational	Institutes
			···· , ···· , ····	subjects	Courses
1.	All the	Physics and	Maths / Physics /	Related	2 years
	Regular and	Chemistry as	Chemistry	Vocational	course to be
	Sandwich	compulsory along		Subjects	passed with
	Diploma	with Mathematics		Theory&	appropriate
	Courses	/ Biology		Practical	Trade
Ζ.	Dipioma	English &		Accountancy &	-
	Course in	Accountancy	Accountancy,	Auditing,	
	Dractico	English 8	English 8	Panking	
	Practice	Eligiisti &	Eligiisti a Elements of	Business	
		Economics	Economice	Management	
		LCOHOTTICS		Management,	
		English &	English &	Co-operative	
		Elements of	Management	Management.	
		Commerce	Principles	International	
			& Techniques.	Trade.	
			, ,	,	
			English &	Marketing &	
			Typewriting	Salesmanship,	
				Insurance &	
				Material	
				Management,	
				Office	
				Secretary ship.	

 For the Diploma Courses related with Engineering/Technology, the related / equivalent subjects prescribed along with Practical's may also be taken for arriving the eligibility.

- Branch will be allotted according to merit through counseling by the respective Principal as per communal reservation.
- For admission to the Textile Technology, Leather Technology, Printing Technology, Chemical Technology and Commercial Practice Diploma courses the candidates studied the related subjects will be given first preference.
- Candidates who have studied Commerce Subjects are not eligible for Engineering Diploma Courses.

4. Age Limit: No Age limit.

5. Medium of Instruction: English

6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3 academic years in any institution affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and two years if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Courses is as given below:

Diploma Course	Minimum Period	Maximum Period
Full Time	3 Years	6 Years
Full Time	2 Years	5 Years
(Lateral Entry)		
Sandwich	3 ¹ / ₂ Years	6½ Years
Part Time	4 Years	7 Years

This will come into effect from N Scheme onwards i.e., from the academic year 2020-2021.

7. Subjects of Study and Curriculum outline:

The subjects of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical subjects.

The curriculum outline is given in Annexure – I.

8. Examinations:

Board Examinations in all subjects of all the semesters under the scheme of examinations will be conducted at the end of each semester.

The internal assessment marks for all the subjects will be awarded on the basis of continuous internal assessment earned during the semester concerned. For each subject 25 marks are allotted for internal assessment. Board Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks.

9. Continuous Internal Assessment:

A. For Theory Subjects:

The Internal Assessment marks for a total of 25 marks, which are to be distributed as follows:

i) Subject Attendance

5 Marks

(Award of marks for subject attendance to each subject Theory/Practical will be

as per the range given below)

80%	-	83%	1 Mark
84%	-	87%	2 Marks
88%	-	91%	3 Marks
92%	-	95%	4 Marks
96%	-	100%	5 Marks

<u>ii) Test #</u>

10 Marks

2 Tests each of 2 hours duration for a total of 50 marks are to be conducted. Average of these two test marks will be taken and the 05 Marks marks to be reduced to:

The Test – III is to be the Model Examination covering all the five units and the marks obtained will be reduced to:

05 Marks

TEST	UNITS	WHEN TO CONDUCT	MARKS	DURATION
Test I	Unit – I & II	End of 6 th week	50	2 Hrs
Test II	Unit – III & IV	End of 12 th week	50	2 Hrs
Test III	Model Examination: Covering all the 5 Units. (Board Examinations- question paper- pattern).	End of 16 th week	100	3 Hrs

From the Academic Year 2020 – 2021 onwards.

Question Paper Pattern for the Test - I and Test – II is as follows. The tests should be conducted by proper schedule. Retest marks should not be considered for internal assessment.

Without Choice:

	Total	50 marks
Part C Type questions:	2 Questions × 15 marks	30 marks
Part B Type questions:	7 Questions × 2 marks	14 marks
Part A Type questions:	6 Questions × 1 mark	06 marks

iii) Assignment

5 Marks

For each subject Three Assignments are to be given each for 20 marks and the average marks scored should be reduced for 5 marks.

iv) Seminar Presentation

5 Marks

The students have to select the topics either from their subjects or general subjects which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation. For the Third Year, the students should present the seminar individually.) The seminar presentation is mandatory for all theory subjects and carries 5 marks for each theory subject. The respective subject faculty may suggest topics to the students and will evaluate the submitted materials and seminar presentation. (2 $\frac{1}{2}$ marks for the material submitted in writing and 2 $\frac{1}{2}$ marks for the seminar presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 5 marks.

All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for one semester after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection/verification.

B. For Practical Subjects:

The Internal Assessment mark for a total of 25 marks which are to be distributed as follows: -

a) Attendance

: 5 Marks

(Award of marks same as theory subjects)

b) Procedure/ observation and tabulation/	
Other Practical related Work	: 10 Marks
c) Record writing	: 10 Marks
TOTAL	: 25 Marks

- All the Experiments/Exercises indicated in the syllabus should be completed and the same to be given for final Board examinations.
- The observation note book / manual should be maintained for 10 marks. The observation note book / manual with sketches, circuits, programme, reading and calculation written by the students manually depends upon the practical subject during practical classes should be evaluated properly during the practical class hours with date.
- <u>The Record work for every completed exercise should be submitted in the</u> <u>subsequent practical classes and marks should be awarded for 10 marks</u> <u>for each exercise as per the above allocation.</u>
- At the end of the Semester, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)
- Only regular students, appearing first time have to submit the duly signed bonafide record note book/file during the Practical Board Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Log Book of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Log Book of the staff, who is handling the practical subject.

10. Communication Skill Practical, Computer Application Practical and

Physical

Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase the Communication skill and ICT skill of students. As per the recommendation of MHRD and under Fit India scheme, the Physical

education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

11. Project Work and Internship:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work & Internship:

Project Review I	 10 marks
Project Review II	 10 marks
Attendance	 05 marks (Award of marks same as theory subject pattern)
Total	 25 marks

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work & Internship in Board Examinations:

Total	100* marks
Internship Report	20 marks
Viva Voce	30 marks
Report	25 marks
Demonstration/Presentation	25 marks

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Board examination.

12. Scheme of Examinations:

The Scheme of examinations for subjects is given in Annexure - II.

13. Criteria for Pass:

- No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
- 2. A candidate shall be declared to have passed the examination in a subject if he/she secures not less than 40% in theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Board Examinations marks put together, subject to the condition that he/she secures at least a minimum of 40 marks out of 100 marks in the Board Theory Examinations and a minimum of 50 marks out of 100 marks in the Board Practical Examinations.

14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2023 onwards (Joined first year in 2020 -2021) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the subjects and passes all the semesters in the first appearance itself and passes all subjects within the stipulated period of study $2 / 3 / 3\frac{1}{2} / 4$ years [Full time (lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate marks in all the semesters put together and passes all the semesters except the I and II semester in the first appearance itself and passes all subjects within the stipulated period of study $2/3/3\frac{1}{2}/4$ years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

First Class:

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all the semesters put together and passes all the subjects within the stipulated period of study $2/3/31/_2/4$ years [Full time (lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

Second Class:

All other successful candidates will be declared to have passed in **Second Class.**

The above classifications are also applicable for the Sandwich / Part-Time students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 -2021)

15. Duration of a period in the Class Time Table:

The duration of each period of instruction is 1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

BLANK PAGE

ANNEXURE – I

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) SYLLABUS

N SCHEME

(To be implemented for the students admitted from the year 2020 – 21 onwards) CURRICULUM OUTLINE

THIRD SEMESTER

Col.	Subject		HOURS PER WEEK			
No.	Code	SUBJECT	Theory	Tutorial /	Practical	Total
			Hours	Drawing	nours	Hours
1	4020310	Strength of Materials @@	5	-	-	5
2	4022320	Manufacturing Technology	5	-	-	5
3	4022330	Engineering Metrology	5	-	-	5
4	4022340	Computer Aided Machine and Tool		1	3	4
		Drawing			5	-
5	4022350	Engineering Metrology Practical	-	-	4	4
6	4022360	Manufacturing Technology	_	_	5	5
		Practical	_	_	5	5
7	4022370	Basic Engineering Practical	-	-	4	4
TOTAL		TOTAL	15	1	16	32
E>	ktra / Co-	Physical Education	-	-	-	2
С	urricular	Library	_	_		1
a	ctivities		-		_	
		GRAND TOTAL				35

FOURTH SEMESTER

Col.	Col. HOURS PER WEEK					
No.	Code	SUBJECT	Theory Hours	Tutorial / Drawing	Practical hours	Total Hours
1	4022410	Engineering Materials and Metallurgy	5	-	-	5
2	4022420	Fluid Power and Thermal Engineering	5	-	-	5
3	4022430	Tool Room Special Machines	5	-	-	5
4	4022440	Forging dies, Die casting Dies and Die Maintenance	5	-	-	5
5	4022450	Mechanical Material Testing Practical	-	-	4	4
6	4022460	Hydraulics and Pneumatics Practical	-	-	4	4
7	4022470	Tool Room Special Machines Practical	-	-	4	4
TOTAL		TOTAL	20	-	12	32
Ex	tra / Co-	Physical Education	-	-	-	2
c a	urricular activities	Library	-	-	-	1
		GRAND TOTAL				35

CURRICULUM OUTLINE (N SCHEME)

FIFTH SEMESTER

Col.			HOURS PER WEEK			
No.	Code	SUBJECT	Theory	Tutorial /	Practical	Total
	Oue		Hours	Drawing	hours	Hours
1	4022510	Jigs, Fixtures and Gauges	5	-	-	5
2	4022520	Press Tools	5	-	-	5
3	-	Elective I Theory	5	-	-	5
4	-	Elective I Practical	-	-	4	4
5	4022550	Jigs and Fixtures Practical	-	-	4	4
6	4022560	Press Tools Practical	-	-	5	5
7	4020570	Entrepreneurship and Start up	-	-	4	4
		TOTAL	15	-	17	32
Extra / Co- P		Physical Education	-	-	-	2
curricular		Library	_	_	_	1
activities						I
GRAND TOTAL 3					35	

SIXTH SEMESTER

Col.	Subject			HOURS PER	R WEEK	
No.	Code	SUBJECT	Theory Hours	Tutorial / Drawing	Practical hours	Total Hours
1	4022610	Tool Design and Drawing	5	-	-	5
2	4022620	Plastic Moulding Technology	5	-	-	5
3	-	Elective II Theory	5	-	-	5
4	-	Elective II Practical	-	-	5	5
5	4022650	Plastic Moulds Practical	-	-	6	6
6	4022660	Project Work and Internship	-	-	6	6
		TOTAL	15	-	17	32
E	ktra / Co-	Physical Education	-	-	-	2
c a	urricular ictivities	Library	-	-	-	1
	GRAND TOTAL 35					

@@ - Common subject with Mechanical Engineering\$\$ - Common subject to all Department

LIST OF ELECTIVE SUBJECTS

Note: Select **one Elective I Theory subject** and **one Related Elective I Practical** subject from the below table

FIFTH SEMESTER

	Elective I Theory	1			
4020531	Computer Integrated Manufacturing @@	5	-	-	5
4020533	Mechatronics ^{@@}	5	-	-	5
4020440	Process Planning and Quality Control @@	5	-	-	5
Elective I Practical					
4020561	Computer Integrated Manufacturing	_	_	4	4
	Practical @@				·
4020563	Mechatronics Practical @@	-	-	4	4
4020540	Process Automation Practical @@	-	-	4	4

Note: Select **one Elective II Theory subject** and **one Related Elective II Practical** subject from the below table

VI SEMESTER

	Elective II Theory					
4020610	Industrial Engineering & Management @@	5	-	-	5	
4020631	Industrial Robotics and 3D Printing ^{@@}	5	-	-	5	
4020620	E Vehicle Technology & Policy @@	5			5	
Elective II Practical						
4020640	Solid Modelling Practical @@	-	-	5	5	
4020651	Industrial Robotics and 3D Printing Practical ^{@@}	-		5	5	
4020550	Thermal Engineering Practical @@	-	-	5	5	

@@ - Common subject with Mechanical Engineering

\$\$ - Common subject to all Department

ANNEXURE – II

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) SYLLABUS N SCHEME

(To be implemented for the students admitted from the year 2020 – 21 onwards) SCHEME OF THE EXAMINATION

THIRD SEMESTER

		Examination Marks			m ss	<u>с</u> с "
Subject Code	SUBJECT	Internal assessment Marks	* Board Exam. Marks	Total Mark	Minimu for pas	Duratic of Exal Hours
4020310	Strength of Materials ^{@@}	25	100	100	40	3
4022320	Manufacturing Technology	25	100	100	40	3
4022330	Engineering Metrology	25	100	100	40	3
4022340	Computer aided Machine and Tool Drawing	25	100	100	40	3
4022350	Engineering Metrology Practical	25	100	100	50	3
4022360	Manufacturing Technology Practical	25	100	100	50	3
4022370	Basic Engineering Practical	25	100	100	50	3
		175	700	700		

FOURTH SEMESTER

		Examin	m ss	5 5 %		
Subject Code	SUBJECT	Internal assessment Marks	* Board Exam. Marks	Total Mark	Minimu for pas	Duratic of Exal Hours
4022410	Engineering Materials and Metallurgy	25	100	100	40	3
4022420	Fluid Power and Thermal Engineering	25	100	100	40	3
4022430	Tool Room Special Machines	25	100	100	40	3
4022440	Forging Dies, Die casting Dies & Die Maintenance	25	100	100	40	3
4022450	Mechanical Material Testing Practical	25	100	100	50	3
4022460	Hydraulics and Pneumatics Practical	25	100	100	50	3
4022470	Tool Room Special Machines Practical	25	100	100	50	3
	TOTAL	175	700	700		

* Examinations will be conducted for 100 Marks and will be converted 75 Marks

SCHEME OF THE EXAMINATION

FIFTH SEMESTER

		Examina	E s	of		
Subject Code	SUBJECT	Internal assessment Marks	* Board Exam. Marks	Total Mark	Minimu for pas	Duration Exam Houre
4022510	Jigs, Fixtures and Gauges	25	100	100	40	3
4022520	Press Tools	25	100	100	40	3
-	Elective I Theory	25	100	100	40	3
-	Elective I Practical	25	100	100	50	3
4022550	Jigs and Fixtures Practical	25	100	100	50	16
4022560	Press Tools Practical	25	100	100	50	16
4020570	Entrepreneurship and Start up	25	100	100	50	3
		175	700	700		

SIXTH SEMESTER

		Examina	s B	of		
Subject Code	SUBJECT	Internal assessment Marks	* Board Exam. Marks	Total Mark	Minimu for pas	Duration Exam Hours
4022610	Tool Design and Drawing	25	100	100	40	3
4022620	Plastic Moulding Technology	25	100	100	40	3
-	Elective II Theory	25	100	100	40	3
-	Elective II Practical	25	100	100	50	3
4022650	Plastic Moulds Practical	25	100	100	50	16
4022660	Project Work and Internship	25	100	100	50	3
		150	600	600		

* Examinations will be conducted for 100 Marks and will be converted 75 Marks

@@ - Papers Common with Diploma in Mechanical Engineering Branch\$\$- Papers common with other branches of Engineering

III SEMESTER

List of Equivalent Subjects for M & N-Scheme subjects

	M-SCHEME			N-SCHEME
	Subject		Subject	
S.No	Code	Name of the Subject	Code	Name of the Subject
1	32031	Strength of Materials @@	4020310	Strength of Materials ^{@@}
2	32232	Manufacturing Technology		Not Equivalent
3	32233	Engineering Metrology	4022330	Engineering Metrology
4	32234	Machine & Tool Drawing		Not Equivalent
	22225	Engineering Metrology	4022350	Engineering Metrology
5	32235	Practical		Practical
	22226	Manufacturing Technology		Not Equivalent
6	32230	Practical		
	30001	Computer Applications		Not Equivalent
7	30001	Practical ^{\$\$}		

IV SEMESTER

M-SCHEME				N-SCHEME
	Subject		Subject	
S.No	Code	Name of the Subject	Code	Name of the Subject
1	322/11	Engineering Materials and	4022410	Engineering Materials and
I	52241	Metallurgy	4022410	Metallurgy
2	30040	Fluid Power and Thermal		Not Equivalent
2	52242	Engineering		·
З	322/13	Tool Room Special	1022130	Tool Room Special Machines
5	Machines	Machines	4022430	
1	32244	Computer Aided Machine &	4022340	Computer Aided Machine &
	52244	Tool Drawing Practical	4022340	Tool Drawing Practical
5	32245	Mechanical Material Testing	4022450	Mechanical Material Testing
5	52245	Practical	4022430	Practical
6	32246	Hydraulics and Pneumatics	4022460	Hydraulics and Pneumatics
0	52240	Practical	4022400	Practical
7	322/17	Tool Room Special	4022470	Tool Room Special Machines
(32247	Machines Practical	+022470	Practical

V SEMESTER

M – SCHEME				N - SCHEME
	Subject		Subject	
S.N	Code	Name of the Subject	Code	Name of the Subject
. 1	32251	Jigs, Fixtures and Gauges	4022510	Jigs, Fixtures and Gauges
2	32252	Press Tools	4022520	Press Tools
	20052	Forging Dies, Die casting		Not Equivalent
3	32233	Dies & Die Maintenance		·
4	32254	Tool Design and Drawing	4022610	Tool Design and Drawing
5	32255	Press Tools - I Practical		Not Equivalent
6	32256	Jigs and Fixtures Practical	4022550	Jigs and Fixtures Practical
7	30002	Life and Employability skill	Not Equivalent	
	30002	Practical ^{\$\$}		

VI SEMESTER

M – SCHEME				N -SCHEME
	Subject		Subject	
S.N	Code	Name of the Subject	Code	Name of the Subject
	22061	Industrial Engineering &	4020610	Tool Dooign and Drowing
1	32001	Management ^{@@}	4020010	Tool Design and Drawing
	22062	Computer Aided Design and	4020524	Computer Integrated
2	32002	Manufacturing @@	4020531	Manufacturing @@
3	32263	Plastic Moulding Technology	4022620	Plastic Moulding Technology
	32064	Computer Aided Design and	4020561	Computer Integrated
4	32004	Manufacturing Practical @@	4020501	Manufacturing Practical @@
5	32265	Press tools – II Practical		Not Equivalent
6	32266	Plastic Moulds Practical	4022650	Plastic Moulds Practical
7	32067	Project Work ^{@@}		Not Equivalent

^{@@} - Papers Common with Diploma in Mechanical Engineering Branch

Board Examination-Question Paper Pattern (Theory)

(Common to all Theory subjects except 4020610 Tool Design & Drawing)

Time: 3 Hrs.

Max.Marks:100

- PART A Five questions will be asked covering all units. All questions are to be answered. Each question carries 1 mark.
- PART- B Fifteen questions will be asked covering all the units. Three questions from each unit. Answer any ten questions. Each question carries 2 marks.
- PART-C Five questions will be asked either or type. One question from every unit. Answer either A or B. Each question carries 15 marks. A and B have subdivisions. (7 + 8)

The questions are to be numbered from 1 to 25. All the units are to be covered with equal weightage.

PART A		
Definitions and Statements.		5 X 1 = 5 Marks
Question Number 1 to 5		
PART B		
Short answer type questions		10 X 2 = 20 Marks
Question Number 6 to 20		
PART C		
Descriptive answer type questions		E V1E - 75 Morko
(Either A or B)		$5 \times 15 - 75$ Widtks
Question number 21 to 25		
	TOTAL	100 Marks

Note: Board Examinations will be conducted for 100 Marks and converted to 75 Marks.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

III SEMESTER

2020 - 2021 onwards

4020310 - STRENGTH OF MATERIALS

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	STRENGTH OF MATERIALS
Semester	:	III
Subject Code	:	4020310
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL&DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours /				
Casjoot	Week		Internal	Board	Total	Duration
		•••••••	Assessment Examinations			
STRENGTH OF	5	80	25	100*	100	3 hre
MATERIALS	5	80	20	100	100	51115.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours			
	Engineering Materials	15			
II	Deformation of Metals	15			
	Geometrical Properties of Sections and Thin Shells	15			
IV	Theory of Torsion and Springs	14			
V	SFand BM Diagrams of Beams and Theory of Bending	14			
	Test & Model Examinations	7			
Total					

RATIONALE:

Day by day, engineering and technology experience tremendous growth. Design plays a major role in developing engineering and technology. Strength of material is backbone for design. The strength of material deals generally with the behaviour of objects, when they are subject to actions of forces. Evaluations derived from these basic fields provide the tools for investigation of mechanical structure.

OBJECTIVES

- Acquire knowledge about materials properties.
- Calculate the deformation of materials, which are subjected to axial load and shear.
- Determine the moment of Inertia of various sections used in industries.
- Estimate the stresses induced in thin shells.
- Draw the shear force and bending moment diagram of the beam for different load.

DETAILED SYLLABUS

4020310 STRENGTH OF MATERIALS

Contents: Theory

Unit	Name of the Topics	Hours
I	ENGINEERING MATERIALS	
	Chapter: 1.1: Engineering materials: Classification - definition of	7
	Mechanical properties - ferrous metals - cast iron - uses - advantages -	
	types of cast iron - properties and applications - effect of impurities on	
	cast iron. steel - classification - alloying elements - purpose of alloying -	
	effect of alloying elements on steel - uses of steels - properties of mild	
	steel - defects in steel - applications - properties of hard steel - market	
	forms of steels – nonferrous metals - properties and uses.	
	Chapter: 1.2: Mechanical testing of materials:	
	Compression test - bend test - hardness test - Brinell hardness test,	6
	Vickers hardness test, Rockwell hardness test - impact test - fatigue test	
	- creep test. Tensile test of mild steel in UTM - stress strain diagram -	
	limit of proportionality - elastic limit - yield stress - breaking stress -	
	ultimate stress - percentage of an elongation and percentage reduction in	
	area - problems.	
	Chapter: 1.3: Friction	
	Introduction - definition - force of friction - limiting friction - static friction -	2
	dynamic friction - angle of friction - coefficient of friction - laws of static	
	and dynamic friction. Description only.	

II	DEFORMATION OF METALS	
	Chapter: 2.1: Simple stresses and strains	4
	Definition - load, stress and strain - classification of force systems:	
	tensile, compressive and shear force systems. Hooke's law - definition	
	Young's modulus - working stress, factor of safety, load factor, shear	
	stress and shear strain - modulus of rigidity. Linear strain - deformation	
	due to tension and compressive forces - simple problems in tension,	
	compression and shear forces.	
	Chapter: 2.2:Elastic constants	7
	Definition - lateral strain – poison's ratio - volumetric strain - bulk	
	modulus - volumetric strain of rectangular and circular bars - problems	
	connecting linear, lateral and volumetric deformations - elastic constants	
	and their relationship - problems on elastic constants. Composite bar -	
	definition - problems in composite bars subjected to tension and	
	compression. Temperature stresses and strains - simple problems.	
	Chapter: 2.3 Strain Energy	4
	Definition – proof resilience – modulus of resilience – the expression for	
	strain energy stored in a bar due to axial load – instatntaneous stresses	
	due to gradual, sudden, impact and shock loads – problems computing	
	instantaneous stress and deformation in gradual, sudden, impact and	
	shock loadings.	
III	GEOMETRICAL PROPERTIES OF SECTIONS AND THIN SHELLS	
	Chapter: 3.1: Properties of sections	8
	Definition – center of gravity and centroid - position of centroids of plane	
	geometrical figures such as rectangle, triangle, circle and trapezium-	
	problems to determine the centroid of angle, channel, T and I sections	
	only – Definition - centroidal axis - Axis of symmetry. Moment of Inertia –	
	parallel axis theorem and perpendicular axis theorem (statement only).	
	Moment of Inertia of lamina of rectangle, circle, triangle, I and channel	
	sections – Definition - Polar moment of Inertia - radius of gyration –	
	Problems computing moment of inertia and radius of gyration for angle,	
	T, Channel and I sections.	
	Chapter: 3.2:Thin Shells	7
	Definition – Thin and thick cylindrical shell – Failure of thin cylindrical	
	shell subjected to internal pressure – Derivation of Hoop and longitudinal	
	stress causes in a thin cylindrical shell subjected to internal pressure -	
	simple problems - change in dimensions of a thin cylindrical shell	

	subjected to internal pressure – problems – Derivation of tensile stress	
	induced in a thin spherical shell subjected to internal pressure - simple	
	problems – change in diameter and volume of a thin spherical shell due	
	to internal pressure – problems.	
IV	THEORY OF TORSION AND SPRINGS	
	Chapter: 4.1: Theory of Torsion	7
	Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ - Strength of solid and	
	hollow shafts – power transmitted – Definition – Polar modulus –	
	Torsional rigidity – strength and stiffness of shafts – comparison of	
	hollow and solid shafts in weight and strength considerations –	
	Advantages of hollow shafts over solid shafts – Problems.	
	Chapter: 4.2:Springs	7
	Types of springs – Laminated and coiled springs and applications	
	Difference between open and closely coiled helical springs - closely	
	coiled helical spring subjected to an axial load – problems to determine	
	shear stress, deflection, stiffness and resilience of closed coiled helical	
	springs.	
V	SF AND BM DIAGRAMS OF BEAMS AND THEORY OF BENDING	
	Chapter: 5.1: SF and BM diagrams	7
	Classification of beams – Definition – shear force and Bending moment –	
	sign conventions for shear force and bending moment - types of	
	loadings – Relationship between load, force and bending moment at a	
	section – shear force diagram and bending moment diagram of cantilever	
	and simply supported beam subjected to point load and uniformly	
	distributed load (UDL) - Determination of Maximum bending moment in	
	cantilever beam and simply supported beam when they are subjected to	
	point load and uniformly distributed load.	
	Chapter: 5.2:Theory of bending	7
	Theory of simple bending – Assumptions – Neutral axis – bending stress	
	distribution – moment of resistance – bending equation – M/I=f/y=E/R –	
	Definition – section modulus - rectangular and circular sections –	
	strength of beam - simple problems involving flexural formula for	
	cantilever and simply supported beam.	
L		

Reference Books:

- 1. Strength of Materials, R. S. Khurmi, S.Chand & Co., Ram Nagar, New Delhi.
- 2. Strength of Materials, S. Ramamrutham, 15th Edition 2004, DhanpatRai Pub. Co., New Delhi.
- 3. Strength of Materials, R.K. Bansal, Laxmi Publications Pvt. Ltd., New Delhi, 3rd Edition, 2010.
- 4. Strength of materials, S.S.Rattan, Tata Mcgraw hill, New Delhi,2008, ISBN 9780070668959,
- 5. Strength of Materials, B K Sarkar, I Edition, 2003Tata Mcgraw hill, New Delhi.
- Engineering mechanics, R.K. Bansal, Laxmi Publications Pvt. Ltd., New Delhi, 2nd Edition, 2007.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING (TOOL& DIE)

II YEAR

N – SCHEME

III SEMESTER

2020 - 2021 onwards

4022320 – MANUFACTURING TECHNOLOGY

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	MANUFACTURING TECHNOLOGY
Semester	:	III
Subject Code	:	4022320
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ictions	Examination			
Subiect	Hours / Hours /		Marks			
	Week	Semester	Internal Board To		Total	Duration
			Assessment	Examinations		
MANUFACTURING	5	80	25	100*	100	3 hre
TECHNOLOGY	5	00	25 100	100	5115.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс						
I	Casting Processes	15					
	Metal Joining Processes	15					
	Centre Lathe, Semi-Automatic and Automatic Lathe	15					
IV	Drilling, Grinding and Broaching Machines	14					
V	Planner, Shaper, Slotter Machines	14					
	Test & Model Examinations	07					
	Total	80					

RATIONALE:

To be a mechanical engineer, it is necessary to understand the various recent technologies that are being used in the process of conversion of raw materials into end products. So, it is very essential to learn the basics of various recent technologies and processes that are available and predominantly used in the industries.

OBJECTIVES:

- Acquire knowledge about types of patterns, types of moulding and casting processes
- Acquire knowledge about various metal joining processes
- Appreciate the safety practices used in welding
- Explain the lathe working principles and its various operations
- Explain the Semi-Automatic and Automatic lathe working principles
- Explain the drilling and drilling machine principles and its various operations
- Explain the grinding machine and types of grinding wheels
- Explain the vertical and Horizontal broaching machines
- Describe the working of planer, shaper and slotter

DETAILED SYLLABUS

Unit	Name of the Topics	Hrs
	Casting Processes	
	<u>Chapter: 1.1:</u> Patterns: Definition-Pattern materials-factors for selecting pattern materials-single piece solid, split patterns-pattern allowances-core prints-color coding patterns. Moulding-definition-moulding boxes, moulding sand-ingredients-silica-clay-moisture and miscellaneous materials-properties of moulding sand-sand additives-moulding sand preparation-mixing-tempering and conditioning-types of moulding-greensand-dry sand-machine moulding-top	8
	and bottom squeezer machines-jolting machines-sand slinger-CO2 process core making-types of core-core boxes <u>Chapter: 1.2:</u> Casting : Definition-sand casting using green sand and dry	
I	sand-gravity die casting-pressure die casting :hot and cold chamber processes-centrifugal casting-continuous casting-chilled casting-malleable casting-melting of cast iron-cupola furnace-melting of nonferrous metals- crucible furnace melting of steel-arc furnaces-induction furnaces-instrument for measuring temperature-optical pyrometer-thermo electric pyrometer-cleaning of casting-tumbling trimming sand and shot blasting-defects in casting causes and their remedies-safety practices in foundry.	7
	Metal Joining Processes	
	<u>Chapter: 2.1:</u> Arc Welding: Definition-Arc welding equipment-arc welding methods-carbon arc, metal arc, Metal Inert Gas (MIG), Tungsten Inert Gas (TIG), Atomic hydrogen, Plasma arc, Submerged arc and Electro slag welding	4
II	<u>Chapter: 2.2:</u> Gas welding: Definition-Gas welding equipment-Oxy and acetylene welding-Three types of flame.	2
	<u>Chapter: 2.3:</u> Resistance welding: Classification of resistance welding-butt- spot-seam-projection welding-welding related processes-oxy and acetylene cutting-arc cutting-hand facing bronze welding-soldering and brazing-special welding processes; cast iron welding- thermit welding-solid state welding.	5
	ultrasonic, diffusion and explosive welding-explosive cladding.	
	<u>Chapter: 2.4:</u> Modern welding: Electron beam and laser beam welding-types of welded joints-inspection and testing of welded joints-destructive and nondestructive types of tests-safety practices in welding	4
	Centre Lathe, Semi-Automatic and Automatic Lathe	
	<u>Chapter: 3.1:</u>Centre Lathe: Theory of Lathes-specifications-simple sketches-	
	principal parts and its functions-tumbler gear mechanism-quick change gear	

	box-apron mechanism-carriage cross slide-automatic, longitudinal and cross	8
	feed mechanism-work holding devices : face plate, three jaw chuck, four jaw	
	chuck, catch plate and carrier-types of centres-machining operations done on	
	lathe: facing, plain turning, step turning, taper turning, knurling, thread cutting,	
	boring, chamfering-major machining parameters.	
III	Chapter: 3.2: Semi-Automatic Lathe: Types of Semi-Automatic Lathe -	2
	Capstan and turret lathes - difference between turret and capstan - tools and	3
	work holding devices – self-opening die head –collapsible tapes	
	Chapter: 3.3: Automatic Lathe: Classification of single spindle automatic	4
	lathe - principle of automatic lathe - automatic screw cutting machine - multi	
	spindle automatic lathes	
	Drilling, Grinding and Broaching Machine	
	Chapter: 4.1: Drilling Machines: Drills: Flat drills, twist drills-nomenclature-	
	types of drilling machines: bench type, floor type, radial type, gang drill, multi	7
	spindle type- principle of operations in drilling-drilling parameters of various	
	materials-methods of holding drill bit: drill chucks, socket and sleeve-drilling	
	operation: drilling, boring, reaming, counter sinking, counter boring, spot facing,	
	tapping, deep hole drilling	
	Chapter:4.2: Grinding Machine: Types and Classification-specifications-	
	principles of operations-grinding wheels abrasives: natural and artificial-types	5
IV	of bonds-grit, grade and structure of wheels-wheel shapes and sizes-BIS	5
	marking systems of grinding wheels-selection of grinding wheels-dressing and	
	truing of wheels-balancing of grinding wheels.	
	Chapter: 4.3: Broaching: Broaching Machine – Basic Process – Vertical	
	broaching Machine – Horizontal Broaching machine – Double cut broaching –	2
	Key way Broaching	
	Planner, Shaper and Slotter Machine	
	Chapter: 5.1: Planner: Types of Planner-specifications-principles of operation-	
	quick return mechanism-feed mechanism-work holding devices-types of	5
	planner operation	
	Chapter: 5.2: Shaper: Types of Shaper-specifications-principle of operations-	
V	guick return mechanism-crank and slotted link mechanism-feed mechanism-	5
	work holding devices-types of shaper operations	
	Chapter: 5.3: Slotter: Types of slotter-specifications-principle of operation-	_
	Whitworth guick return mechanism-feed mechanism-work holding devices	4
	TEST & MODEL EXAMINIATIONS	07
		VI

<u>Text Books</u>

- 1. Hajra Chowdry & Bhattacharaya, Elements of workshop Technology Volume I & II, Media Promoters & Publishers Pvt. Ltd., Noshir Bharucha Marg, Mumbai
- 2. WAJ Chapman, Workshop Technology, Volume I, II, & III, Vima Books Pvt. Ltd., ND

Reference Books:

- 1. Raghuwanshi, Workshop Technology, Khanna Publishers. Jain & Gupta, Production Technology, Edn. XII, Khanna Publishers, 2-B, North Market, NAI Sarak, New Delhi
- 2. P. C. SHARMA, Production Technology, Edn. X, S.Chand & Co. Ltd.,
- HMT, Production Technology, Edn. 18, published by Tata McGraw Hill publishing Co. Ltd., 7 West Patel Nagar, New Delhi 110 008.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

III SEMESTER

2020 - 2021 onwards

4022330 – ENGINEERING METROLOGY

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	ENGINEERING METROLOGY
Semester	:	III
Subject Code	:	4022330
Course Name	:	1220:DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours /	Hours / Semester	Marks			
	Week		Internal	Board	Total	Duration
	meen		Assessment	Examinations	Total	
ENGINEERING	5	80	25	100*	100	3 hre
METROLOGY	/ETROLOGY		20	100	100	51115.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS AND TIME ALLOCATION

UNIT	TOPIC	TIME (Hrs)
I	Introduction to Metrology and Linear Measurement	15
II	Angular Measurement, Measurement of Gears and Threads	15
	Measurement of Geometric Parameters and Surface Finish	15
IV	Comparators and Measurement by Light Wave Interference	14
V	Measuring Machines and Recent Trends in Metrology	14
TEST & MODEL EXAMINATIONS		07
	Total	80

Rationale: -

The modern industries demand wide knowledge in the understanding and use of conventional and advanced digital measuring instruments that are being used in the process of manufacture of goods. Hence it is essential to have better understanding of the various measuring techniques and the technology that are being used in the various measuring instruments. The fundamentals of various measuring technique needs to be known to understand the modern measuring equipment's that are being used in Industries.

OBJECTIVES

The objective of this course is to make the Student:

- To understand the Needs & Objectives of metrology.
- To understand about the various linear & angular measuring Instruments.
- To Study about the various Measurement Techniques.
- To Calibrate an Instrument.
- To know about various geometric parameters.
- To use Light rays in Measuring an Object.
- To Measure Force, Torque and temperature.
- To know about the measuring machines.
- To acquire Knowledge about Recent Trends in Metrology.

DETAILED SYLLABUS 4022330 - ENGINEERING METROLOGY

Contents: Theory

Unit		
No.	Name of the Topics	Hours
	Introduction to Metrology and Linear Measurement:	
I	1.1 Introduction: Metrology, objectives of metrology, Precision vs	3
	Accuracy. Repeatability, calibration, sensitivity and readability,	
	classification of methods of measurement, general care of equipments.	
	1.2 Non precision Linear Measurements: Surface plates, Tool maker's	
	flats and high precision surface plates, Angle plates, bench centers, v-	5
	blocks, straight edges, Toolmaker's straight edges, using a straight edge,	
	sprit levels, combination set, universal surface gauge, Engineer's square,	
	Engineer's parallel, Radius gauge, feeler gauge, screw pitch gauge,	
	Engineer's taper, wire and thickness gauge.	
	1.3 Precision Linear Measurements: Characteristics and principles of	
	precision measuring instruments. Vernier instruments, types of vernier	7
	calipers, errors in calipers, Vernier height gauge, Vernier depth gauge,	
	digital readout height gauge. Micrometers – Internal micrometers,	
	micrometer depth gauge, thread micrometer, v-anvil micrometer, dial	
	micrometers, digital micrometers, groove micrometer. Telescope internal	
	gauge, Measuring dia of deep holes, cylinder gauges, Keilpart gauge, slip	
	gauges.	
	Angular Measurement, Measurement of Gears and Threads:	
П	2.1 Angular Measurement: Instruments for angular measurement-	
	optical bevel protractor, universal bevel protractor, acute angle attachment,	3
	optical dividing head, Sine bars, Sine center, angle gauges, clinometers.	
	2.2 Optical instruments for angular measurement: - Autocollimator -	
	principle of the autocollimator, micro-optic autocollimator, measurement of	5
	straightness and flatness. Angle dekkor – working principle, use of angle	
	dekkor in combination with angle gauges. Optical square.	
	2.3 Measurement of Gears: Gear tooth terminology, Gear tooth vernier	2
	caliper.	
	2.4 Thread Measurements: Screw thread projection, Tool Maker's	5
	Microscope, Measurement of Effective Diameter, one wire, Two wire and	
	Three wire Methods using floating carriage micrometer.	

	Measurement of Geometric Parameters and Surface Finish:	
III	3.1 Straightness, Flatness, Parallelism and squareness: - Definition of	
	straightness, straight edge and its uses, test for straightness by using spirit	7
	level and Autocollimator, Flatness definition, flatness testing, procedure for	
	determining flatness, laser equipment for alignment testing. Parallelism	
	definition, various cases of parallelism of lines and planes, measurement	
	of equidistance, checking of coincidence or alignment. Squareness	
	definition, measurement of squareness of lines and planes, checking the	
	perpendicularity of motion, squareness testing methods - indicator	
	method, Engineer's square tester, optical tests for squareness.	
	3.2 Circularity and Rotation: - Circularity definition, measurement of	
	circularity, Different types of irregularities of a circular part – ovality,	
	lobbing, irregularities of non-specific form. Roundness and circularity.	6
	Devices for measuring circularity error – V block, precision measuring	
	instruments. Tests for checking Rotation – Run out, measurement of run	
	out, Periodical axial slip, camming.	
	3.3 Surface Finish: - Surface roughness – definition, terminologies as per	
	BIS, Methods of measuring Surface finish, surface finish parameters -	2
	Surface inspection by comparison methods, Direct measurement methods.	
	Analysis of surface traces.	
	Comparators and Measurement By Light Wave Interference:	
IV	4.1 Comparators: Characteristics and uses of comparators, Working	6
	principle, advantages and disadvantages of various types of comparators-	
	Mechanical comparators, optical comparators, Electrical comparators,	
	pneumatic comparators, Fluid displacement comparators, optical	
	Projectors.	
	4.2 Measurement by light wave interference: Interferometry,	
	Interference of two rays, light source for interferometry, interferometry	4
	applied to flatness testing, interferometers.	
	4.3 Testing and Calibration of Gauges: - Calibration of linear and	
	monouring instruments. Monouroment of limit gauges	4
	Measuring Machines and Pecent Trends in Metrolegy	
V	5 1 Mascuring Machines and Recent Trends III Welliology.	7
v	use precaution in use Coordinate Moscuring Machine Types uses	1
	advantages possible source of error in CMM Electronic Inspection and	
	measuring machines	
	การสวนการ กาสเราการจ.	
5.2 Trends in Metrology: Laser Telemetric system, Feeler microscope,		
---	----	
Isometric viewing of surface defects. optoelectronic dimensional gauging,	7	
computers in metrology, Computer Aided dimensional analysis and		
reporting system, In process probing, contact less 3D measurements by		
Laser based system.		
TEST & MODEL EXAMINATIONS	07	

Text Books:

- 1. R.K.Jain., Engineering Metrology, Khanna Publishers, Eleventh edition
- 2. R.Jenkins, Fundamentals of Mechanical Inspection, McGraw Hill Book company.

Reference books:

- 1. ASTME, Hand book of Industrial Metrology, Prentice Hall
- 2. A.J.T Scarr, Metrology and Precision Engineering, McGraw Hill Book company.
- 3. J.Johnson, Precision Measurement, Pitman publishers
- 4. R.L.Murty, Precision Engineering in Manufacturing, New Age International Publishers (P)

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

III SEMESTER

2020 - 2021 onwards

4022340 – COMPUTER AIDED MACHINE & TOOL DRAWING

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME (Implemented from the academic year 2020-2021 onwards)

Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)
Subject Code	:	4022340
Semester	:	III
Subject Title	:	COMPUTER AIDED MACHINE & TOOL DRAWING

TEACHING AND SCHEME OF EXAMINATIONS:

			No. o	f Weeks per Sem	nester: 1	6 Weeks
	Instr	Instructions Examination				
Subiect	Hours /	Hours /				
,,	Week	Semester	Internal	Board	Total	Duration
			Assessment	Examinations		
COMPUTER AIDED MACHINE & TOOL DRAWING	5	80	25	100*	100	3 hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours:

Unit	Topics						
No							
I	Introduction to CAD software	2					
II	Drawing aids and editing commands	4					
	Basic dimensioning, hatching, blocks and views	5					
IV	Isometric drawing, printing and plotting	4					
V	<u>Cad Drawing Practice</u> Detailed drawings of following machine parts are given to students to assemble and draw the sectional or plain elevations / plans / and side views with dimensioning and bill of materials using cad software – 10 Exercises: Sleeve & Cotter Joint, Screw Jack, Foot Step Bearing, Universal Coupling, Plummer Block, Machine Vice, Drill Jig, Welding Fixture, Blanking Tool, Injection Moulding Tool.	65					
	TOTAL	80					

RATIONALE:

The contemporary progressing world is fast with the latest production systems. The advanced manufacturing of products is developed instantly using CAD Software. Even a small-scale industry is now using a CAD software as it has become the heart of the Design department. So, CAD has now become inevitable in industries. Accuracy and Precision are the two important things that decide the quality of a product to survive its competitors in the market. Using CAD software design, the uniform accuracy, multiples of copies and storing in a small space for long time are assured.

The CAD software considerably improves the creativity and flexibility of a designer. The syllabus here enables a candidate to draw an industrial drawing within the optimum reach of a diploma cadre.

OBJECTIVES:

- Appreciate the need of sectional view and types of sections.
- Draw sectional views using different types of sections.
- Explain the use of threaded fasteners and the types of threads.
- Compare hole basis system with shaft basis system.
- Select different types of fits and tolerance for various types of mating parts.
- Practice on CAD commands in making 2D Drawings.
- Draw assembled drawings of different types of joints and couplings using CAD.
- Draw assembled drawings of various types of machine elements and Tool assembly using CAD.

DETAILED SYLLABUS 4022340 - COMPUTER AIDED MACHINE AND TOOL DRAWING PRACTICAL

Conter	nts: Theory	Houro				
Unit		Hours				
I	INTRODUCTION TO CAD SOFTWARE	2				
	Introduction – History of CAD – Applications – Advantages over manual					
	drafting – Hardware requirements – Software requirements – Windows					
	desktop – CAD screen interface – menus – Tool bars – How to start CAD –					
	How to execute command – types of co-ordinate systems – Absolute –					
	Relative – Polar.					
П	DRAWING AIDS AND EDITING COMMANDS	4				
	Creating objects (2D) – Using draw commands – Line, Arc, Circle, Ellipse,					
	Donut, Polygon, Point, Pline, Sketch, Trace – Creating 2D Solid. Creating text					
	- Dtext, Mtext, Text styles - Mline, spline - Drawing with precision - O-snap					
	options – drafting settings –limits – Units – drawing aids – Fill, Snap, Grid,					
	Ortho lines – Function keys - Editing and modify commands – Object					
	selection methods – Erasing object – Oops - Cancelling and undoing a					
	command – Copy – Move – Array – Offset – Scale – Rotate – Mirror – Break					
	– Trim – Extend – Explode. Divide – Measure – stretch – Lengthen –					
	Changing properties – Color – line types –LT scale – Matching properties –					
	Editing with grips – Pedit – Ddedit – Mledit.					
	BASIC DIMENSIONING, HATCHING, BLOCKS AND VIEWS	5				
	Basic dimensioning – Editing dimensions – Dimension styles – Dimension					
	system variables. Machine drawing with CAD. Creation of blocks – Wblock –					
	inserting a block – Block attributes – Hatching –Pattern types – Boundary					
	hatch – working with layers - Controlling the drawing display – Blipmode –					
	View group commands - Zoom redraw regen regenauto pan viewres -					
	Real time zoom Inquiry groups - calculating area - Distance - Time - Status					
	Real time zoom. Inquiry groups – calculating area – Distance – Time – Status					
N/		4				
IV	loometric drawing, Loometric projection, drawing ice sireles. Dimensioning	-				
	isometric drawing – isometric projection – drawing iso circles – Dimensioning					
	somethic objects. File commands – File import and export – plotting drawing					
	- external references - 3D fundamentals - 2D to 3D Conversion					
	ט טרמיוחg: אין איז					
	Mesn-3D - Surface-3D Operation-Solid Editing					
V	CAD DRAWING PRACTICE	65				
	Detailed drawings of following machine parts are given to students to					

assemb	assemble and draw the sectional or plain elevations / plans / and side views							
with din	nensioning and bill of materia	als usir	ng CAD Software					
1	MACHINE DRAWING TOOL DRAWING							
1. 5	Sleeve & Cotter joint	7.	Drill jig					
2. 3	Screw Jack	8.	Welding fixture					
3. F	Foot step bearing	9.	Press tool assembly- Blanking					
4. l	Universal Coupling		tool					
5. F	Plummer Block	10	.Plastic moulding tool assembly-					
6. 1	Machine Vice		Injection moulding tool					

Reference Books:

- 1) Inside AutoCAD D. Raker and H. Rice BPB Publications, NewDelhi
- Engineering Drawing and Graphics + AutoCAD K.Venugopal, New Age International Publications
- CAD/CAM/CIM P. Radhakrishnan, S. Subramaniyan and V.Raju New Age International Publications.
- 4) AutoCAD 2002 with Applications Sham Tickoo Tata Mcgraw Hill.
- 5) Computer Graphics, Prentice Donald Hearn, M. Pauline Baker Hall of India Pvt. Limited, New Delhi.

List Of Equipment's (for a batch of 30 students)

- 1. Personal computer (With latest processor to suit Auto CAD) 30 No's
- 2. MS Windows OS 30 No's
- 3. AutoCAD software (release 2000 or above) 30 Users

MACHINE DRAWING

Exercise – 1 Sleeve & Cotter Joint

PART & ASSEMBLY DRAWING

SLEEVE AND COTTER JOINT

^{35 53 53 35} 36 3 53 53 35 57 35 53 35 50 35 53 35 50 35 53 35 50 35 53 35 50 35 53 35 50 35 53 35 50 35 53 35 50 35 53 35 50 35 53 53 53 55 50 35 53 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 35 55 50 55 55 50

-		
DI	- A NI	
-		

BILL OF MATERIALS							
S.No.	PART NAME	MATERIAL	N0.0FF				
1.	SLEEVE	MILD STEEL	1				
2.	RODS	MILD STEEL	2				
З.	COTTER	STEEL	2				

32

PART DRAWING

DETAILS OF SCREW JACK

Exercise – 3 FOOT STEP BEARING

PART DRAWING

FOOTSTEP BEARING

6	SCREW	Fe 410 W	1
5	LOCKING PLATE	Fe 410 W	1
4	SHAFT	Fe 410 W	1
3	PAD	GUN METAL	1
2	BUSH	GUN METAL	1
1	SUPPORTING BRACKET	CAST IRON	1
ITEM NO	DESCRIPTION	MATERIAL	NO OFF

11

6)

5

g

Ø3

SR105

ę

3

1777777777

Ø50

Ø7

11

3 X 45

Exercise – 4 PLUMMER BLOCK

PART DRAWING

PART DRAWING

1	Shaft	MS	2
2	Fork	FS	2
3	Central block	FS	1
- 4	Pin	MS	2
5	Collar	MS	2
6	Key	MS	2

Fig. 2: Details of a Universal Coupling

PART DRAWING

÷.

MACHINE VICE

.

8 8

lten Nunber	Title	Quantity
1	body of vice	1
2	movable jaw	1
3	screw rod	1
4	wisher	1
5	nut	1
6	lock nut	1
7	jaw grip	Ζ.
8	clamping plate +	1
9	strew m6	6

ł.

Tool Drawing

Exercise – 7 Drill Jig(Template Jig)

Exercise –8 Welding Fixture

Exercise- 9 Blanking Tool – Drop through type

Exercise –10 Single Cavity Injection Mould

					3			2	CADD FILE :		_
S A M	N6 N7 N8 N9 N10 N11 N12	8 1.6 3.2 6.3 12.5 25 50									F
	NI N2 N3 N4 N6 1	up 0.025 0.05 0.1 0.2 0.4 0.1				A				6 6	E
120 315 1000 2000 ROUGHNESS	315 1000 2000 4000 >4000 ROUGINESS	0.5 ¹ 0.8 1.2 2.0 3.0 VALUER a						1			D
3 - 6 30	0 & INCL 6 30 120	ERANCE 0.1 0.2 0.3						BILL OF N	IATERIALS	;	С
OVE	CP T	TOL				SI	NO P	ART NAME	MATERIAL	QUANTITY	
N	שוניט						1 CD 2 CAV 3 CDV 4 C 5 G 6 CC	RE PLATE ITY PLATE /ER PLATE ORE PIN JIDE PIN IMPONENT	MS MS STD STD HDPE	1 1 1 2 1	- - - B
			MODEL:			HARDNESS:		FINISHING:	-	ITE - DGL	
			MAT'L: DESIGNED DRAWN CAD CHECKED APPROVED	NAME	DATE	QTY: SINGL DRG.No. 03 DRG.SHEET	AS E CAVIT 22 66 0 4 of 4	PART NO: - SSEMBL Y HAND 01 REVISION	ED VIEW INJECTIO SCAL R000 NTS		A
	→ OVER - 6 30 120 315 1000 2000 ROUGHNESS VVV VV V V V V	$\overbrace{\underline{\beta}}{\underline{\beta}} \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\overbrace{E}^{OVER} = 1000 \ 200 \ 20 \ 20 \$	000 312 32 32 33 33 34 34 34 001 312 32 32 33 35 35 36 34	Value Value <td< td=""><td>S S</td><td>3 S X x X X X X X<</td><td>3 S a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a b a a a b a a a a a b a a a b a a a b a a a a a a a b a c a a a b a c a a a</td><td>3 2 3</td><td>3 2 CADDILLE: 3 2 CADDILLE: 4 4 4 4 4 4 4 4 4 5 3 4 4 4 4 7 4 4 8 7 7 8 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10</td><td>3 2 CAUDINE: 3 2 CAUDINE: 4 4 CUP 3 2 CAUTY PLATE 3 3 CUP PLATE 4 CUP PLATE 4</td></td<>	S S	3 S X x X X X X X<	3 S a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a b a a a b a a a a a b a a a b a a a b a a a a a a a b a c a a a b a c a a a	3 2 3	3 2 CADDILLE: 4 4 4 4 4 4 4 4 4 5 3 4 4 4 4 7 4 4 8 7 7 8 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	3 2 CAUDINE: 4 4 CUP 3 2 CAUTY PLATE 3 3 CUP PLATE 4 CUP PLATE 4

Board of Examination

Part A (I to IV units)	
Answer any 10 two mark questions	(10 x 2) = 20 Marks
Part B – V Unit	
1. Assembled view of a given drawing (2 Views only) = 60(30+30) Marks
a) Question from Machine drawing	
(or)	
b) Question from Tool Drawing	
2. Bill of Materials, Dimensioning, Notes	s = 10 Marks
Viva voce	= 10 Marks
Total	= 100 Marks

Note to the examiner:

Part A

- Answer any 10 questions out of 15 questions.
- Fifteen questions should cover the complete syllabus (UNIT I to IV)

Part-B

- Answer should be evaluated from the print out for the Part-B questions
- Examiner should set the question paper to cover the complete syllabus of Unit-V.
- Examiner has to ask the student to answer any one question from the lot of 10 drawings with either or choice as detailed above.
- Examiner has to set the no. of questions minimum 10, even one batch of students contains less than 10.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

III SEMESTER

2020 - 2021 onwards

4022350 - ENGINEERING METROLOGY PRACTICAL

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME (Implemented from the academic year 2020-2021 onwards)

Subject Title	:	ENGINEERING METROLOGY PRACTICAL
Semester	:	III
Subject Code	:	4022350
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATIONS:

	NO. OF WEEKS PER SETTIESTER. TO WEEKS					
	Instr	ructions	Examination			
Subject		ours/ Hours/ /eek Semester		Marks	Marks	
	Hours/ Week		Internal Assessment	Board Examination	Total	Duration
ENGINEERING METROLOGY PRACTICAL	3	48	25	100*	100	3 hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES

- To practice linear and angular measurements
- To Use vernier caliper, vernier height gauge and micrometer
- To Use slip gauges to make standard dimensions
- To Measure angle of surface using sine bar
- To Use dial indicator to measure geometrical parameters
- To Demonstrate parallelism, squareness and circularity
- To Check the perpendicularity and squareness of a surface
- To Calibrate vernier caliper and micrometer using slip gauges

Detailed Syllabus 4022350 - ENGINEERING METROLOGY PRACTICAL

I. LINEAR MEASUREMENT:

1(a). Vernier caliper – Measuring the overall dimensions of a Die plate to an accuracy of 0.02 mm.

1(b). Micrometer – Measuring diameter and thickness of die components to an accuracy of one micron (0.001mm)

2(i). Vernier height gauge:- a) Measurement of height of the given work piece

- b) Marking the given dimensions on the work piece.
- c) Transferring measurements from one job to another.

2(ii). Vernier Depth gauge – Measuring the depth of blind holes in the give work piece.

3(a). Screw thread micrometer – Measuring the root dia of the given screw thread

3(b). Measurement of pitch of screw threads using screw pitch gauges.

3(c). Measurement of effective dia of screw thread using three wire method.

4. Measurement of Internal dia of the given die set bush using Inside Micrometer to an accuracy of one micron.

5. Slip Gauges – Building up the given required dimensions and measuring or marking or setting Go and No Go sizes in adjustable gap gauges, to an accuracy of 0.5 micron.

6. Measuring the chordal thickness of the gear teeth using the gear tooth vernier.

II. ANGULAR MEASUREMENT:

7. Measurement of angles using universal bevel protractor to an accuracy of 5'.

- 8. Using combination set i) Measure angle in the given component with protractor head
 - ii) Find or mark the center of the given cylindrical job using center head.
 - iii) Check and report the squareness of the given specimen using square head.
- 9. Measure the angle of the surface using Sine bar and Slip Gauges.

III. MEASUREMENT OF GEOMETRIC PARAMETERS AND CALIBRATION OF

INSTRUMENTS:

- 10.Straightness Measurement of concavity / convexity in a surface using Toolmaker's straight edge and feeler gauge.
- 11. Checking the parallelism of two planes using dial indicator.
- 12. Testing circularity of die set pillars using v-block and dial indicators.

13. Measurement of Run-out on

- i) External cylindrical surface
- ii) External conical surface using dial gauge
- iii) Checking of Perpendicularity of drill head guide
- iv) Checking of squareness of clamping surface of table to its axis.
- 14. Measurement of axial slip using dial indicators.
- 15. Calibration and adjusting of micrometers/ Vernier caliper using slip gauges

SCHEME OF EXAMINATION:

		Duration	Μ	ax. Marks
I) <u>Part – A</u>				
a) Linear Me	asurement			
or		1 ½ Hrs.		45
b) Angular M	easurement			
II) <u>Part – B</u>				
c) Measurem	ent of Geometrical			
Parameters	& calibration.	1 ½ Hrs.		45
III) Viva – Voce				10
			Total	100

SCHEME OF VALUATION:

Observation / Reading	-	20 marks
Tabulation / Formula	-	10 marks
Calculation & Result	-	15 marks

Details of The Equipment's (for a batch of 30 students)

NAME	OF THE BRANCH /	MECHANICAL ENG	GINEERING		
COURSE (TOOL & DIE)					
YEAR		SECOND			
SEME	STER	111			
NAME	OF THE LABORATORY	4022350 ENGINEE	RING METROLOGY		
		PRACTICAL			
S.NO	LIST OF THE EQ	UIPMENTS	QUANTITY REQUIRED		
1	Vernier caliper 0-150mm		6		
2	Micrometer 0-25mm		6		
3	Vernier height gauge 0-300mm 2				
4	Vernier depth gauge 150mm 2				
5	Screw thread micrometer 1				
6	Inside micrometer 25-50 mm 6				
7	Slip gauges 2				
8	Gear tooth vernier 2				
9	Universal bevel protractor 3				
10	Combination set 1				
11	Sine bar 200mm		1		
12	Tool makers straight edge2				
13	Feeler gauge 2				
14	Dial test indicator with magnetic stand3				
15	V-block 1				
16	Surface plate 1				
17	Spirit level		2		
18	Go & No Go gauges set		1		

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING (TOOL& DIE)

II YEAR

N – SCHEME

III SEMESTER

2020 - 2021 onwards

4022360 – MANUFACTURING TECHNOLOGY PRACTICAL

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME (Implemented from the academic year 2020-2021 onwards)

Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)
Subject Code	:	4022360
Semester	:	111
Subject Title	:	MANUFACTURING TECHNOLOGY PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 16 weeks

SUBJECT	Instructions		Examination			
	Hours/ Hours/		Marks			
	Week	Semester	Internal Assessment	Board Examination	Total	Duration
MANUFACTURING TECHNOLOGY PRACTICAL	5	80	25	100*	100	3hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES:

- Identify the parts of a centre lathe & Drilling machine
- · Identify the work holding devices
- Set the tools for various operations
- Operate the lathe and Machine a component using lathe
- Operate the Drilling machine and produce different sizes of holes.

DETAILED SYLLABUS

Contents: Practical

Name of the Topics:

1. Lathe

Syllabus

- 1. Introduction of safety in operation machines.
- 2. Introduction to lathe and its parts.
- 3. Introduction to work holding devices and tool holding devices used in Lathe
- 4. Types of tools used in lathe work
- 5. Types of measuring instruments and their uses.
- 6. Setting of work and tools.
- 7. Operation done in lathe
- 8. Practice on a lathe
- 9. Introduction of work holding and tool holding devices used in drilling machine
- 10. Drilling, Tapping, Counter Boring, Countersinking and Reaming

Exercises :

- 1. Plain turning
- 2. Step turning
- 3. Taper turning
- 4. Thread cutting
- 5. Knurling
- 6. Bushing
- 7. Eccentric Turning
- 8. Drilling
- 9. Tapping
- 10. Counter Boring
- 11. Countersinking
- 12. Reaming

Lathe Works

Manufacture and estimate the cost of the following exercises by assuming the suitable raw material for the final size of the components.

BOARD EXAMINATION

Note of the Faculty : Last job of the raw material(MS Rod Ø32x77mm and MS Rod Ø25x77mm) to be retained in student wise or batch wise (Maximum Two Students per batch). This may be verifiable at the time of Board Practical Examination by the external examiner

Board Examination-Question Paper Pattern

- 1. Two questions should be asked in such way that one from Lathe and one from drilling
- 2. Dimensions can be altered with the consent of External Examiner

MODEL QUESTION PAPER

1.	Machine the component as per the given sketch	60 Marks
	Any one of the exercises in Lathe	

2. Make the component as per the given sketch 30 Marks Any one of the exercises in Drilling

DETAILED ALLOCATION OF MARKS

Lathe Work	-	60 Marks	
	Preparation	-	10
	Dimensions	-	40
	Finishing	-	10
Drilling	-	30 Marks	
	Marking	-	15
	Finishing	-	15
	Viva – Voce	-	10 Marks
Total	-	100 Marks	

Any one of the exercise from Drilling

Exercise No:1 –Plain turning .

Raw Material: MS Rod Ø32x77mm

Exercise No:2-Step turning

Raw Material: Exercise No:1

Exercise No:3-Step and taper turning

Raw Material: Exercise No:2

Exercise No: 4 -Step and taper turning

Raw Material: Exercise No: 3

Exercise No: 5 Knurling and step turning

Raw Material: Exercise No:4

Exercise No:6 BSW Thread cutting

Raw Material: Exercise No:5

Exercise No:7 – Metric thread cutting

Raw Material: Exercise No:6

Exercise No:8- Metric thread cutting

Raw Material: Exercise No:7

Exercise No: 9 -Shaft and bush mating

Raw Material: MS Rod Ø25x77mm and Ø32x30mm

Exercise No: 10- Thread cutting Raw Material: Exercise No:9 1x45°M20(RH)(OR)3/4"BSW

Exercise No:11-Eccentric Turning

Raw Material: Exercise No:10

Make the following jobs using drilling machine.

Exercise No:1 Drilling & Tapping

Raw material 50mm X 50mm X 10 mm thick M.S. Flat

Exercise No:2 Drilling & Counter boring Raw material 50mm X 50mm X 15 mm thick M.S. Flat

Exercise No :3 Drilling & Counter sinking Raw material 50mm X 50mm X 15 mm thick M.S. Flat

Exercise No:4 Drilling and Reaming Raw material 50mm X 50mm X 10 mm thick M.S. Flat

List of Equipment's (for a batch of 30 students)

_				
			~~	
	ч		10	
-		 		
			_	

1. 0	Center Lathe 4 ½ ' Bed length	-	15 No's
2.4	Jaw / 3 Jaw Chucks	-	required Numbers
3. 0	Chuck key (10 mm x 10 mm size)	-	15 No's
4. E	Box spanner	-	15 No's
5. C	Cutting Tool H.S.S ¼ ′′ X ¼ ′′ X 4 ′′ long	-	15 No's
6. F	Pitch gauge	-	5 Nos
7. \	ernier Caliper (0-25 and 25-50)	-	5 nos each
8. N	/licrometer, Inside and Outside(0-25 and 25-50)	-	5 each
9. \	/ernier Height Gauge(300mm)	-	1 no
10.	Snap gauge	-	1 set
11.	Gear tooth Vernier	-	1 No
12.	Parallel Block	-	2 Nos
13.	Steel Rule (0-150)	-	15 Nos.
14.	Outside and Inside Calipers	-	15 Nos. each
15.	Thread gauge	-	5 Nos.
16.	Bevel Protractor	-	1 No
17.	Jenny Caliper	-	5 Nos.
18.	Dial Gauge with Magnetic Stand	-	5 Nos.
19.	Marking Gauge	-	10 Nos.
20.	Safety Glass	-	15 Nos.
Dri	ling:		
1.	Upright drilling machine	-	2 Nos.
2.	Radial drilling machine	-	1 No.
3.	Drill bit & Tap set	-	Sufficient quantity
4.	Reaming bit	-	Sufficient quantity
5.	Counter sinking bit	-	Sufficient quantity
6.	Counter boring bit	-	Sufficient quantity
7.	Plug gauges	-	Sufficient quantity
8.	Vernier Height Gauge	-	1 No.
9.	Surface plate	-	2 Nos.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

III SEMESTER

2020 - 2021 onwards

4022370 - BASIC ENGINEERING PRACTICAL

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	BASIC ENGINEERING PRACTICAL
Semester	:	III
Subject Code	:	4022370
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION:

_	<u>I EAUNI</u>	<u>ING AND (</u>	<u> SCHEIME Or</u>				
				No of weeks	per semes	ter: 16 wee	ks
SUBJECT	Instructions Examination						
	Hours/	Hours/		Marks			
	Week	Semester	Internal	Board	Total	Duration	
			Assessment	Examination			
BASIC ENGINEERING PRACTICAL	4	64	25	100*	100	3hrs	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES:

- Identify the tools and equipment's used in Foundry & welding •
- Prepare sand moulds for different patterns. •
- Perform welding operation to make different types of joints. •
- Identify the different welding defects. •
- Appreciate the safety practices used in welding
- Study of two and four stroke engine and its parts •
- performance test on two and four stroke engines •

1. Foundry (25 Hrs)

Syllabus

- 1. Introduction of tools and equipment's
- 2. Types of patterns
- 3. Types of sand
- 4. Preparation of sand moulds
- 5. Furnaces crucible furnace and tilting furnace
- 6. Core sands, preparation of cores

Exercises :

Preparation of sand mould:

- 1. Solid pattern
 - a. Stepped pulley
 - b. Bearing top
 - c. Gear Wheel
 - d. T-pipe
- 2. Split pattern
 - a. Bent Pipe
 - b. Tumbles
- 3. Loose Piece Pattern Dove tail
- 4. Cylindrical core making
- 5. Melting and casting (not for Examination, only for class exercises)

2. Welding (18 Hrs)

Syllabus

- 1. Introduction of Safety in welding shop
- 2. Introduction to hand tools and equipment's
- 3. Arc and gas welding equipment's
- 4. Types of joints

Exercises :

1. Arc welding

- Lap joint (Material : 25 mm x 3mm Ms flat)
- Butt joint (Material : 25mm x 6mm Ms flat)
- T- joint (Material : 25mm x 3mm Ms flat)
- Corner joint (Material : 25mm x 3mm Ms flat)

2. Gas Welding

- Lap joint (Material : 25mm x 3mm Ms flat)
 - Butt joint (Material : 25mm x 6mm Ms flat)
- 3. Gas cutting : Profile cutting
- 4. Spot welding Lap joint (18/20swg)
- 5. Demonstration of Soldering and brazing

3. Thermal Engineering Lab (15 Hrs) Syllabus

- 1. Introduction of two stroke and four stroke engine and its parts.
- 2. Determine the valve and port timing diagram of SI and CI engine.
- 3. Analyse the influence of variations in TDC and BDC operation
- 4. Calculate the performance characteristics of SI and CI Engine

Exercises:

- 1. Construction of valve timing diagram for four stroke engine.
- 2. Construction of port timing diagram for two stroke engine.
- 3. IC engine performance test for four stroke SI engine
- 4. IC engine performance test for four stroke CI engine

MODEL EXAM:7 Hrs

List Of Equipment's (for a batch of 30 students)

Welding:

1. Arc welding booth	 2 No's with oil /air cooled
	Welding transformer with accessories
2. Gas welding unit (Oxygen and acetylene cylinder)	– 1 Set
3. Flux	– 500grams
4. Electrode 10 SWG	– 200 No's
5. Face shield	– 3 No's
6. Gas welding goggles	– 2 No's
7. Leather Glows 18"	– 4 Set
8. Flux chipping hammer	– 4 No's
9. Spot welding machine	- 1 No

Foundry:

1. Crucible furnace	-	1 No
2. Tilting furnace	-	1 No
3. Shovel	-	20 Nos
4. Rammer set	-	30 Nos
5. Slick	-	30 Nos
6. Strike-off bar	-	30 Nos
7. Riddle	-	15 Nos
8. Trowl	-	30 Nos
9. Lifter	-	30 Nos

-	60 Nos
-	20 Nos
-	30 Nos
-	10 Nos
-	60 Nos
-	30 Nos
-	15 Nos each

Thermal Engineering Lab:

1. Two stroke petrol engine cut section model	- 1 No
2. Four stroke diesel engine cut section model	- 1 No
3. Four stroke petrol engine with belt /lamp load assembly	- 1 No

4. Four stroke Diesel engine with belt /lamp load assembly - 1 No

Scheme of Examination:

For Board practical examination two exercises(ie one question	
from each chapter) should be asked in the any of following	
combination	
Foundry & Welding	
Or	45X2=90marks
Welding & Thermal Lab	
Or	
Thermal lab & Foundry	
Viva Voce	10 marks
Total	100 marks

Scheme of Valuation:

Foundry	: Mould Preparation	- 30 marks
	Gate cutting	- 15 marks
Welding	: Weld run	- 30 marks
	Finish	- 15 marks
Thermal Engg Lab	: Observation/ Reading	- 30 marks
	Calculation	- 15 marks

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING (TOOL& DIE) II YEAR / III YEAR

N – SCHEME

IV SEMESTER

2020 - 2021 onwards

4022410 - ENGINEERING MATERIALS AND METALLURGY

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)
Subject Code	:	4022410
Semester	:	IV
Subject title	:	ENGINEERING MATERIALS AND METALLURGY

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 16 weeks

	Instr	uctions		Examination	1	
				Marks		
SUBJECT	Hours/ Week	Hours/ Semester	Internal Assessment	Board Examination	Total	Duration
ENGINEERING MATERIALS AND METALLURGY	5	80	25	100*	100	3hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS AND TIME ALLOCATION:

UNIT	TOPIC	TIME (Hrs)
I	Metallurgy and Material Structure	15
II	Phase diagrams and Iron Carbon equilibrium diagram	15
111	Heat Treatment and Properties of Engineering Materials	15
IV	Ferrous and Non – Ferrous Metals and their Alloys	14
V	Metallographic, Surface Treatment and Non Destructive Testing	14
	TEST & MODEL EXAMINATIONS	07
	Total	80

Rationale:-

The knowledge about the various types of Engineering Materials, their properties and applications are required for proper selection and use of materials in Tool Design and design of mechanical engineering components. Thorough understanding of the methods of heat treatment, their effect and applicability is essential to ensure the full service life of the tools and components. The knowledge on various metallographic and non destructive testing methods is necessary to verify the properties, condition and nature of various materials.

OBJECTIVES

The objective of this course is to make the Student:

- To know about the different types of material structure.
- To acquire knowledge on Deformation of Metals.
- To Understand the Phase Diagrams.
- To Understand and Use Iron Carbon Equilibrium Diagram.
- To Study about various Heat Treatment Process.
- To Get Knowledge on Thermal & Magnetic properties of Materials.
- To know about Superconductivity.
- To study about various Ferrous & Non Ferrous Alloys.
- To understand the process of Non Destructive Testing.

DETAILED SYLLABUS 4022410- ENGINEERING MATERIALS AND METALLURGY

Unit	NAME OF THE TOPICS	Hours			
No.					
	METALLURGY AND MATERIAL STRUCTURE:				
I	1.1 Crystalline Structure Crystallography, crystal, single crystal,				
	crystallization of metals, crystal symmetry, elements of symmetry,	7			
	space lattice, unit cell, lattice parameters of unit cell, primitive cell,				
	crystal structure, crystal system – cubic system, Tetragonal system,				
	Hexagonal or trigonal system, orthorhombic system, monoclinic system,				
	triclinic system. Miller Indices, Crystal directions, coordinate number,				
	atomic radius, number of atoms per unit cell, density of crystal material.				
	Material structure –Face centered cubic (FCC), Body centered cubic				
	(BCC), Hexagonal close-packed (HCP).				
	1.2Bonding in solids Primary bonds – Metallic bond, Ionic bond,				
	Covalent bond. Imperfections in metal crystals- types of defect- point	4			
	defect, line defect, surface defect, volume defect, effect of imperfection				
	on metal properties				
	1.3Deformation of metals: Elastic deformation, plastic deformation,				
	elastic after effect. Deformation by slip, ideal plastic body. Plastic	4			
	deformation of a single crystal – slip, twinning. cold working and effect				
	of cold working on metals. Hot working of metals, advantages and				
	disadvantages of hot working.				
	PHASE DIAGRAMS AND IRON CARBON EQUILIBRIUM DIAGRAM:				
	2.1 Phase Diagrams: Solid solution - types of solid solution-				
- 11	substitutional and interstitial solid solution- solid solution alloy – System,	8			
	Phase, Component, Degree of freedom or variance of the system.				
	Phase rule, Cooling curves – cooling curve of pure metal, solidification				
	or crystallization of metal, cooling curve of eutectic type alloy.				
	Construction of equilibrium diagrams, Interpretation of equilibrium				
	diagrams. Types of phase diagrams – Eutectic system, Peritectic				
	system, Eutectoid system, Peritectoid system. Iron-Carbon system -				
	allotropy of iron, micro constituents of iron and steel, Iron-iron carbide				
	equilibrium diagram, critical temperatures, effect of alloying elements on				
	Fe-Fe ₃ C diagram.				
	2.2 Heat Treatment and Transformation Diagram: Purpose of Heat				
	Treatment, Heat treatment cycle, Time-Temperature-Transformation	7			

	(TTT) diagram – importance of T.T.T diagram, steps to construct T.T.T	
	diagram, T.T.T diagram for eutectoid steel, T.T.T diagram and cooling	
	curves.	
	HEAT TREATMENT, PROPERTIES OF ENGINEERING MATERIALS:	
	3.1 Heat Treatment of Steel: Annealing – stress relief annealing,	
	Process annealing, spheroidise annealing, Full annealing. Normalizing,	
	Hardening – process, quenching medium, hardenability, end quench	8
	hardenability test. Tempering – low temperature tempering, medium	
	temperature tempering, High temperature tempering, Temper	
	brittleness, Austempering, Martempering. Case hardening – carburising	
	 pack carburising, liquid carburising, gas carburising. Nitriding, 	
	cyaniding, carbonitriding. Surface hardening – flame hardening,	
	induction hardening.	
	3.2 Properties of Engineering Materials: Introduction, Mechanical	
	properties of Materials – Strength, Elasticity, Plasticity, Ductility,	
	Malleability, stiffness, toughness, brittleness, hardness, wear	7
	resistance, machinability, castability, weldability, fatigue strength, creep.	
	Thermal Properties – Introduction, Heat capacity, Expansion,	
	conductivity, Thermal stress. Magnetic Properties – Introduction,	
	Diamagnetism, Para Magnetism, and Ferromagnetism, Influence of	
	Temperature on Magnetic Behavior. Superconductivity.	
	FERROUS AND NON – FERROUS METALS AND THEIR ALLOYS:	
IV	4.1 Ferrous Metals & its Alloys: Pig Iron – classification, properties	
	and applications, Wrought Iron – composition, properties and uses.	
	Cast Iron – Introduction, classification, effects of alloying elements on	7
	the structure of cast iron. Designation system of Cast Iron as per BIS.	
	Composition, Mechanical properties, applications of Grey cast iron,	
	Spheroidal graphite cast iron, Malleable cast iron .Steels –	
	Classification of steel, Effects of alloying elements in steel.	
	Composition, Mechanical properties, applications of low carbon steel,	
	medium carbon steel and high carbon steel. HSS , Tool steel, Stainless	
	steel - Composition ,Mechanical properties and applications	
	4.2 Non – Ferrous Metals & its Alloys: Aluminum & its alloys – types,	
	properties and applications. Designation system of aluminum and its	7
	alloys as per BIS .Copper & its Alloys – Types , Brass, Gunmetal –	
	Composition, properties & applications, Zinc – Composition , properties	
1	8 applications	

V	Metallography, Surface Treatment and Non Destructive Testing	
	5.1 Metallography: Metallurgical microscope – Preparation of	
	specimen, micro and macro examination. Study of micro structure of	5
	Ferrous and Non Ferrous metals. Modern techniques of material studies	
	 electron microscope, photoelectron spectroscopy. 	
	5.2 Surface Treatment: Mechanical cleaning and finishing – Vibratory	
	finishing, wire brush cleaning, buffing and electro polishing. Chemical	
	cleaning – Vapour degreasing, solvent cleaning, alkaline cleaning,	5
	ultrasonic cleaning, acid pickling. Surface coatings – Electroplating,	
	painting, powder coating, blackening, vacuum Metalizing, Physical	
	vapour deposition, chemical vapour deposition.	
	5.3 Non Destructive Testing: Magnetic particle inspection, X-Ray	
	inspection, Gamma radiography, Ultrasonic Inspection, Electrical	4
	methods, Damping test, Non-magnetic methods of crack detection.	
	TEST & MODEL EXAMINATIONS	07

Text Books:

- 1. Dr . O.P.Khanna , Material science and Metallurgy, Dhanpat Rai & Sons
- 2. Material Science and Engineering ,William .D.Callister JR , Sixth Edition

References Books

- 1. ASM Hand book, Vol.1, ASM International, Materials Park, Ohio, U.S.A,
- 2. S.K.Hajra Choudhury and A.K.Hajra Choudhury, Elements of Workshop

Technology, Media Promoters and publishers pvt. Ltd

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

IV SEMESTER

2020 - 2021 onwards

4022420 – FLUID POWER AND THERMAL ENGINEERING

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	FLUID POWER AND THERMAL ENGINEERING
Semester	:	IV
Subject Code	:	4022420
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION:

<u> </u>		/				
			No	of weeks per	semester:	16 weeks
	Instr	uctions	Examination			
			Marks			
SUBJECT	Hours/ Week	Hours/ Semester	Internal Assessment	Board Examination	Total	Duration
FLUID POWER AND THERMAL ENGINEERING	5	80	25	100*	100	3hrs

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Time allocation

UNIT	TOPIC				
		(Hrs)			
I	PROPERTIES OF FLUIDS AND PRESSURE MEASUREMENTS	15			
II	PNEUMATIC SYSTEM	14			
III	HYDRAULIC SYSTEM	14			
IV	THERMODYNAMICS ,INTERNAL COMBUSTION ENGINES &	15			
	HEAT EXCHANGERS				
V	E- VEHICLES	15			
	TEST & MODEL EXAMINATIONS	07			
	Total	80			

RATIONALE:

The growth of Engineering and Technology is associated with fluid power applications and heat & work transfer. Low cost Automation using Pneumatics and Hydraulic machines and presses are very common in Automobile and Die casting industries. Hence studying the fundamentals of Pneumatics, Hydraulics and Heat transfer facilitates better understanding of their applications in the area of Tool & Die Making and widens the employment opportunities.

OBJECTIVES

At the end of the study of this subject the student will be able to:

- Define the properties of fluids
- Explain the working of pressure measuring devices
- Appreciate the use of fluid power
- Explain the working of pneumatic system and its elements
- Explain the working of Hydraulic system and its elements
- Compare Pneumatic system with Hydraulic system
- Design fluid power circuits for industrial applications
- Explain the concept and types of thermodynamic systems
- Explain the working of IC engines & heat exchangers
- Concept of E vehicle, drives and its importance
- Objectives of E V policy & recycling Ecosystem

DETAILED SYLLABUS

4022420 - FLUID POWER AND THERMAL ENGINEERING

Contents: Theory

UNIT NO	NAME OF THE TOPIC	Hrs
I	PROPERTIES OF FLUIDS AND PRESSURE MEASUREMENTS	
	Fluid-Definition-Classification of fluids-Ideal and real fluids-Newtonian and non- Newtonian-Properties of fluids-Density, Specific weight, Specific volume, Specific gravity, Compressibility, Viscosity, Surface tension and capillarity. Pressure-Unit of pressure-Pressure head-Atmospheric pressure-Gauge pressure and Absolute pressure-Problems-Pascal's law-Proof-Applications of Pascal's law Hydraulic press. Hydraulic jack	7
	Pressure Measurement -Piezometer tube-Simple U-tube manometer- differential U- tube manometer-Inverted differential U-tube manometer-Micro manometer-Inclined tube micro manometer-Problems-Mechanical Pressure gauge-Bourdan tube pressure gauge-Diaphragm pressure gauge-Dead weight pressure gauge.	8
II	PNEUMATIC SYSTEM Pneumatic system and its elements-Filter, Pressure regulator, Lubricator unit- Pressure control value-3/2 DCV, 5/2DCV, and 5/3DCV-Check value- Flow control value-Throttle value-Shuttle valve-Quick exhaust valve-Time delay value-Pneumatic actuators-Single acting cylinder, Double acting cylinder, Air motor, ISO symbols of Pneumatic components. Pneumatic Circuits-Direct operation of single acting cylinder-Operation of double acting cylinder-Operation of double acting cylinder with metering-in control-Operation of double acting cylinder with metering-out control-Use of shuttle valve in pneumatic circuit-Use of quick exhaust valve in pneumatic circuits-Automatic operation of double acting cylinder-Merits and Demerits of pneumatic system-Applications.	7
III	 HYDRAULIC SYSTEM Hydraulic system and its elements-Merits, Demerits and applications of hydraulic system. Hydraulic pumps-types-positive displacement pumps and non - positive displacement pumps -Gear pumps-External gear and internal gear type-vane pump-Axial piston pump and Radial piston pump-Hydraulic cylinders and Hydraulic motors - ISO symbols for hydraulic components -pressure relief valve-Directional control valves-3/2DCV,4/2DCV,4/3DCV. 	2

	Hydraulic accumulator and its uses-Types-Gravity type accumulator, spring	2
	loaded accumulator, Gas loaded accumulator-Pressure intensifier.	
	Hydraulic circuits-Operation of double acting cylinder using metering-in control	
	and metering out control-Operation of Hydraulic motor using metering-in and	
	metering out- control Hydraulic circuit using sequence valves and counter	5
	balance valves - Hydraulic circuit for shaping machine, surface grinding	
	machine and Milling machine. Comparison of Hydraulic system and Pneumatic	
	system.	
IV	THERMODYNAMICS	
	Thermodynamic system-Types-Closed system, Open system and isolated	
	system-Property and state of a system-Intensive and Extensive properties -	
	Thermodynamic process-Cycle-Point and Path functions-Law of conservation	6
	of energy-Thermodynamic equilibrium- laws of thermodynamics.	
	Laws of perfect gasesEquation of state-Universal gas constant-Relationship	
	between the specific heats and gas constants.	
	INTERNAL COMBUSTION ENGINES	
	Introduction to IC Engines-Classification-Working of four stroke cycle petrol and	
	diesel engines-Merits & Demerits-Working of two stroke cycle petrol and diesel	3
	engines-Merits & Demerits-Comparison of four stroke and two stroke engines.	
	HEAT EXCHANGERS	
	Heat transfer in engineering –Modes of heat transfer-Conduction, Convection	
	and Radiation.	
	Heat transfer by conduction-Fourier law of heat conduction-Thermal	
	conductivity of engineering materials-Heat conduction through plane wall-Heat	6
	conduction through composite wall-Simple problems.	
	Newton's law of cooling-Stefan Boltzmann law of radiation.	
	Heat exchanger-types, parallel flow heat exchanger, counter flow heat	
	exchangers-Application of heat exchangers.	

V	E-VEHICLES	
	Environmental impact and history: Air pollution – Petroleum resources –	
	History of Electric vehicles -History of Fuel Cell Vehicles Battery Electric	4
	Vehicle (BEV) – Fuel Cell Electric Vehicle (FCEV) – Description.	
	Electric Vehicles: Configurations of Electric Vehicle – Performance of Electric	
	Vehicles – Tractive Effort in Normal Driving – energy consumption. Hybrid	7
	Electric Vehicles: Concept of Hybrid electric drive trains – Architecture of	
	Hybrid Electric Drive trains. Electric Propulsion Systems: Drive Systems: DC	
	motor drives - Principle of operation – Induction Motor drives - Basic operation	
	principles Energy Storages: Electrochemical Batteries – Battery Technologies –	
	Lead Acid Batteries – Nickel Based Batteries – Lithium Based Batteries –	
	Charging system – DC charging – Wireless charging	
	Tamilnadu E-vehicle Policy 2019: Vehicle Population in Tamilnadu – Need of	
	EV Policy – Advantage of EV Eco system – Scope and Applicability of EV	4
	Policy – Objectives of EV Policy – Policy Measures Recycling Ecosystem –	
	Battery and EVs.	
	TEST & MODEL EXAMINATIONS	07

Text Books:

- 1. Sundaramurthy, Fluid Mechanics and Fluid Power, Narayana publications.
- 2. Nag.P.K., Engineering Thermodynamics, Tata Mc Graw Hill.
- 3. R.Srinivasan, Hydraulic and Pneumatic controls, Vijay Nicole Imprints PVT.LTD, second edition, Chennai.
- 4. Modern electric, Hybrid electric & Fuel cells vehicles –Mehrdad ehsani ,Yimin Gao, Stefano Longo & Kambiz Ebrahimi.

Reference Books:

- 1. Khurmi.R.S, A Test book of Hydraulics, Fluid Mechanics and Hydraulic Machines, S Chand & CO.
- 2. Khurmi R.S and Gupta.K, A Text book of Thermal Engineering, S Chand & CO.
- 3. Ballaney.B.L., Applied Thermodynamics , Khanna publishers.
- 4. Bansal.R.K, Fluid Mechanics and Hydraulic Machines .
- 5. Electric Vehicles and the end ICE age-Anupam Singh.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

IV SEMESTER

2020 - 2021 onwards

4022430 - TOOL ROOM SPECIAL MACHINES

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	TOOL ROOM SPECIAL MACHINES
Semester	:	IV
Subject Code	:	4022430
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL&DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subiect	Hours /	Hours / Semester	Marks			
	Week		Internal Assessment	Board Examinations	Total	Duration
TOOL ROOM						
SPECIAL	5	80	25	100*	100	3 hrs.
MACHINES						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.	
I	Cutting Tools and Mechanics of Metal Cutting	15	
II	Boring, Jig Boring, Jig grinding, Tool and Cutter Grinder and Cylindrical Grinder	14	
	Milling Machines and Gear Generation Processes	14	
IV	CNC Machine and its Components	15	
V	Un-Conventional Machining	15	
Test & Model Examinations			
	Total	80	

RATIONALE:

Globalization and technological advances making tremendous growth in industrial activities, which in turn needs tool and die makers for most of the engineering products manufacturing industries. To meet out such demand and to sustain we have to explore the knowledge about tool room special machines covering the various operations and skill set required for the development of nation and its people.

OBJECTIVES:.

At the end of the study of this subject the student will be able to:

- Describe the different forces in orthogonal and oblique cutting
- Estimate the forces in metal cutting operations
- Describe about various cutting tool materials
- Explain the cutting force measurement principles
- Compare the properties of different cutting fluids
- Describe about jig boring and jig grinding
- Explain about tool and cutter grinder
- Explain the milling machine principles, types and its various operations
- Explain the various gear generation processes
- Explain the principle of operation of various un-conventional machining processes
- Appreciate the use of un-conventional machining processes.
- Distinguish between EDM and Wire-cut EDM machine operation
- Describe about various types of CNC machines, operations and its components.

DETAILED SYLLABUS

Conte	nts: Theory	1		
Unit	Name of the Topics	Hours		
	Cutting Tools and Mechanics of Metal Cutting Chapter: 1.1:Cutting tools-properties of cutting tool materials-cutting tool	5		
	materials; High carbon steels, high speed steel, carbides, ceramics. types of			
	cutting tools			
	<u>Chapter: 1.2</u> : Types of metal cutting – orthogonal and oblique cutting- chip			
	formation – continuous, discontinuous, built-up edge – shear angle. Tool			
	signature - importance cutting forces in orthogonal cutting - metal removal	10		
	rate [MRR] - tool life; Taylor's life equation, factors influence in tool life.			
	measurement of cutting force - tool dynamometer - types of tool			
	dynamometer – machinability – machinability index – factors affecting			
	machinability - cutting fluids - properties of cutting fluids - selection of			
	cutting fluids – selection of cutting fluids			
	Boring, Jig Boring, Jig grinding, Tool and Cutter Grinder and			
	Cylindrical Grinder Chapter: 2.1:Boring and iig boring -Boring machines- horizontal and vertical			
	types- fine boring machines- boring tools jig boring machine- measuring	3		
	system- hole location procedure- deep hole boring			
	Chapter: 2.2: Jig grinding Introduction- construction- operation techniques-			
	setting up and clamping- wheel travel- wheel selection- wheel dressing.	3		
	optical profile grinding- basic principle and operations			
	Chapter: 2.3: Tool and cutter grinder Introduction- selection of cutter-			
	grinding wheels- shape, abrasive grain size and bond, direction of rotation-	5		
	tooth rest, types, parts of universal tool and cutter grinder, clearance, width			
	of land- producing of clearance angle			
	Chapter: 2.4:Cylindrical Grinding Machine			
	Centre Type Cylindrical Grinding Machine – Centre less Grinding Machine –			
	Through feed Grinding – In feed Grinding	3		
111	Milling Machines and Gear Generation Processes			
	Chapter: 3.1: Milling machines; Types-specification of milling machines-	7		
	principles of operation of column and knee type and universal milling			
	machine- work and tool holding devices; Arbor, spring collet, adapter -			
	and climb milling-milling operations-milling attachments.			
----	---	----		
	Chapter: 3.2: Generation process Gear shaper- gear hobbling- principle of			
	operation only gear finishing processes- gear burnishing- gear shaving- gear			
	grinding and gear lapping- gear materials; cast iron, steel, alloy steels brass,	7		
	bronze, aluminum ,nylons			
	CNC Machine and its Components Chapter: 4.1:CNC machines; Numerical control- definition- working			
	principle of a CNC system- features of CNC machines- advantages of CNC	8		
	machines- difference between NC and CNC- construction and working			
N7	principle of turning principle- construction and working principle of machining			
IV	centre- machine axes conventions turning centre and machining centre.			
	Chapter: 4.2: Components of CNC machine; slide ways- requirement-			
	types- friction slide ways and antifriction slide ways- linear motion bearings-	7		
	recirculation ball screw- ATC- tool magazine – feedback devices- linear and			
	rotary transducers- encoders- in process probing- tool material- tool inserts.			
	Un-Conventional Machining Chapter: 5.1:Un- conventional Machining Processes: Construction,			
	working and applications of ultrasonic machining- chemical machining-	-		
	electro chemical grinding- plasma arc machining- LASER machining-	1		
	advantages- disadvantage,- Electron Beam Machining – Abrasive Jet			
	Machining			
v	Chapter: 5.2:Electrical discharge machining: Introduction- principle of			
	spark erosion and requirements of dielectric fluid- layout of spark machining	8		
	system, EDM machine- tool materials – electrical circuits in EDM- metal	•		
	removal rate- mean current- operation parameters and typical values and toll			
	wear- reasons- classification and types. EDM process characteristic-			
	advantages and disadvantages of EDM process- wire-cut EDM,CNC Wire-			
	cut EDM for machining punch and die cavities.			
	TEST & MODEL EXAMINATION	07		

TEXT BOOKS

- Hajra choudhry, "Work shop Technology", Vol. II, Media Promoters and Publishers Pvt. Ltd.
- 2. Chapman.WAJ., "Work shop Technology", Vol. II & III, ELBS

REFERENCE BOOKS :

- 1. Paul De Garmo.E., & Others, "Materials and Processes in Manufacturing", Macmillan Publishing Company
- 2. Jain & Gupta, Production Technology, Khanna Publishers, 2-B, North Market, Naisarak, new Delhi
- 3. MOORE AND VICTORY, "Holes, Contour And Surfaces"
- 4. HMT, "Production Technology"
- 5. BATTACHARYA, "Workshop Technology", P.C.SHARMA, "A Text Book of Production Engineering", S.Chand & Co

Die Maintenance

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	FORGING DIES, DIE CASTING DIES AND DIE MAINTENANCE
Semester	:	IV
Subject Code	:	4022440
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 16weeks

	Instructions		Examination			
		Hours/ Semester	Marks			
Subject	Hours/ Week		Internal Assessment	Board Examination	Total	Duration
FORGING DIES,						
DIE CASTING						
DIES AND DIE	5	80	25	100*	100	3 hrs.
MAINTENANCE						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours:

Unit.	ТОРІС	TIME (Hrs.)
No.		
I	Forging Process and Forging Machines	15
II	Design Of Drop Forging, Press Forging and Machine Forging Dies	15
	Die Casting Materials, Machines, Die Materials And Treatments	14
IV	Die Casting Die Design, Defects And Finishing Of Die Casting Dies	15
V	Die Maintenance	14
	TEST & MODEL EXAMINATIONS	07
	Total	80

RATIONALE:

Development and use of Forging & Die casting products is high in industries and requires more knowledge on Forging dies and Die Casting Dies and understand of its processes and the operations. This subject will develop the basic knowledge on Forging and Die casting Dies with the process and the basic operations.

OBJECTIVES:

- Explain the fundamentals of forgings, and forging processes.
- Compare the different types of forging
- Design Drop Forging dies.
- Design press forging and Machine forging dies.
- Explain the basics of Die casting process.
- Explain the working of die casting machines.
- Design die casting die
- State the characteristics of the die steel
- Explain the causes and remedies of die casting defects.
- Practice on estimation and costing of dies
- Estimate the cost of dies
- Understand the necessity & importance of die maintenance

DETAILED SYLLABUS

Contents: Theory					
Unit	Name of the Topic	Hours			
	FORGING PROCESS AND FORGING MACHINES				
I	Introduction to Forgings: Uses and advantages of forgings, forged				
	parts Vs cast parts, Forging Temperatures, annealing of forgings, forging	4			
	properties. forge ability and forgeable metals				
	Forging processes: Hot-working and cold-working – Advantages –				
	comparison – hot-working operations: rolling, forging, smith forging, drop				
	forging, upset forging press forging - roll forging - Roll die forging, ,				
	skew rolling, ring rolling - power required calculations for rolling and	7			
	forging operations. Forging dies- drop hammers- board hammers, air lift				
	hammers, power drop hammers, capacity of drop hammers. Press				
	forging – Mechanical forging presses, Hydraulic press. Comparison of				
	press forging Vs hammer forging. Machine or upset forgings. Heat				
	treatment of forged parts				
	Heating devices-Box or batch type furnaces, rotary hearth furnaces,				
	continuous or conveyor furnaces, induction furnaces, resistance	4			
	furnaces. Open fire and stock fire.				
	DESIGN OF DROP FORGING, PRESS FORGING AND				
П	MACHINE FORGING DIES				
	DROP FORGING DIE DESIGN: Hammer dies for preparatory work –				
	fullering dies – edging dies – flattening dies – Drawing down dies –	6			
	bending die. Essential features of forging dies – generous radii, parting				
	line position, flash gutter, webs and panels, draft, air vents. Flash areas				
	and gutters in finishing dies. Elements of multi impression die block,				
	effect of grain flow.				
	PRESS FORGING DIES: Rating of forging press, steps in press forging	3			
	dies, design of press forgings, design of press forging dies.				
	MACHINE FORGING DIES :- General characteristics, techniques used				
	in making these forgings, machine forging description and range,	3			

	machine forging tools and operation, design of dies for forging machines	
	Laws governing forging machine die design, Examples of forgings	
	produced on forging machines, forging defects – causes and remedies.	
	FORGING DIE BLOCKS AND DIES: Materials and grade of die blocks,	
	applications of various grades of steel used for die blocks and dies-Die	3
	insert-Re-sinking of dies- IS code for tool and die steels	
	DIE CASTING MATERIALS , MACHINES, DIE MATERIALS AND	
Ш	TREATMENTS	
	DIE CASTING MATERIALS: Types of die casting alloys –metallurgy,	
	melting & casting procedure and application of zinc based die casting	4
	alloys, Aluminum base alloys, Magnesium base alloys, magnesium base	
	alloys, Copper base alloys, Lead base alloys and Tin base alloys.	
	DIE CASTING MACHINES: Plunger machine, air machine, modern	
	cold chamber machines. Die locking methods, injection systems,	
	automatic cycle control, and interlock and safety devices in die casting	6
	machines. Operation of hot chamber and cold chamber die casting	
	machines. Machine specifications, process parameters and their effect	
	on product quality. Effect of die casting machine on the process -	
	accumulator pressure, injection line pressure, intensification, plunger	
	diameter, locking force, mode of injection, plunger diameter, casting	
	cycle, lubrication.	
	DIE MATERIALS AND TREATMENTS: Characteristics of Tool and Die	
	steels – Choosing of Tool Steels – Heat treatment of die steels – Tool	4
	steel production methods – Die surface coatings and treatments –	
	wrought low carbon steels and Cast irons – Nonferrous and nonmetallic	
	die materials.	
	DIE CASTING DIE DESIGN, DEFECTS AND FINISHING OF DIE	
IV	CASTING DIES	
	DIE CASTING DIE DESIGN: Flow system - Importance, metal flow	
	systems in die casting dies, goose neck, nozzle, sprue, runners	6
	systems, shock absorbers, gate, gate area, gate velocity, air vent,	
	overflow, determination of gate area. Procedure to calculate runner and	

6
3
3
3
3
3
3
3
3
3
3
3 4 4
3 4 4
3 4 4
s s s s

Text books:

- 1. S.K.Hajra Choudhury and A.K.Hajra Choudhury, Elements of Workshop Technology, Media Promoters and publishers pvt. Ltd
- 2. Ivana Suchy, Hand book of Die Design, McGraw-Hill Book company, Second edition **Reference Books:-**
- 1. Meswani., and R.H.Dattani, Design and Manufacture of forging dies
- 2. Kamenshichikov, S.Koltun and V.Naumov, Forging Practice, MIR publishers.
- 3. J.C.Sharman, Drop, Press and Machine Forgings, The machinery publishing co ltd.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR N – SCHEME

IV SEMESTER

2020 - 2021 onwards

4022450 – MECHANICAL MATERIAL TESTING PRACTICAL

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject title	:	MECHANICAL MATERIAL TESTING PRACTICAL
Semester	:	IV
Subject Code	:	4022450
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 Weeks						eeks
SUBJECT	Instructions		Examination			
	Hours/	Hours/ Semester	Marks			Duration
	Week		Internal	Board	Total	
			Assessment	Examination		
MECHANICAL MATERIAL TESTING PRACTICAL	4	64	25	100*	100	3 hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES

The objective of this course is to make the Student:

- Able to determine various strengths of Different Materials.
- To calculate the Young's modulus and Shear modulus of the given material.
- To conduct Bend Test using the given specimen.
- To differentiate hardness and toughness of the given Ductile and Brittle Materials.
- To detect cracks on the given specimen
- To handle Rockwell & Brinell hardness tester to determine the Hardness of the given material.
- To observe the microstructure of ferrous and nonferrous metal using metallurgical microscope.

DETAILED SYLLABUS

<u> Part – A (30 Hrs)</u>

- 1. Estimation of Tensile Strength of the ductile material –Mild steel
- 2. Estimation of Tensile Strength of Brittle material Cast Iron
- 3. Estimation of compressive Strength of the following materials
 - a) Ductile material (Mild Steel or Al)
 - b) Brittle material (Cast Iron or Bronze)
- 4. Estimation of shear strength of Mild steel specimen under (i) Single shear and(ii) Double shear condition
- Estimation of Toughness of mild steel specimen using (i) Izod impact test
 (ii) Charpy impact test
- 6. Torsion test on mild steel relation between torque and angle of twist, determination of shear modulus and determination of elastic constants for mild steel.
- 7. Determination of stiffness, modulus of rigidity, strain energy stored and shear stress by load deflection method on the coil springs.
- 8. Determination of Young's modulus of steel by deflection test.
- 9. Determine the ductility of the given specimen using Bend Test.

<u> Part – B (27 Hrs)</u>

- 10. Determination of hardness of Mild steel, copper, aluminum using Rockwell hardness tester
- 11. Determination of hardness of OHNS and HCHCr using Rockwell harness tester.
- 12. Determination of hardness of Mild steel, copper, aluminum using Brinell hardness tester
- 13. Determination of hardness of OHNS and HCHCr using Brinell hardness tester.
- 14. Study of Metallurgical microscope and grain structures.
- 15. Preparation of specimen for study of micro structure of ferrous metals
- 16. Examine the micro structure of metal samples (i) Ferrous and (ii) Non- Ferrous.
- 17. Detection of Cracks in casting using Detection methods.
 - i. Visual Inspection and ring test

ii. Die penetrant test

18. Detection of Cracks in casting using Magnetic particle test

MODEL EXAM – 7 Hrs

SCHEME OF EXAMINATION:

Part -A (1¹/₂ Hours) : 45 marks

Part -B (1¹/₂ Hours) : 45 marks

Viva-Voce : 10 marks

Total : 100 marks

SCHEME OF VALUATION:

Observation / Reading - 15 marks

Tabulation / Formula - 15 marks

Calculation & Result - 15 marks

Details Of The Equipment's (for a batch of 30 students)

NAME COUR	IE OF THE BRANCH / MECHANICAL ENGINEERING RSE (TOOL & DIE)					
YEAR	SECOND					
SEME	STER IV					
NAME	OF THE LABORATORY 32245 MECH	ANICAL MATERIAL				
	TESTING PRACTI	CAL				
S NO		QUANTITY				
5.NU		REQUIRED				
1	Universal Testing Machine (UTM)	1				
2	Rockwell Hardness Testing machine	1				
3	Torsion testing machine1					
4	Defection testing machine	1				
5	Impact test machine 1					
6	Torsion testing arrangement1					
7	Shear testing machine 1					
8	Brinell hardness testing machine 1					
9	Metallurgical microscope 2					
10	Metallurgical specimens	1set				
11	Double disk polishing machine	1				
12	Electromagnetic crack detector with its accessories	1				

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

II YEAR

N – SCHEME

IV SEMESTER

2020 - 2021 onwards

4022460 – HYDRAULICS AND PNEUMATICS PRACTICAL

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	HYDRAULICS AND PNEUMATICS PRACTICAL
Semester	:	IV
Subject Code	:	4022460
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 16 wee						eks
SUBJECT	Instr	uctions	Examination			
	Hours/	Hours/	Marks			Duration
	Week	Semester	Internal	Board	Total	
			Assessment	Examination		
HYDRAULICS AND						
PNEUMATICS	3	48	25	100*	100	3 hrs.
PRACTICAL						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Objectives:

- Study Pneumatic system and its functioning
- Study Hydraulic system and its functioning
- Control operation of cylinders using metering in and metering out control
- Design and operate application oriented pneumatics circuits
- Design and operate application oriented hydraulic circuits
- Use special purpose valves such as shuttle valve and quick exhaust valve
- Compare the functioning of pneumatic and hydraulic systems
- Trouble shoot in pneumatic and hydraulic circuits

<u>Note:</u>

The students should be trained in Pneumatics and Hydraulics and all exercises should be completed. The students should maintain a Record Note book and submit the bonafide record for Board Practical Examination. Examination has to be conducted in Pneumatics and Hydraulics lab.

List of exercises in Pneumatic System: (24 Hrs)

- 1. Study of Pneumatic System and its elements.
- 2. Direct operation of a Single Acting Cylinder.
- 3. Direct operation of a Double Acting Cylinder.
- 4. Operation of a Single Acting Cylinder controlled from two different positions using Shuttle Valve.
- 5. Operation of a Double Acting Cylinder with quick return using quick exhaust valve.
- Controlling the speed of a Double Acting Cylinder using metering –in and metering out controls.
- 7. Automatic operation of a Double Acting Cylinder in single cycle using limit switch and memory valve.
- Design a pneumatic circuit for operating a jack ,Brake, Clamps, push & move parts.(one circuit design is to be asked compulsory for end examination with a maximum of 10 marks)

List of exercises in Hydraulic System (21 Hrs)

- 1. Study of hydraulic System and its elements.
- 2. Direct operation of a Double Acting Cylinder.
- 3. Direct operation of a Hydraulic motor.
- 4. Controlling the speed of a Double Acting Cylinder using metering-in and metering-out type control.
- 5. Controlling the speed of hydraulic motor using metering-in and metering-out control
- 6. Sequencing of two cylinders using Sequence Valve.
- Design a hydraulic circuit for operating a hydraulic press, jack, milling machine table movement. (one circuit design is to be asked compulsory for end examination with a maximum of 10 marks)

MODEL EXAM: 3 Hrs

Scheme of Evaluation

		Procedure	5 marks
Pneumatics	Any one exercise (Ex No 2-7)	Circuit Diagram	20 marks
(45 marks)	&	Execution	10 marks
	Circuit Design (Ex No 8) (Compulsory)	Circuit Design & Procedure	10 marks
	Any one exercise (Ex 2-6)	Procedure	5 marks
Hydraulics	&	Circuit Diagram	20 marks
(45 marks)	Circuit Design (Ex No 7)	Execution	10 marks
	(Compulsory)	Circuit Design & Procedure	10 marks
	10 marks		
	100 marks		

List of Equipment's (for a batch of 30 students)

- 1. Pneumatic system with necessary DCV, FCV and Actuators.
- 2. Hydraulic system with necessary DCV, FCV and Actuators.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	TOOL ROOM SPECIAL MACHINES PRACTICAL
Semester	:	IV
Subject Code	:	4022470
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL&DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ictions	Examination				
Subiect	Marks		Marks	larks			
	Week	Semester	Internal Assessment	Board Examinations			
TOOL ROOM							
SPECIAL	5	80	25	100*	100	2 Uro	
MACHINES	5	, 80	25	100	100	5 115.	
PRACTICAL							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES:

- Identify a milling machine and its parts
- Identify a cylindrical grinder, surface grinder and tool and cutter grinder
- Identify Shaping machine and its parts
- Identify the tools and instruments
- Handle the different types of work holding devices
- Machine a component using different machine tools.
- Calculate the indexing for a work

DETAILED SYLLABUS

Contents: Practical

Name of the Topics:

Syllabus

- 1. Introduction to shaping machine and its parts
- Introduction to milling machine and its parts. 2.
- Introduction to grinding machine and its parts 3.
- 4. Introduction to work holding devices.
- 5. Types of cutter used in milling machine
- 6. Types of grinding wheels used in grinding machines
- Setting of work, tools and cutters in shaping, milling and grinding machines
- 8. Operations performed in shaping, milling and grinding machine

EXERCISES:

- 1. Machine a cube by using shaping machine
- 2. Machine a square block from round rod using Milling machine
- 3. Machine a 'V' Block using Milling machine
- 4. Machine Groove cuts using Vertical Milling machine
- 5. Grind a plain surface using surface Grinder
- 6. Grind a cylindrical surface using Cylindrical Grinding machine
- 7. Grind a Progressive type Plug gauge using Cylindrical Grinding machine
- 8. Machine a Spur Gear using milling machine by Simple Indexing
- 9. Machine a Helical Gear using milling machine.
- 10. Grind a Facing Tool using Tool and Cutter Grinder

BOARD EXAMINATION

Last job of the raw material (MS Rod Ø32x33mm, MS Rod Note to the faculty :-Ø25x98mm and 13x13x75 mm MS square rod) to be retain in student wise or batch wise(not more than 2 students)

This may be verifiable at the time of Board Practical Examination by the external examiner

DETAILED ALLOCATION OF MARKS

Milling / Grinding/Shaping	: 90 marks
Viva-voce	: 10 marks
Total	: 100 marks
ote: Sketches enclosed	

Ν Note : All dimensions are in mm

Board Examination-Question Paper Pattern

One Experiment should be carried out given in the question paper(1x90=90)

- Procedure 10marks
- Calculation -10 marks
- Dimensioning 40 marks
- Finish 30 Marks

-	10 Marks
	-

Total – 100 Marks

1.To machine the component in a given raw material as per the sketch attached

Note : Attach the sketch with the question paper

EXERCISE NO: 1 SHAPING A PLAIN SURFACE MANUFACTURE A SQUARE BLOCK USING SHAPING MACHINE. Raw material size: 52 mm Cl (or) MS cube

ALL DIMENSIONS ARE IN mm

EXERCISE NO: 2 MANUFACTURE A MAXIMUM SIZE SQUARE BLOCK FROM GIVEN ROUND ROD USING MILLING MACHINE.

RAW MATERIAL SIZE: Ø32X33 mm MS ROUND

ALL

DIMENSIONS ARE IN mm

EXERCISE NO: 3

MACHINE A V BLOCK BY USING MILLING MACHINE

RAW MATERIAL SIZE:22 X33

EXERCISE NO:4 GROOVE MILLING

MACHINE THE REQUIRED GROOVES BY USING VERTICAL MILLING MACHINE RAW MATERIAL SIZE:22X33

EXERCISE NO:5 SURFACE GRINDING GRIND THE PLAIN SURFACE TO AN ACCURACY OF 0.01mm BY USING SURFACE GRINDING MACHINE.

RAW MATERIAL SIZE:75X50X12 mm MS

EXERCISENO:6 CYLINDRICAL GRINDING GRIND THE CYLINDRICAL COMPONENT TO AN ACCURACY OF 0.02MM BY USING CYLINDRICAL GRINDING MACHINE

RAW MATERIAL SIZE:Ø32X150 MM MS POLISH ROD

ALL DIMENSIONS ARE IN mm

EXERCISE NO:8 SPUR GEAR MILLING MACHINE A SPUR GEAR BY USING MILLING MACHINE

RAW MATERIAL SIZE: FINISHED WORKPIECE OF EX.NO:7

EXERCISE NO:9 HELICAL GEAR MILLING MACHINE A HELICAL GEAR BY USING MILLING MACHINE RAW MATERIAL SIZE:FINISHED WORKPIECE OF EX.NO:6

EXERCISE NO:10- FACING TOOL (TOOL AND CUTTER GRINDER) TOOL AND CUTTER GRINDING

RAW MATERIAL:13 x13x 75

List of Equipment's (for a batch of 30 students)

- 1. Vertical milling machine/ vertical milling attachment in Universal Milling Machine 2 No's
- 2. Universal Milling Machine with indexing head- 2 Nos
- 3. Surface Grinding Machine (Horizontal) 1 No
- 4. Cylindrical Grinding machine 1 No
- 5. Tool and Cutter grinder 1 No
- 6. Shaping machine -1 no

EQUIPMENT'S & TOOLS:

- 1. Milling Cutter (2 Module cutter) & accessories complete sets
- 2. Milling Machine Handle and required accessories 2 sets
- 3. Grinding wheel OD 150 mm , ID 1"(AA-65, K5, V8) 2 No's
- 4. Grinding wheel OD 300 mm , ID 150mm(AA-56, K5, V8) 1 No

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

- Course Name : 1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)
- Subject Code : 4022510

:

Semester : V

Subject Title

JIGS, FIXTURES AND GAUGES

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	uctions		Examination				
Subject	Hours/	Hours/	Marks			Marks	Duration	
Gubject	Week	Semester	Internal Assessment	Board Examination	Total	Duration		
JIGS, FIXTURES AND GUAGES	5	80	25	100*	100	3 hrs.		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

TOPICS AND ALLOCATION OF HOURS:

Unit No	Topics	Time Hours
Unit – I	Basics of Work Holding Devices	14
Unit – II	Clamping and Tool Guiding Elements	15
Unit – III	Principles of Jig Design	15
Unit – IV	Principles of Fixture Design	15
Unit – V	Gauges	14
	TEST & MODEL EXAMINATIONS	07
	Total	80

Rationale:-

In the present competitive environment, elimination of non-productive time in the processes is essential to improve productivity. For improving the productivity in the engineering industries various types of production tools Viz., Jigs, Fixtures, Gauges etc., are employed wherever necessary /possible. Hence thorough knowledge on the principles, construction and working principle of various Work holding devices and gauges is absolutely essential.

OBJECTIVES

- Identify the Difference between Jig & Fixtures
- Study the plane of movements
- Explain possible freedom of movement of job in a jig, fixtures
- Study locating of work piece in a jig, fixture
- To understand the construction of various types of Jigs and Fixtures
- Explain mounting of jig on a machine tool
- Explain mounting of fixtures on the machine tool
- To understand the construction of various types of gauges

DETAILED SYLLABUS

4022510 JIGS, FIXTURES AND GUAGES

Conter	nts: Theory	
Unit	Name of the Topic	Hours
No.		
	BASICS OF WORKHOLDING DEVICES:	
I	Work holding Concepts - Basic Work holders, work holder purpose	2
	and function, General Considerations	
	Jigs and Fixtures – Introduction – Definition – Difference between Jigs	2
	and Fixtures – Advantages of Jigs and Fixtures.	
	Locating and supporting principles - Location types, Degrees of	
	freedom - 12 degrees of freedom. Location methods - 6 points location	5
	principle (or) 3-2-1 principle of location, concentric and Radial methods –	
	Basic rules, position and number of locators, Redundant locators,	
	Locational Tolerances, Fool proofing.	
	Locator Types : External – Fixed locators, Integral locators,	
	Commercial pin, Assembled locators, Pins, V Type, locating nests.	
	Adjustable locators, Sight locators. Internal – Machined internal,	5
	Relieved, Diamond pins, Floating locating pin, conical locators, self-	
	adjusting locators, spring locating pins. Spring stop buttons. Chip and	
	burr problems	
	CLAMPING AND TOOL GUIDING ELEMENTS:	
П	CLAMPING: Clamping principles – Tool forces, clamping forces,	
	positioning clamps. Rigid Vs Elastic work holders.	
	Types of Clamps – Strap clamp, screw clamp, cam action clamps,	
	Toggle action clamps, wedge action clamps, latch clamps, rack and	
	pinion clamps, specialty clamps.	8
	Chucks – Operations, Nomenclature. Lathe chucks – Solid Arbors and	
	Mandrels. Split collet and bushing work holders, axial location, self-	
	actuating wedge cam and wedge roller work holders.	
	VISES – Special jaws, independent jaws.	
	Non-Mechanical Clamping – Magnetic chucks, vacuum chucking,	

	Electrostatic chuck.	
	Power Clamping - Hydraulic and Pneumatic clamping. Multiple part	
	clamping.	
	TOOL GUIDING ELEMENTS:	
	Drill jig bushings and liners - Selection, Bushing / liner installation,	
	interference fit, chip clearance, accuracy and life.	
	Types of bushes - Head less press fit bushes, Headed press fit	
	bushes, Slip renewable and Slip fixed renewable bushings / liners,	
	Headless press fit liners, Headed press fit liners, Oil groove bushings,	7
	Gun drill bushings, Special bushings. Bushings and liners for polymers,	
	castable and soft material tooling. Template bushings, Rotary bushings.	
	Drill bushing tips and accessories. Drill bush material and manufacture.	
	PRINCIPLES OF JIG DESIGN	
III	Introduction - General considerations - Machine considerations -	5
	Process considerations. Basic requirements of Drill jigs.	
	TYPES OF JIGS – Template drill jigs, Plate jigs, Universal jigs, Leaf jig,	
	Channel and Tumble box jigs, Indexing Jigs, Boring jigs, – Post jig – Pot	10
	jig. Miscellaneous drill jigs – Wooden drill jigs, Polymer Drill Jigs,	
	modified vises, collet fixtures, self-centering vises. Jig design Example	
	– Plate Jig design example	
	PRINCIPLES OF FIXTURE DESIGN	
IV	Introduction: General Considerations, fixture cost, production	2
	capabilities, Production process, part considerations.	
	Types of fixtures - Milling fixture, Lathe fixture, Grinding fixture,	
	Broaching fixture, Assemble fixture, Inspection fixture, Boring fixture,	3
	Indexing fixture, welding fixture and sawing fixture.	
	Basic Design Characteristics that apply to - Milling fixture, Lathe	
	fixture, Grinding fixture, Boring fixture, Broaching fixture, welding fixture	3
	and sawing fixtures.	
	Fixture Design - Standard fixture mounting, Relationship between	
	fixture and cutting tool, Tool positioning, Relationship to locators, Cutter-	7
	setting devices, Step by step approach to fixture design. Fixture design	

Example – Plain Milling fixture.	
Fixture design for numerically controlled machine Tools	
GAUGES	
Introduction – limit gauges –Taylor's principle of limit gauging –	7
Application of limit gauges – Gauging principles – Allocation of Gauge	
Tolerance – Bilateral system, Unilateral system, Gauge wear allowance,	
Gauge materials, Gauging policy.	
Types of Gauges – Commercial Gauges – Screw pitch gauges, plug	
gauges, Ring gauges, Snap gauges, Flush pin gauges– IS specifications	7
for gauges – Design of plug and Snap gauges.	
TEST & MODEL EXAMINATIONS	07
	Example – Plain Milling fixture. Fixture design for numerically controlled machine Tools GAUGES Introduction – limit gauges –Taylor's principle of limit gauging – Application of limit gauges – Gauging principles – Allocation of Gauge Tolerance – Bilateral system, Unilateral system, Gauge wear allowance, Gauge materials, Gauging policy. Types of Gauges – Commercial Gauges – Screw pitch gauges, plug gauges, Ring gauges, Snap gauges, Flush pin gauges– IS specifications for gauges – Design of plug and Snap gauges. TEST & MODEL EXAMINATIONS

Text Books:-

- 1. Cyril Donaldson, Tool Design, Special Indian Edition, 2012, Tata Mc Graw Hill
- 2. P.C.Sharma , A Text Book of Production Engineering, , 2013, S.Chand & Co
- 3. P.H.Joshi ,Jigs & Fixtures
- 4. G.K.Vijayaraghavan, Design of Jigs, Fixtures and Press Tools, Suchitra publications

References:-

- 1. Edward Hoffman ,Jig & Fixture design
- 2. Roop Lal ,Jig & Fixtures design
- 3. W boyes, Handbook of Jig & Fixture Design
- 4. Elanchezhian C ,Design of Jigs, Fixtures & Press tool

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME (Implemented from the academic year 2020-2021 onwards)

Subject Title	:	PRESS TOOLS
Semester	:	V
Subject Code	:	4022520
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	uctions		Examination			
Hours/ Hours/ Marks					Duration		
Subject	Week	Semester	Internal Assessment	Board Total Examination			
PRESS TOOLS	5	80	25	100*	100	3 hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Time allocation

UNIT	TOPIC	TIME
		(Hrs)
I	Press working fundamentals, operations, and machinery	15
11	Press & Press Tool Accessories And Types Of Die	15
	Construction	
	Bending And Forming Dies	14
IV	Drawing Dies And Dies For Secondary Operations	14
V	Advanced Press Tool Applications and Trouble shooting	15
	TEST & MODEL EXAMINATIONS	07
	Total	80

Rationale:

Modern development of sheet metal industries require more understanding of production of sheet metal products and the machinery and tools involved in the production of the sheet metal products. This subject Press Tools will develop the basic knowledge on the essentials of the production of sheet metal products, the machinery and Tools involved in its production.

OBJECTIVES

The objective of this course is to make the Student:

- To understand the fundamentals of press working, to be familiar with the various press working operations and machines.
- To learn the safety in press working operations.
- To be familiar with the various press and press tool accessories
- To learn about the different types of Die construction.
- To know the various bending, forming and other miscellaneous press working operations.
- To learn about the construction and operation of the different bending dies.
- To be familiar with the various drawing and other related processes
- To know the construction and operating principle of drawing and combination dies.
- To know the basic concepts and the advantages of fine blanking process
- To learn the construction and working principle of various fine blanking dies.
- To learn about the concepts of SMED and quick die changes and its advantages in bringing down the press set up time.
- To learn to trouble shoot in various press tools.
- To be familiar with the specialised press tool applications.

DETAILED SYLLABUS

Contents: Theory

UNIT NO	Name of the Topic	Hours
I	PRESS WORKING FUNDAMENTALS, OPERATIONS, AND MACHINERY	
	Press working operations- Shearing, cutting off, parting, blanking,	4
	Punching, piercing, slotting, perforating, Notching, semi notching, lancing,	
	parting, Trimming , slitting, shaving. Safety in press working.	
	Press working mechanism: Presses according to their functions –	
	energy producing press, force producing presses, stroke controlled	
	presses. Press according to their energy supply – Mechanical, hydraulic,	
	Pneumatic, electromagnetic presses. Presses according to their	
	construction – Solid or gap frame, open back inclinable, knee frame,	6
	horning, open end or end wheel. Press according to their operation – Single	
	action, double action, triple action, multi slide press. Press actuating	
	mechanisms.	
	Parts of press, press operating parameters – Tonnage, shut height,	
	stroke, shut height adjustment, strokes per minute, die space. Clearance,	
	cutting terminology, stages of cutting, penetration, burr. Effects of	
	clearance variation – Secondary shear, large clearance, clearance	5
	selection, cutting characteristic – Dish distortion, spacing distortion, typical	
	wear.	
	Forces for cutting sheet metal - Cutting with square faces, cutting with	
	shear, shear on punch, slug bending force, shear on die steel, stripping	
	force.	
II	PRESS & PRESS TOOL ACCESSORIES AND TYPES OF DIE	
	CONSTRUCTION	
	Mechanical handling devices: Feeding and reeling mechanisms for	7
	coiled sheet metal - Reels and cradles (de-coiler), roll feeds and its types,	
	hitch feeds. Feeding mechanism for individual parts - Hopper feeds, dial	
	feeds, chutes, slides, magazine feeds, step feeds, special feeds.	

	Ejection mechanism – Gravity, air, kicker, lifter, shovel, mechanical hand,	
	ejection by next part. Transfer mechanisms – Conveyors, shuttle, turnover,	
	turnaround, stacker, rails.	
	Types of die construction: - Cut off, drop through, return type, compound,	
	combination, continental, sub press, follow die, progressive die, transfer die,	
	shuttle die. Function and nomenclature of die components: - Die, die set,	8
	die plate, punch, stripper plate, die spring, rubber keeper, stripper bolt, solid	U
	stripper, knockout plate, hold down plate, pad plate, blank holder, pressure	
	pin. Types of stock stop. Attachment components – Dowel, screw, key.	
	Miscellaneous components – Heal, stop block, bolster plate, backing plate,	
	pilot, gauges, insert, cams, hinges and rockers. Commercially available die	
	components – Die sets, die set attachment devices, punches, die buttons,	
	retainers, springs, fluid springs, die cushion and its types.	
	BENDING AND FORMING DIES:-	
	BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement,	
111	BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations –	
111	BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of	7
III	BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types,	7
III	BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake.	7
III	 BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake. Forming operations – Embossing, bulging, crimping, tube forming. 	7
III	 BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake. Forming operations – Embossing, bulging, crimping, tube forming. Miscellaneous press working operations – slugging, restrike or spank, 	7
III	 BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake. Forming operations – Embossing, bulging, crimping, tube forming. Miscellaneous press working operations – slugging, restrike or spank, extrude (holes), coining, hot trimming, cold trimming of die castings and 	7
III	 BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake. Forming operations – Embossing, bulging, crimping, tube forming. Miscellaneous press working operations – slugging, restrike or spank, extrude (holes), coining, hot trimming, cold trimming of die castings and plastic mouldings, riveting, burnishing or sizing, Ironing. 	7 7
III	 BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake. Forming operations – Embossing, bulging, crimping, tube forming. Miscellaneous press working operations – slugging, restrike or spank, extrude (holes), coining, hot trimming, cold trimming of die castings and plastic mouldings, riveting, burnishing or sizing, Ironing. Forming dies – Construction and working principle of solid form dies, pad 	7 7
III	 BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake. Forming operations – Embossing, bulging, crimping, tube forming. Miscellaneous press working operations – slugging, restrike or spank, extrude (holes), coining, hot trimming, cold trimming of die castings and plastic mouldings, riveting, burnishing or sizing, Ironing. Forming dies – Construction and working principle of solid form dies, pad form dies, curling dies, embossing dies, coining dies, swaging dies, bulging 	7 7
III	 BENDING AND FORMING DIES:- Bending of sheet metal – Bending theory, neutral axis, metal movement, spring back, methods of overcoming spring back. Bending Operations – Bending, flanging, hemming, curling, seaming, and corrugating. Types of Bending dies (construction and working principle) – V bending and its types, edge bending, u bending. Bending operations done using press brake. Forming operations – Embossing, bulging, crimping, tube forming. Miscellaneous press working operations – slugging, restrike or spank, extrude (holes), coining, hot trimming, cold trimming of die castings and plastic mouldings, riveting, burnishing or sizing, Ironing. Forming dies – Construction and working principle of solid form dies, pad form dies, curling dies, embossing dies, coining dies, swaging dies, bulging dies. Assembly dies - Riveting, tab stake, upset stake, crimping. 	7 7

N7	DRAWING DIES AND DIES FOR SECONDARY OPERATIONS	
/	Drawing operations - Shallow drawing, deep drawing. Analysis of cup	
	drawing: - Stages of drawing - Bending, straightening, friction, compression,	5
	tension, stretch forming. Variables of drawing - Bending and straightening	
	variables, friction variables, compression variables, stretch forming	
	variables, analysis of draw speed.	
	Draw dies &its construction and working principle – Conventional draw	
	die, redrawing die, reverse re drawing die, drawing of square or rectangular	
	shapes. Drawing with flexible tooling – Marform process, Hydro form	
	process, Hydro dynamic process, Verson- wheel on process. Draw die	6
	details – Blank holders, blank holding pressure and its importance, air	
	vents, drawing inserts, draw beads. Drawing defects, causes and	
	remedies.	
	Dies for secondary operations: - Construction and working principle of –	
	Semi piercing dies, shear form dies, dies for formed contours, notching die,	3
	shaving die, side piercing die.	
	FINE BLANKING TOOL AND SPECIALISED PRESS TOOL	
	APPLICATIONS, PRESS TOOL MAINTANANCE.	
	Fine blanking basics: Definition and Applications of fine blanking, Working	
	principle of fine blanking tool, V Ring – function of V ring, Dimensions of V	5
	ring. Comparison of fine blanking with blanking. Strip width and margin	
	calculations, Calculation of press, Fixing minimum distance from die	
	aperture. Factors affecting Tool life. Importance of punch and die radius.	
	Materials suitable for fine blanking, work hardening during fine blanking,	
	steel, copper and copper alloys, aluminum and aluminum alloys	
	Fine Blanking Machines: Working principle – Ram movement, Drive	
	systems-Mechanical drives, hydraulic drives, Machine force, Ring indenter	2
	force, counter force.	
	Fine blanking tools: Different types of tools - Compound die tooling	
	system with sliding punch, compound die tooling with fixed punch.	2
	Clearance calculation – Importance of clearance	
Specialized Press Tool Applications: Construction, advantage and	_	
---	----	
applications of advanced multistage tooling, unit tooling, angular piercing	2	
tools, CNC turret press. Principle or Quick Die Change (QDC) - need and		
advantages. Single Minute Exchange of Dies (SMED) - concept need and		
advantages.		
Factors Affecting Tool Service Life: Introduction, Elements of Tool	2	
performance, Procedure for investigation of tool failure, Trouble shooting in	-	
press tools, effect of heat treatment on service life of tools.		
Maintenance and Recondition of press tools - Blanking tool -	2	
Progressive Tool – Compound tool – wear and reconditioning of press tools		
components. Causes of tool and die failure, types of failures.		
TEST & MODEL EXAMINATIONS	07	

Text Books:

- 1. Donald F. Eary., Edward A. Reed, Techniques of Press working sheet metal, Prentice-Hall,Inc., Second Edition
- 2. Donaldson, Tool Design, Tata McGraw-hill Book Company
- 3. D.Eugene ostergaard, Advanced die making, McGraw-Hill Book company

References:-

- 1. Dr.John G.Nee, Fundamentals of Tool Design, Society of Manufacturing Engineers, Fourth Edition
- 2. ASTME National Book Committee, McGraw-hill Book Company
- 3. J.R.Paquin, Die design fundamentals, Industrial Press Inc
- 4. D.Eugene ostergaard, Basic die making, McGraw-hill Book Company

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	COMPUTER INTEGRATED MANUFACTURING
Semester	:	V
Subject Code	:	4020531
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING(TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subiect	Hours Hours /		Marks			
,	/ Semester	Internal	Board	Dura Total	Duration	
	Week		Assessment	Examinations		
COMPUTER						
INTEGRATED	5	80	25	100*	100	3 hrs.
MANUFACTURING						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Computer Aided Design	15
II	Computer Aided Manufacturing	14
	CNC programming	16
IV	FMS, AGV, AS/RS, Robotics	14
V	Advanced concepts of CIM	14
	TEST & MODEL EXAMINATIONS	7
	Total	80

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various concepts of Computer Aided Design and Manufacturing. They are able to operate CNC machines and write part program. They are able to understand the advanced concepts adopted in automated industries.

OBJECTIVES:

- Acquire knowledge in the field of Computer aided Design
- Explain the various concepts of Computer Aided manufacturing
- Write part program for manufacturing components in CNC machines
- Explain the concepts of automatic material handling and storage systems and robotics
- Explain the advanced concepts of CIM

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Computer Aided Design	
	Computer Aided Design: Introduction – definition – Shigley's design	6
	process - CAD activities - benefits of CAD - CAD software packages -	
	point plotting, drawing of lines, Bresenham's circle algorithm,	
	Transformations: 2D & 3D transformations – translation, scaling, rotation	
	and concatenation.	
	Geometric modelling: Techniques - Wire frame modelling – applications –	6
	advantages and disadvantages. Surface modelling - types of surfaces -	
	applications – advantages and disadvantages – Solid modelling – entities –	
	advantages and disadvantages – Boolean operations - Boundary	
	representation – Constructive Solid Geometry – Comparison.	
	Graphics standard: Definition – Need - GKS –IGES – DXF. Finite Element	3
	Analysis: Introduction – Development - Basic steps – Advantages.	
II	Computer Aided Manufacturing	
	CAM – Definition - functions of CAM – benefits of CAM. Introduction of CIM	3

	- concept of CIM - evolution of CIM - CIM wheel - Benefits - integrated	
	CAD/CAM.	
	Group technology: Part families - Parts classification and coding - coding	6
	structure – Opitz system, MICLASS system and CODE System. Process	
	Planning: Introduction – Computer Assisted Process Planning (CAPP) –	
	Types of CAPP - Variant type, Generative type – advantages of CAPP.	
	Production Planning and Control (PPC): Definition – objectives - Computer	5
	Integrated Production management system – Master Production Schedule	
	(MPS) - Capacity Planning - Materials Requirement Planning (MRP) -	
	Manufacturing Resources Planning (MRP-II) – Shop Floor Control system	
	(SFC) - Just In Time manufacturing philosophy (JIT) - Introduction to	
	Enterprise Resources Planning (ERP).	
III	CNC Programming	16
	NC in CAM, tooling for CNC – ISO designation for tooling – CNC operating	
	system. Programming for CNC machining -part program - Manual part	
	programming - coordinate system - Datum points: machine zero, work	
	zero, tool zero - reference points - NC dimensioning - G codes and M	
	codes - linear interpolation and circular interpolation - CNC program	
	procedure - sub-program - canned cycles - stock removal - thread cutting	
	- mirroring - drilling cycle - pocketing. Rapid prototyping: Classification -	
	subtractive - additive - advantages and applications - materials - Virtual	
	machining.	
IV	FMS, AGV, AS/RS, Robotics	
	FMS: Introduction – FMS components – FMS layouts – Types of FMS:	5
	Flexible Manufacturing Cell (FMC) – Flexible Turning Cell (FTC) – Flexible	
	Transfer Line (FTL) – Flexible Machining System (FMS) – benefits of FMS	
	- introduction to intelligent manufacturing system.	
	Material handling in CIM environment: Types – AGV: Introduction – AGV -	3
	working principle – types – benefits. AS/RS – working principle –types –	
	benefits.	
	Robotics: Definition - robot configurations - basic robot motion - robot	6
	programming method - robotic sensors - end effectors - mechanical	

	grippers – vacuum grippers – robot programming concepts - Industrial	
	applications of Debaty Characteristics material transfer and leading	
	applications of Robot. Characteristics - material transfer and loading -	
	welding - spray coating - assembly and inspection.	
V	Advanced Concepts Of CIM	14
	Concurrent Engineering: Definition – Sequential Vs Concurrent engineering	
	- need of CE - benefits of CE. Quality Function Deployment (QFD):	
	Definition – House of Quality (HOQ) – advantages – disadvantages. Steps	
	in Failure Modes and Effects Analysis (FMEA) – Value Engineering (VE) –	
	types of values – identification of poor value areas – techniques – benefits.	
	Guide lines of Design for Manufacture and Assembly (DFMA). Product	
	Development Cycle: Product Life Cycle - New product development	
	processes. Augmented Reality (AR) - Introduction - concept -	
	Applications.	

REFERENCES BOOKS:

- R.Radhakrishnan, and S.Subramanian, "CAD/CAM/CIM", New Age International Pvt. Ltd.
- 2. Mikell P.Groover, and Emory Zimmers, "CAD/CAM", Jr.Prentice Hall of India Pvt., Ltd.
- 3. Dr.P.N.Rao, "CAD/CAM Principles and Applications,", Tata Mc Graw Hill Publishing Company Ltd.
- 4. Ibrahim Zeid, "Mastering CAD/CAM", Tata McGraw-Hill Publishing Company Ltd., New Delhi.
- 5. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing", Pearson Education Asia.
- 6. Yoram Koren, "Computer control of manufacturing systems,", McGraw Hill Book.
- Chris Mcmahon and Jimmie Browne, "CAD/CAM Principle Practice and Manufacturing Management", Addision Wesley England, Second Edition, 2000.
- Dr.Sadhu Singh, "Computer Aided Design and Manufacturing,", Khanna Publishers, NewDelhi, Second Edition, 2000.
- 9. S.Kant Vajpayee, "Principles of Computer Integrated Manufacturing,", Prentice Hall of India, 1999.
- 10. David Bed worth, "Computer Integrated Design and Manufacturing,", TMH, 1998.

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	MECHATRONICS
Semester	:	V
Subject Code	:	4020533
Course Name	:	1220 DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subiect	Hours /	Hours /	Marks			
,	Week	Semester	Internal	Board	Total	Duration
			Assessment	Examinations		
MECHATRONICS	5	80	25	100*	100	3 hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Introduction, Sensors & Transducers	15
II	Actuation systems	14
III	Basic system models, Input / Output systems	14
IV	Programmable Logic Controller	14
V	Design examples & advanced applications In Mechatronics	16
Test And Revision		7
	Total	80

RATIONALE:

As per the latest requirements in the automation industries this enables to learn the various concepts of automation components. They are able to write program, and operate PLCs. They are able to select the electronic components for various industry applications.

OBJECTIVES:

- Explain the working of sensors and transducers
- Acquire knowledge about actuation systems
- Explain the system models and I/O systems
- Write program and operate PLCs
- Explain the applications of mechatronics

DETAILED SYLLABUS

4020533 MECHATRONICS

Contents: Theory

Unit	Name of the Topics	Hours				
I	Introduction, Sensors & Transducers	15				
	Introduction – Systems – Measurement Systems – Control Systems –					
	Microprocessor Based Controllers. Examples – Mechatronics					
	approach. Measurement System terminology – Displacement, Position					
	& Proximity Sensors – Velocity and Motion Sensors – Force Sensors –					
	Fluid Pressure Sensors - Flow Sensors - Liquid Level Sensors -					
	Temperature Sensors – Light Sensors – Selection of Sensors –					
	Calibration of sensors.					
II	Actuation Systems	14				
	Mechanical Actuation Systems - Types of motion - Freedom and					
	constraints – Loading – Gear Trains – Pawl & Ratchet – Belt & Chain					
	drive – Bearing – Selection – Ball & Roller bearings – Mechanical					
	aspects of motor selection.					
	Electrical Actuation Systems – Switches & Relays – Solenoids – D.C					
	Motors – A.C. Motors – Stepper Motors – Specification and control of					
	stepper motors – Servomotors: D.C Servomotor and A.C Servomotor.					

	Pneumatic & Hydraulic Systems – Power supplies – DCV – PCV –	
	Cylinders – Rotary actuators.	
III	Basic System Models, Input/Output Systems	14
	Mathematical Model – Introduction to mathematical model –	
	Mechanical System building blocks – Electrical System building blocks	
	- Fluid System building blocks - Thermal System building blocks.	
	System Model – Engineering Systems – Rotational – Translational	
	Systems – Electro-Mechanical System – Hydro- Mechanical System.	
	Interfacing - Input/Output ports - Interface requirements: Buffers,	
	Handshaking, Polling and interrupts, Serial interfacing – Introduction to	
	PIA – Serial communications interface – Example of interfacing of a	
	seven-segment display with a decoder.	
IV	Programmable Logic Controller	14
	Definition – Basic block diagram and structure of PLC – Input/Output	
	processing – PLC Programming: Ladder diagram, logic functions,	
	latching and sequencing – PLC mnemonics – Timers, internal relays	
	and counters – Shift registers – Master and jump controls – Data	
	handling – Analog input/output – Selection of PLC – sample ladder	
	programs.	
V	Design Examples & Advanced Applications In Mechatronics	16
	Design process stages – Traditional Vs Mechatronics designs –	
	Possible design solutions: Timed switch, Wind- screen wiper motion,	
	Bath room scale – Case studies of mechatronics systems: A pick-and-	
	place robot, Car park barrier, Car engine management system,	
	Automatic Camera and Automatic Washing Machine. Sensors for	
	condition monitoring systems of production systems - Examples of	
	monitoring methods: Vibration monitoring, Temperature monitoring,	
	Wear behavior monitoring – Mechatronics control in automated	
	manufacturing: Monitoring of manufacturing processes, On-line quality	
	monitoring, Model-based systems, Hardware-in-the-loop simulation,	
	Supervisory control in manufacturing inspection, Integration of	
	heterogeneous systems.	

REFERENCES BOOKS:

- 1. W.Bolton, "Mechatronics", 2nd Edition 2001, Pearson Education, New Delhi.
- R.K.Rajput, A Text Book of Mechatronics, 1st Edition 2007, S.Chand & Co. Ltd., New Delhi.
- 3. HMT, "Mechatronics", 1st Edition 1998, Tata McGraw Hill, New Delhi.
- Devdas Shetty & Kolk, "Mechatronics System Design", 1st Reprint, 2001, PWS Publishing Co., Boston.
- 5. James H.Harter, "Electromechanics", 1st Edition 2003, Prentice-Hall of India, New Delhi.
- M.D.Singh & J.G.Joshi, "Mechatronics", 1st Edition 2006, Prentice-Hall of India, New Delhi.

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	PROCESS PLANNING AND QUALITY CONTROL
Semester	:	V
Subject Code	:	4020440
Course Name	:	1020 Diploma in Mechanical Engineering

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		SubjectInstructionsExamination				
PROCESS	Hours	Hours /	Marks				
PLANNING AND QUALITY CONTROL	/ Week	Semester	Internal	Board	Total	Duration	
			Assessment	Examinations			
	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Process Planning and Selection	15
II	Basic concepts of Total Quality Management	14
III	TQM Tools	14
IV	Statistical Fundamentals & Charts	15
V	Lean Manufacturing Concepts	15
	Test And Model Examinations	07
	Total	80

RATIONALE:

In the product manufacturing the process selection and planning are important. Quality and customer satisfaction in every product and every activity is the order of the day. As there is a shift from quality control to quality management in all activities, the concept Total Quality Management and the pillars of TQM are to be given to Engineers, who are designing products and production systems.

OBJECTIVES:

- Understand the process planning.
- Study the process selection.
- Define quality and appreciate its signature.
- Explain the concept of TQM.
- Appreciate the use of principles of TQM to meet customer satisfaction.
- Solve problem using the Quality control tools.
- Apply Brainstorming and quality circle to solve problems.
- Use PDCA cycle for continuous improvement.
- Appreciate the benefits of implementing 5S concepts.
- Collect, classify and present the data.
- Determine the process capability of a manufacturing process.
- Practice on management planning tools.
- Use Bench Mark and JIT concepts.

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
Ι	Process Planning And Selection	
	Chapter: 1.1:	3
	Production: Types of Production – Mass production, batch production	
	and job order production	
	Chapter: 1.2:	6
	Process Planning: Introduction - concept - Information required to do	
	processplanning – factors affecting process planning – process	
	planningprocedure – Make (or) Buy decision using Break Even Analysis –	
	simple problems. Manual process planning – Introduction ofAutomated	
	process planning and generator process planning –Advantage of	
	computer aided process planning – Principle of linebalancing – need for	
	line balancing – Value Engineering –Definition – cost control Vs cost	
	reduction – value analysis when todo – steps information needed –	
	selection of product.	
	Chapter: 1.3:	6
	Process Selection: Process selection – technological choice – specific	
	componentchoice - Process flow choice - Factors affecting process	
	selection- machine capacity - analysis of machine capacity - process	
	andequipment selection procedure – Determination of man, machineand	
	material requirements – simple problems – selection ofmaterial – jigs –	
	fixtures etc Factors influencing choice of machinery - selection of	
	machinery – simple problems –Preparation of operation planning sheet	
	for simple components.	
	Chapter: 2.1: Basic Concepts Of Total Quality Management	14
	Quality-Definitions – Dimensions of quality – Brainstorming and	
	itsobjectives – Introduction to TQM - Characteristics – Basic concepts –	
	Elements - Pillars - Principles - Obstacles to TQMimplementation -	
	Potential benefits of TQM - Quality council – duties – Responsibilities -	
	Quality statements - Vision - Mission - Quality policy statements -	

	Strategic planning – Seven steps tostrategic planning – Deming	
	philosophy – Customer – Input / Output process model – Juran Trilogy -	
	PDCA (Deming Wheel) cycle.	
	TQM Tools	14
	Chapter: 3.1:	
	Seven tools of quality control (Q 7 tools): Check sheet - Types of	
	check sheet – Histogram – Cause and effect diagram – Pareto diagram –	
	Stratification Analysis – Scatter diagram-Graph/run charts – Control	
	charts - Construction of above diagrams.Quality circle - concept of	
	quality circle - Organisation of Qualitycircle and objectives of Quality	
	circle. Zero Defect Concepts.	
	Chapter: 3.2:	
	Management Planning Tools (M 7 Tools)	
	Affinity diagram – Radar Diagram – Inter Relationship diagram (Inter	
	Relationship diagram) – Tree diagram – Prioritization matrix – Matrix	
	diagram – Decision tree – Arrow diagram – Matrix data analysis diagram	
	 Construction of above diagrams. 	
IV	Statistical Fundamentals And Control Charts	
	Chapter: 4.1:	7
	Types of Data – Collection of Data – Classification of Data – Tabular	
	presentation of Data - Graphical representation of afrequency distribution	
	- Comparison of Frequency distribution - Mean - Median - Mode -	
	Comparison of measures of centraltendency - Introduction to measures	
	of dispersion – Sample – sampling – Normal curve – Sigma – Concept of	
	six sigma – Principles – Process- Problems.	
	Chapter: 4.2:	8
	Control chart – Types of control charts – Control chart for variables –	
	Construction of X bar and R charts – control limits Vs specification limits –	
	Process capability - Method of doing process capability Analysis -	
	Measures of process capability – Problems.	
	Attributes - Control charts - P chart - np chart - c chart - u chart -	
	Construction of above diagrams - Problems - Comparison between	

	variable chart and Attribute chart.	
V	Capter 5.1: Lean Manufacturing Concepts	15
	5S Concepts (SEIRI, SEITON, SEISO, SEIKETSU and SHITSUKE) -	
	needs and objectives - effective implementation of 5S concepts in an	
	organisation – Housekeeping – Kaizen – Kanban System.Bench marking	
	- Objectives of bench marking - Types - Benchmarking process -	
	Benefits of Bench marking – Pit falls of Benchmarking-Just In Time(JIT)	
	concepts and its objectives - TotalProductive Maintenance(TPM) -	
	Introduction, Objectives of TPM -steps in implementing TPM Overall	
	Equipment Effectiveness(OEE)–Lean Six Sigma – Value Stream	
	Mapping – DMAIC(Define, Measure, Analyse, Improve, Control) –	
	DMADV (Define , Measure, Analyse, Design, Verify)	

Reference Books:

- 1. Industrial Engineering & Management O.P Khanna
- 2. Industrial Engineering & Production Management Martand Telsang
- 3. Total Quality Management, Date H.Besterfiled, Pearson Education Asia.
- 4. Total Quality Management, V.Jayakumar, Lakshmi Publications.(reprint 2005)
- 5. Training manual on ISO 9001 : 2000 & TQM, Girdhar J.Gyani, Raj PublishingHouse, Second Edition 2001
- 6. Quality Management, Howard Cuitlow, Tata Mc Graw Hill, 1998
- 7. Production Engineering P.C.Sharma.
- 8. Production and Costing GBS Narang and V.Kumar
- 9. Mechanical Estimating and Costing Banga & Sharma.
- 10. Total Quality Management, Oakiand.J.S. Butterworth Heinemann Ltd. Oxford1989.
- 11. Quality Management Concepts and Tasks- Narayana. V and
- 12. Sreenivasan.N.S., New Age International 1996.
- 13. Total Quality Management for engineers, Zeiri. Wood Head Publishers. 1991.
- 14. Quality Planning and Analysis, Juran J.M and Frank M.Gryna Jr., TMH. India. 1982
- 15. ISO 9001, Brain Rethry, Productivity and Quality Publications.
- 16. ISO 9001, Brain Rethry, Productivity and Quality Publishing Pvt. Ltd. 1993.
- 17. Quality Auditing D.Mills, Chapman and Hall, 1993.

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	COMPUTER INTEGRATED MANUFACTURING PRACTICAL
Semester	:	V
Subject Code	:	4020561
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination				
Subject	Hours /	Hours / Semester					
000,000	Week		Internal	Board	Total	Duration	
			Assessment	Examinations			
COMPUTER							
INTEGRATED	4	64	25	100*	100	3 hrs.	
MANUFACTURING							
PRACTICAL							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various concepts of Computer Integrated Manufacturing. They are able to write part program and able operate CNC lathe and Milling machines. They are able to understand the advanced concepts adopted in CIM.

OBJECTIVES:

- Acquire knowledge in the field of Computer Integrated Manufacturing
- Create 3D Solid models of machine components using modelling software
- Execute and perform machining operations in CNC Lathe and CNC Milling machines.

DETAILED SYLLABUS

Contents: Practical

PART A: SOLID MODELLING

Introduction to Part modelling - Datum Plane – constraint – sketch – dimensioning – extrude – revolve – sweep – blend – protrusion – extrusion – rib – shell – hole – round – chamfer – copy – mirror – assembly – align – orient – drawing and detailing –creating assembly views Exercise No. 1. Geneva Wheel

Exercise No. 2. Bearing Block

Exercise No. 4. Gib and Cotter joint

3. Gib and 4. cotter

Exercise No. 5. Screw Jack

Exercise No. 6. Universal Coupling

Note: Print the orthographic view and sectional view from the above assembled 3D drawing.

PART B: CNC Programming and Machining

Introduction: 1. Study of CNC lathe, milling. 2. Study of international standard codes: G-Codes and M-Codes 3. Format – Dimensioning methods. 4. Program writing – Turning simulator – Milling simulator, IS practice – commands menus. 5. Editing the program in the CNC machines. 6. Execute the program in the CNC machines.

Exercises Note: Print the part program from the simulation software and make the component in the CNC machine.

CNC Turning Machine Material: M.S / Aluminium / Acrylic fibre / Plastic

1. Using Linear and Circular interpolation - Create a part program and produce component in the Machine.

2. Using Stock removal cycle – Create a part program for multiple turning operations and produce component in the Machine.

3. Using canned cycle - Create a part program for thread cutting, grooving and produce

CNC Milling Machine

Material: M.S / Aluminum / acrylic fibre / plastic

4. Using Linear interpolation and Circular interpolation – Create a part program for grooving and produce component in the Machine.

5. Using canned cycle - Create a part program for drilling, tapping, counter sinking and produce component in the Machine.

6. Using subprogram - Create a part program and produce component in the Machine.

BOARD EXAMINATION

Note:

- All the exercises in both sections should be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

<u>Note:</u> Part A – The given component drawing should be created and solid modelling after assembly should be printed and submitted along with the answer paper for evaluation by the external examiner.

Part B – The program for the given component should be written in the answer paper. The program should be entered in the CNC machine and the component should be submitted for evaluation by the external examiner. The machined component should be kept under the custody of examiner.

Allocation of marks for Board Examination

PART A: Solid Modelling

Creation of sketch	:	15
Modelling	:	25
Accuracy	:	5
PART B: CNC Programming		
Program writing	:	15
Editing and Machining	:	25
Finish	:	5
Viva voce	:	10

LIST OF EQUIPMENTS (for a batch of 30 students)

- 1. Personal computer 30 Nos.
- 2. 3D Solid Modelling and Simulation software Sufficient to the strength
- 3. CNC Lathe –2 Nos.
- 4. CNC Mill -2 Nos.
- 5. Consumables Sufficient quantity
- 6. Laser / Inkjet Printer 1 No.

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(implemented from the Academic year 2020-2021 onwards)

Subject Title	:	MECHATRONICS PRACTICAL
Semester	:	V
Subject Code	:	4020563
Course Name	:	1220: Diploma in Mechanical Engineering (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 Weeks

	Instructions		Examination			
		Hours/ Semester				
Subject	Hours/ Week		Internal Assessment	Board Examination	Total	Duration
MECHATRONICS PRACTICAL	4	64	25	100*	100	3Hrs.

*Examinations will be conducted for 100 marks and it will be reduced for 75 marks for result

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various concepts of industrial automation. They are able to write ladder logic program and able operate PLCs. They are able to understand the advanced concepts adopted in industrial automation.

OBJECTIVES:

- Acquire knowledge in the field of mechatronics
- Explain the various components of electro pneumatics and electro hydraulics Handle PLC, HMI, SCADA and DCS components

DETAILED SYLLABUS

ELECTRO PNEUMATICS: Introduction to Electro Pneumatics - Applications of pneumatics -Pneumatic and electro pneumatic controllers - Components and assemblies in the electrical signal control section: Power supply unit - Push button and control switches - Sensors for measuring displacement and pressure - Relays and contactors. Electrically actuated directional control valves - Construction and mode of operation - Functions - Electrical connection of solenoid coils. Procedure for developing a control system.

ELECTRO HYDRAULICS: Basic principles of electro hydraulics - Function and use of electrohydraulic components - Production and interpretation of standard hydraulic and electrical circuit diagrams

PROCESS CONTROL INSTRUMENTATION: Process control - Types of processes – Structure of control system – Controllers - Digital controllers – Types of process control – ON/OFF Control – Analog control – Digital control. Data Acquisition System - Objectives of DAS - Types of DAS: Single channel DAS – Multichannel DAS – Computer based DAS. Data Loggers - Block diagram of Data Loggers – Control facilities in Data Logger – Uses of Data Logger - Different stages of Direct Digital Control.

SCADA - Fundamental principles of modern SCADA systems - SCADA hardware - SCADA software - Landlines for SCADA - SCADA and local area networks - Modem used in SCADA systems - Remote terminal units. Human Machine Interface – components of HMI. Distributed Control System - Parts of DCS – Layered structure of DCS – Communication options in DCS.Variable Frequency Drives - Construction, Working, Operation, Applications and Specifications

Experiments

PART A

(ELECTRO PNEUMATICS)

- 1. Direct control of a 3/2 NC Single solenoid valve and a 3/2 NO Single solenoid valve
- 2. Direct control of a 5/2 single solenoid valve and a 5/2 double solenoid valve
- 3. Simple circuit using OR Logic and AND Logic
- 4. Limit switch and proximity switch application circuits

(ELECTRO HYDRAULICS)

1. Sorting device using double acting cylinder, directly actuated, manually

- 2. Component selection on conveyor belt using double acting cylinder and directly actuated, manually
- 3. Lifting station using single acting cylinder and directly actuated, manually
- 4. Door control using double acting cylinder and interlocking

PART B

PROCESS CONTROL INSTRUMENTATION

- 1. Wiring practice of HMI
- 2. Design of HMI screen
- 3. HMI Configuration and Interfacing with PLC and PC
- 4. Configuring Alarms in SCADA
- 5. Real time project development and interfacing with PLC
- 6. Monitoring & Control of Pneumatic System using HMI

BOARD EXAMINATION

Note:

- 1. All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one from PART A and one from PART B.
- 2. All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- 3. All regular students appearing for first attempt should submit record notebook for the examination.
- 4. The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- 5. The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

ALLOCATIONOFMARKS

PART A: Electro Pneumatic circuit/Electro Hydraulic circuit (bylot):

Circuit diagram	:	15
Components connections & execution	:	20
Output	:	10
PARTB: Process Control Instrumentation		
Circuit diagram	:	15

Execution & Programming	:	20
Output	:	10
Vivavoce	:	10
Total Marks	:	100

List of Equipment (for the batch of 30 students)

Electro Pneumatics:

- 1. Basic Pneumatic Trainer Kit with FRL Unit, Compressor and Accessories 2 Nos
 - 3/2 NC Single Solenoid Valve 2Nos
 - 3/2 NO Single Solenoid Valve 2Nos
 - 5/2 Single Solenoid Valve 2Nos
 - 5/2 Double Solenoid Valve 2Nos
 - Limit Switch 6 Nos
 - Proximity Sensor (Inductive, Capacitive & Optical) Each 2 Nos
 - Single Acting Pneumatic Cylinder 4 Nos
 - Double Acting Pneumatic Cylinder 2 Nos
 - Power Supply Unit, Connecting Leads and Hoses As per Requirements

Electro Hydraulics:

1. Basic Hydraulics Trainer Kit with Hydraulic Pump, Regulator and Hoses Accessories – 2 Nos

- Double Acting Cylinder 2 Nos
- Single Acting Cylinder 2 No
- Manual Actuator Switch 4 Nos
- Material Sorting assembly set up 1 No
- Conveyor Assembly set up 1 No
- Lifting Station Assembly Set up 1 No
- Limit Switch 4 Nos

Process Control Instrumentation:

- Programmable Logic Controller (PLC) with Software 3 Nos
- Human Machine Interface (HMI) with Software 3 Nos
- SCADA Software 1 No or Integrated Software for PLC, HMI and SCADA)
- Personnel Computer 3 Nos
- Water Tank Assembly set up with Level Sensor and Flow Controller (Actuator) to interface with PLC and HMI – 1 No

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	PROCESS AUTOMATION PRACTICAL
Semester	:	V
Subject Code	:	4020540
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subiect	Hours / Week	Hours / Semester	Marks			
Casjoor			Internal	Board	Total	Duration
	moon	Comotor	Assessment	Examinations	i otai	
STRENGTH OF	1	64	25	100*	100	3 hre
MATERIALS	4	04	20	100	100	5115.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Design and operate pneumatic circuits.
- Design and operate fluid power circuits
- Use PLC system and its elements for process control
- Familiarize the working of function blocks in PLC
- Use ON-Delay timer to control a motor
- Use OFF-Delay timer to control a motor
- Use counter function block (Up counter and Down counter)
- Control the automatic operation of pneumatic cylinder using PLC
- Record of work to be prepared.

Exercises

PART A

Pneumatics Lab.

- 1. Direct operation of single and double acting cylinder.
- 2. Operation of double acting cylinder with quick exhaust valve.
- 3. Speed control of double acting cylinder using metering-in and metering-out circuits.
- 4. Automatic operation of double acting cylinder in single cycle using limit switch.

Hydraulics Lab.

- 5. Direct operation of double acting cylinder.
- 6. Direct operation of hydraulic motor.
- 7. Speed control of double acting cylinder metering-in and metering-out control.

PART B

PLC Lab.

- 1. Direct operation of a motor using latching circuit.
- 2. Operation of a motor using 'AND' logic control.
- 3. Operation of a motor using 'OR' 'control.
- 4. On-Delay control of a motor and Off –Delay control of a motor.
- 5. Automatic operation of a Double acting cylinder-single cycle forward, time delay, return.
- 6. Automatic operation of Double acting cylinder-Multi cycle.
- 7. Sequential operation of double acting cylinder and a motor.

BOARD EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Par	t A:		45			
Pro	cedure / Circuit diagram	10				
Ider	ntification of Components	15				
Cor	nnection and execution	20				
Par	t B:		45			
Pro	cedure / Circuit diagram	10				
Lad	der diagram / Programmin	g 25				
Exe	cution	10				
Viva	a Voce		10			
Tot	al		100			
LIST OF EQUIPMENTS (for a batch of 30 students)						
1. Pneumatic	Trainer Kit –	- 3Nos				
(All Cylind	ers, Control Valves, Limit s	witches an	d other accessories)			
2. Hydraulics	Trainer Kit –	- 2No.				

Detailled Allocation of Marks

- (All Cylinders, Control Valves, Limit switches and other accessories)
- 3. PLC kit 3 Nos.
- 4. Computer with software 10 Nos.

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)
Subject Code	:	4022550
Semester	:	V
Subject Title	:	JIGS AND FIXTURES PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
	Hours/ Week	Hours/ Semester	Marks			
SUBJECT			Internal Assessment	Board Examination	Total	Duration
JIGS AND						
FIXTURES	5	80	25	100*	100	16 hrs.
PRACTICAL						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES:

- Manufacture of template type drill jig
- Manufacture of Channel drill jig and indexing drill jig
- Manufacture of milling fixture
- Manufacture of inspection fixture
- Manufacture of welding fixture
- Use different machine tool in Manufacture of jigs and fixtures.

A. Manufacture of following Jigs

- 1. Template drill jig
- 2. Channel drill jig
- 3. Indexing drill jig

B. Manufacture of following Fixtures

- 4. Milling Fixture
- 5. Inspection Fixture
- 6. Welding Fixture

DETAILED SYLLABUS

Ex. No.	Name of the exercise	Time in Hours
1.	Manufacture of Template drill jig	14
2.	Manufacture of Channel drill jig	13
3.	Manufacture of Indexing drill jig	13
4.	Manufacture of Milling Fixture	14
5.	Manufacture of Inspection Fixture	13
6.	Manufacture of Welding Fixture	13
	TOTAL	80

Note: -

- 1. Batch size should not be more than 5 students for class work.
- 2. For examination, exercise should be given to students individually and not in batches.
- 3. The examination duration is 16 hours.
- 4. Students should be trained in setting the Jig/Fixture on the machine tool, to make necessary adjustments, trial production using the tool fabricated by them and rectification of tool defects if any.
- 5. For Board examination any one of the above tool (sl no 1 to 6) is to be manufactured, fitted in the machine tool and trial production should be taken. The evaluation of the performance should be based on the component dimensions and finish obtained from the Jig / Fixture manufactured by the student during the 16 hours examination.

SCHEME OF EXAMINATION:

Total	-	100 Marks
Viva Voce	-	10 Marks
Tool setting & trial production	-	10 Marks
Component finish / accuracy	-	10 marks
Tool finish	-	20 marks
Manufacture of Jig / Fixture	-	50marks

Details of The Equipment's (for a batch of 30 students)

NAME OF THE BRANCH / COURSE		MECHANICAL ENGINEERING	
		(TOOL & DIE)	
YEAR		THIRD	
SEM	ESTER	V	
NAM	E OF THE LABORATORY	4022550 JIGS AND FIXTURE	ES PRACTICAL
	LIST OF THE EQUIPMENTS WI	TH SPECIFICATIONS	
S.N	REMARKS, IF		QUANTITY
	ANY		REQUIRED
1	Centre Lathe, 4 1/2' bed length		5
2	Drilling machine		2
3	Shaping machine, stroke length 3	300mm	2
4	Vertical milling machine		2
5	Surface grinding machine		2
6	Bench vice		10
7	Fitting file set		10
8	Tap set		4
9	Surface plate		2
10	Vernier height gauge 0-250mm		2
11	Dial test indicator with magnetic	stand	2
12	Angle plate		2
13.	Tool maker's straight edge – 150	mm	1
14.	Digital Micrometer – 025mm rai	nge, 0.001mm least count	3

Exercise – I Template Jig

• PI refer the sketches available in subject code:4022340 – Computer Aided Machine & Tool Drawing Exercise no.7

Exercise – IV Milling Fixture

Exercise – VI Welding Fixture

 PI refer the sketches available in subject code:4022340 – Computer Aided Machine & Tool Drawing Exercise no.8

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMIL NADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Course Name:1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)Subject Code:4022560Semester:V

Subject Title : PF

PRESS TOOLS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
		Hours/ Semester	Marks			
SUBJECT	Hours/ Week		Internal Assessment	Board Examination	Total	Duration
PRESS						
TOOLS PRACTICAL	5	80	25	100*	100	16 hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES:

At the end of the practice, the students will be able to

- Manufacture press tool components as per the given drawing.
- Assemble the components manufactured.
- Set the tools manufactured in the OBI / gap frame / Fly press as per requirement.
- Adjust the shut height; operate the press to take trial production.
- Compare the result with the requirement and to do the necessary corrections if needed.

DETAILED SYLLABUS

Ex. No.	Name of the exercise	Time in Hours
1	Manufacture of Blanking Tool – Drop through type	16
2	Manufacture of Progressive Tool – Drop through type	16
3	Manufacture or Compound Tool	16
4	Manufacture of V Bending tool	16
5	Manufacture of drawing tool (single stage)	16
	TOTAL	80

Note:-

- 1. Batch size should not be more than 5 students for Practical classes.
- 2. For examination, exercise should be given to students individually and not in batches.
- 3. The examination duration is 16 hours.
- Students should be trained in Press Setting, Tool setting, shut height Adjustment, trial production using the tool fabricated by them and rectification of tool defects if any.
- 5. For Board examination any one of the above tool (sl no 1 to 4) is to be fabricated by each student, fitted in the press and trial production should be taken. The evaluation of the performance should be based on the component dimensions and finish obtained from the tool fabricated by the student during the 16 hours examination.
- 6. For all the four exercises, the sketches are given and should be followed.

SCHEME OF EXAMINATION:

Total	-	100 Marks
Viva Voce	-	10 Marks
Tool setting & trial production	-	10 Marks
Component finish / accuracy	-	10 marks
Tool finish	-	20 marks
Manufacture of Tool	-	50 marks

Details of The Equipment's (for a batch of 30 students)

NAME OF THE BRANCH / COURSE		MECHANICAL ENGINEERING	
		(TOOL & DIE)	
YEAR		THIRD	
SEME	STER	V	
NAME	OF THE LABORATORY	4022560 PRESS TOOLS PR	RACTICAL
	LIST OF THE EQUIPMENT'S V	WITH SPECIFICATIONS	QUANTITY
S.NO	REMARKS IF ANY		REQUIRED
1	Centre Lathe, 4 1/2' bed length		5
2	Drilling machine		2
3	Shaping machine, stroke length	300mm	2
4	Vertical milling machine		2
5	Surface grinding machine		2
6	Bench vice		10
7	Fitting file set		10
8	Tap set		4
9	Surface plate		2
10	Vernier height gauge 0-250mm		2
11	Dial test indicator with magnetic stand		2
12	Angle plate		2
13	Mechanical power press (15ton	s- 100 tons)	1
14	Tool maker's straight edge – 15	0 mm	1
15	Digital Micrometer – 025mm ra	ange, 0.001mm least count	3

Exercise-I Blanking Tool – Drop through type

• PI refer the sketches available in the subject 4022340 Computer Aided Machine & Tool Drawing Exercise no.9

Exercise-II Piercing Tool

Exercise – III Progressive Tool

	ь		14		100	-			15		C			- 24		æ			- 10		•<		-	_
			s	(4	(9	F	9	4		l,	E.	-	5	50	L.	U.	QUARTER	1.TE EV.1	-			-(↓ ●	
			1ATERIAL	UN24 STI11.	UP24 STIJL.	eus.	ars.	ars.	MUD STITL.	C45 S1111.	SELICE	A2 STITL.	A2 STITL.	SURE	lkikr	MILD STITL.	MATLIRIAL	-		LY	TOOL	V SCALE	NIS NIS	DUCIBLASS HED.
TARK TIT TO TAKE		101 48 66-62 HKC PROVUDIJ AS ISO	BILL OF N	GUIDE PILLAR	GUIDE BUSH	NI4 dOLS	46 ALLEN SCREW	DOW LT. PIN	TIX.14 POP	BACKUP PLAIL	PURCH HOLDER	ILANKING PURCH	TICKOLOG MOREN	UIN HERRICH STREET	DITPLAN	HOLIOH FLAIL	иами	FINISIING	PARTNO:	ASSEMB	GRESSIVE	LE D		SUSUAL THIN DRAW NO. F. IN
	-	AR APCIC PROVIDICAS O ALLA APLO TETARIO - DEPRIDAS 60-62 HRC ALLIRAPROE STEALLINE		11	<u>ei</u>	n.	10	ç	×	I.	9	×.	*	*1	ol	1	(94715	JESS:			PRO] [0/00
5	Storts ARE Dame	JEACH AND DHI GUIG I SHALL BE HARDER ATE SHALL BE HAR ATE SHALL BE HAR SLOPE WITHOUT TO SLOPE WITHOUT TO																	QIY :	DATE		DRG.Yo.	DICCSUEE	
	NOTE:	2.PROVIDIE PUPGI J.C.H.: PUPGI 4.C.H.I: DUE PL 5.AVOUSTIA 6.FOR DUPHIE 27681																MODEL:	MATL :	NAME	JENKINEL) JEAWY	7(1)	APPROVID	
2	-	(e))		9							(\mathbf{x})	PC				\bigcirc			Θ	<u>- </u>	<u> </u>	-	
						í))			*										-			u.
	-	•			•						<u>ن</u> د					7777					<u>_</u>			3
e		1			-						_													9
-			'(₹ _ 		¢						-										2 			
_	-																	1			-			
24	• <u> </u>	:1 (4 -b 76 17 57 57	- 500 6 75 140	IrA 3	YS .	67	- 80	, <0		•••		1.0073	MIC.			Ċ	•))					PASIONS ART IN THE
				0 <u>0</u> 33 - 0 65	60P<	90) (00) 30) (30) 1	шорор. 30 ў	4 C1 5 061 1.2012381	551 	97 0 18 OK 77 J	4 - 04 K (31 M	TEM 8	(a.c.) 8250 = 1618 ≫P			æ			-		4			FIL DIAL

Ĩ	÷			4	1	2		4	-			1			C			0			œ			-		ج.				
				ALS	5	-0		c1		-	M	4	×		1	I	3	-	Ro	1		QUARTERY	TU DOI]	
				MATERL	M.S	M.S	M.S	M.S	M.S	M.S	PC:	STD	STD	M.S	N.S	M.S	M.S	M.S	M.S	M.S	M.S	MATLIRIAL			Y		1	4 SCALE	0 \TF	A, RT ASK HED
	CAJOILLEFANC:	SV (1016	61-62 4P19R	a BILL OF 1	PILLIN	BUSI	BURCTOR	STOP PIN	PIERCINGPUNCTI	3LANKING PUNCI	PL RUBBER	DOWIELL OF	ALLEN SCREW M6	TOP PLATI)	BACKUP PLATE	PIERCING PUNCEI	SPACER PLATE	DIB PLATE	STRIPPER PLATE	31 ANKING PUNCI UOLDBR	BOTTOM PLATE	нам:	FINISHING:	PART NO :	ASSEMBL	. UNITODA		5500	REALSON ROOM	A * THIS D34 WINGIN NIN)
		RUNID	INED TO:	TOLERAN	12	Ĵĥ	15	14	13	1	[[]#	ĥ	×	ţ~	÷	5	4	n		E	007.12			ł	<u>ר</u> כ	5	22	12	N TO V SI
	CLIN MARK	TL BIGUN	BULLARDI BRS. 2 X	70007 2768-1																								03	् चि	1
e	2 IMENSIONS A	DEPLACEDIN DEPLATESUA 6662 DRC	DELEGENER CORP.	WINDENSIONS W																			HARDNESS	QTY :				DRG:No.	DRUMBLE	(7
	1) ALL C	2. PROM 3. THE D PERED TO	4. TUB R	6. FOR D																					DATE					
	NOT	E0040	LIRC.	NIN																					VANF					+
	च	٢	[4]	(5)				(F)(-) () ((E)	(5)	(4)	Ģ)	(E)		Ð	φ	Ģ	MODEL :	MATL :	Canada and a second	DESIGNED	C 517	CIRCKFD	APPROVED	-
										775		,,,,,,										-								
	c														-	-					7575									5
			-	_											1										Z					
	AN	+		•			-																	20	ELEVATI					
	14																	<u>III</u>	[]	Ŋ					ONAL					
	d		3 	- 7			8.			177	ΨZ.	Z#\$\$					JX.								SECTI					-
					_												X	¥\$	1		**									
							-	A		1111			à				272272		1.02											
	_		Y.								9111	9111	à		•															
	<i>w</i> .	-	00%		-			5	1	(f)					(f)	0														VE IA mr.
	3 57 70 C 3X 1.6 3X 5X V A 2		80 P2 70 1 75 P0 AAA	300 3 30 8 30 8 30 7 30 7 30 7 30 7 30 7 30 7 30 7 30 7	an ha sis sis	- ILENTINA INTER TOT PLONE US INTER TOT	05	70 1 (0. >	. 01. • 000 0 800	- <u>\$2</u> : 303	- 90 F	() () () () () ()	- 59 I III C 3	. 11 <u>.</u> . 9		10K)(1 1.3(19)	1078) alian 2010	UP-24												ATCO NEWSIONS 41
L	Ш.	STOURS	AŞ HSINLET,)¥:DE\$	1			-	Ų.	unitski.	10108	I SABA	JG And	0.002.1	VOILVE	AC DEA	IXILD7	FI			œ					-1				-10

Details of The Equipment's (for a batch of 30 students)

NAM	E OF THE BRANCH / COURSE	MECHANICAL ENGINEERIN	G				
		(TOOL & DIE)					
YEAF	R	THIRD					
SEME	ESTER	V					
NAM	E OF THE LABORATORY	4022560 PRESS TOOLS PR	RACTICAL				
	LIST OF THE EQUIPMENTS WI	TH SPECIFICATIONS					
S.N	REMARKS, IF		QUANTITY				
	ANY		REQUIRED				
1	Centre Lathe, 4 ¹ / ₂ ' bed length		5				
2	Drilling machine		2				
3	Shaping machine, stroke length 3	300mm	2				
4	Vertical milling machine		2				
5	Surface grinding machine		2				
6	Bench vice		10				
7	Fitting file set		10				
8	Tap set		4				
9	Surface plate		2				
10	Vernier height gauge 0-250mm		2				
11	Dial test indicator with magnetic	stand	2				
12	Angle plate		2				
13	Mechanical power press (15tons	- 100 tons)	1				
14	Tool maker's straight edge – 150	mm	1				
15	Digital Micrometer – 025mm rar	nge, 0.001mm least count	3				

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

III YEAR

N – SCHEME

V SEMESTER

2020 - 2021 onwards

4020570-ENTREPRENEURSHIP AND START UP

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(Implemented from the Academic year 2020-2021 onwards)

Subject Title	:	ENTREPRENEURSHIP & STARTUP
Semester	:	V
Subject Code	:	4020570
Course Name	:	1220: Diploma in Mechanical Engineering (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No. of Weeks per Semester: 16 Weeks

	Instr	ructions	Examination							
Subject	Hours/	Hours/								
	Week	Semester	Internal Assessment	Board Examination	Total	Duration				
ENTREPRENEURSHIP										
& STARTUP	4	64	25	100*	100	3 Hrs.				

*Examinations will be conducted for 100 marks and it will be reduced for 75 marks for result

Topics and Allocation of Hours

UNIT	Торіс	Hours
1	Entrepreneurship – Introduction and Process	10
2	Business Idea and Banking	10
3	Start ups, E-cell and Success Stories	10
4	Pricing and Cost Analysis	10
5	Business Plan Preparation	10
Re	vision, Field visit and Preparation of case study report	14
	Total	64

RATIONALE:

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socioeconomic environments; to ensure equity of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

OBJECTIVES:

At the end of the study of 5th semester the students will be able to

- o To excite the students about entrepreneurship
- o Acquiring Entrepreneurial spirit and resourcefulness
- o Understanding the concept and process of entrepreneurship
- o Acquiring entrepreneurial quality, competency and motivation
- Learning the process and skills of creation and management of entrepreneurial venture
- Familiarization with various uses of human resource for earning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- Survey and analyze the market to understand customer needs
- o Understand the importance of generation of ideas and product selection
- Learn the preparation of project feasibility report
- Understand the importance of sales and turnover
- o Familiarization of various financial and non financial schemes
- Aware the concept of incubation and starts ups

DETAILED SYLLABUS

Unit	Name of the Topics							
1	ENTREPRENEURSHIP – INTRODUCTION AND PROCESS	10						
	 Concept, Functions and Importance 							
	Myths about Entrepreneurship							
	 Pros and Cons of Entrepreneurship 							
	Process of Entrepreneurship							
	Benefits of Entrepreneur							
	Competencies and Characteristics							
	Ethical Entrepreneurship							
	 Entrepreneurial Values and Attitudes 							
	Motivation							
	Creativity							
	Innovation							
	Entrepreneurs - as problem solvers							
	 Mindset of an employee and an entrepreneur 							
	 Business Failure – causes and remedies 							
	Role of Networking in entrepreneurship							
2	BUSINESS IDEA AND BANKING	10						
	 Types of Business: Manufacturing, Trading and Services 							
	 Stakeholders: Sellers, Vendors and Consumers 							
	E- Commerce Business Models							
	 Types of Resources - Human, Capital and Entrepreneurial 							
	tools							
	Goals of Business and Goal Setting							
	 Patent, copyright and Intellectual Property Rights 							
	Negotiations - Importance and methods							
	Customer Relations and Vendor Management							
	Size and Capital based classification of business enterprises							
	Role of Financial Institutions							

	•	Role of Government policy	
	•	Entrepreneurial support systems	
	•	Incentive schemes for State Government	
	•	Incentive schemes for Central Government	
3	STAF	RTUPS, E-CELL AND SUCCESS STORIES	10
	•	Concept of Incubation centre's	
	•	Activities of DIC. financial institutions and other relevance	
		institutions	
	•	Success stories of Indian and global business legends	
	•	Field Visit to MSMF's	
	•	Various sources of Information	
	•	Learn to earn	
	•	Startup and its stages	
	•	Role of Technology – E-commerce and Social Media	
	•	Role of E-Cell	
	•	E-Cell to Entrepreneurship	
4	• PRIC	E-Cell to Entrepreneurship	10
4	• PRIC	E-Cell to Entrepreneurship	10
4	• PRIC •	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost	10
4	• PRIC •	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs	10
4	PRIC	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis	10
4	PRIC	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash	10
4	PRIC	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash Inflow and Cash Outflow	10
4	PRIC	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash Inflow and Cash Outflow Prepare a Cash Flow Projection	10
4	• PRIC • • •	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash Inflow and Cash Outflow Prepare a Cash Flow Projection Pricing and Factors affecting pricing	10
4	• PRIC • • •	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash Inflow and Cash Outflow Prepare a Cash Flow Projection Pricing and Factors affecting pricing Understand the importance and preparation of Income	10
4	• PRIC • • •	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash Inflow and Cash Outflow Prepare a Cash Flow Projection Pricing and Factors affecting pricing Understand the importance and preparation of Income Statement	10
4	• PRIC • • •	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash Inflow and Cash Outflow Prepare a Cash Flow Projection Pricing and Factors affecting pricing Understand the importance and preparation of Income Statement Launch Strategies after pricing and proof of concept	10
4	• PRIC • • • •	E-Cell to Entrepreneurship ING AND COST ANALYSIS Calculation of Unit of Sale, Unit Price and Unit Cost Types of Costs - Variable and Fixed, Operational Costs Break Even Analysis Understand the meaning and concept of the term Cash Inflow and Cash Outflow Prepare a Cash Flow Projection Pricing and Factors affecting pricing Understand the importance and preparation of Income Statement Launch Strategies after pricing and proof of concept Branding - Business name, logo, tag line	10

5	BUSINESS PLAN PREPARATION							
	•	Generation of Ideas,						
	Business Ideas vs. Business Opportunities							
	Selecting the Right Opportunity							
	•	Product selection						
	•	New product development and analysis						
	•	Feasibility Study Report – Technical analysis, financial						
		analysis and commercial analysis						
	•	Market Research - Concept, Importance and Process						
	•	Marketing and Sales strategy						
	•	Digital marketing						
	•	Social Entrepreneurship						
	•	Risk Taking-Concept						
	•	Types of business risks						

REFERNCE BOOKS:

- 1. Dr. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra - 282002
- Dr. G.K. Varshney, Business Regulatory Framework , Sahitya Bhawan Publications, Agra - 282002
- 3. Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship, McGraw Hill (India) Private Limited, Noida 201301
- 4. M.Scarborough, R.Cornwell, Essentials of Entrepreneurship and small business management, Pearson Education India, Noida 201301
- 5. Charantimath Poornima M. Entrepreneurship Development and Small Business Enterprises, Pearson Education, Noida - 201301
- Trott, Innovation Management and New Product Development, Pearson Education, Noida - 201301
- M N Arora, A Textbook of Cost and Management Accounting, Vikas Publishing House Pvt. Ltd., New Delhi-110044
- 8. Prasanna Chandra, Financial Management, Tata McGraw Hill education private

limited, New Delhi

- 9. I. V. Trivedi, Renu Jatana, Indian Banking System, RBSA Publishers, Rajasthan
- 10. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai 600018
- 11. Ramani Sarada, The Business Plan Write-Up Simplified A practitioners guide to writing the Business Plan, Notion Press Media Pvt. Ltd., Chennai 600095.

Board Examination – Evaluation Pattern

Internal Mark Allocation

Assignment (Theory portion)*	-	10
Seminar Presentation	-	10
Attendance	-	5
Total	-	25

Note: * Two assignments should be submitted. The same must be evaluated and converted to 10 marks.

Guidelines for assignment:

First assignment - Unit I

Second assignment – Unit II

Guidelines for Seminar Presentation - Unit III

Each assignment should have five three marks questions and two five marks questions.

BOARD EXAMINATION

Note

- 1. The students should be taught all units and proper exposure and field visit also arranged. All the portions should be completed before examinations.
- The students should maintain theory assignment and seminar presentation. The assignment and seminar presentation should be submitted during the Board Practical Examinations.
- 3. The question paper consists of theory and practical portions. All students

should write the answers for theory questions (45 Marks) and practical portions (55 Marks) should be completed for board examinations.

- 4. All exercises should be given in the question paper and students are allowed to select by lot. If required the dimensions of the exercises may be varied for every batch. No fixed time allotted for each portion and students have liberty to do the examination for 3Hrs.
- For Written Examination: theory question and answer: 45 Marks Ten questions will be asked for 3 marks each. Five questions from each unit 1 & 2. (10 X 3 = 30).

Three questions will be asked for 5 marks each. One question from each unit 1, 2 & 3. $(3 \times 5 = 15)$

6. For Practical Examination: The business plan/Feasibility report or Report on Unit 4 & 5 should be submitted during the board practical examinations. The same have to be evaluated for the report submission (40 marks).

SI.	Description	Marks
No		
Part A	Written Examination - Theory Question and answer 10 questions x 3 marks = 30 marks	45
	3 questions x 5 marks = 15 marks	
Part B	Practical Examination – Submission on Business Plan/Feasibility Report or Report on Unit 4 & 5	40
Part C	Viva voce	15
	Total	100

DETAILED ALLOCATION OF MARKS

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	TOOL DESIGN AND DRAWING
Semester	:	VI
Subject Code	:	4022610
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Hours/ Week	Hours/ Semester	Marks			Duration
			Internal Assessment	Board Examination	Total	Duration
TOOL DESIGN AND DRAWING	5	80	25	100*	100	3 hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Time allocation

TOPIC	TIME
	(Hrs)
I. Design of Press Tools	40
II. Design of Jigs and Fixtures	20
III. Design of Gauges	13
TEST & MODEL EXAMINATIONS	10
TOTAL	80

DETAILED SYLLABUS

Contents: Theory

Name of the Topic	Hours	
I. DESIGN OF PRESS TOOLS:		
Fourteen steps to design a Die – strip layout types of strip layout – wider win,		
narrow and other layout - calculating of percentage utilization and percentage		
stop - method of increasing strip utilization - calculation of cutting force,	40	
calculation press capacity – Design of die plate strip; die and punch clearance		
land, angular clearance – design blanking punches – design piercing punches		
- method of reducing cutting force in progressive dies - Design punch plate,		
design plots, Design a stop – finger stop, Automatic stops – Design of		
strippers, Selection of fasteners and moulds $$ - Selection of die sets drawing –		
Assembly the pillar draw of dies, Adding plunger of die moulds		
II. DESIGN OF JIGS AND FIXTURES:		
Design of Plate jig (turn over type) - Indexing jig - Milling fixture - Grinding	20	
fixture.		
III. GAUGE DESIGN		
1. Design of Plain plug gauge as per IS 3455, IS 6137, IS 6244, IS 6246 and		
IS 7018 : Part 2	13	
2. Design of snap gauge as per IS 3477		
3. Design of plain ring gauges as per IS 3485		
TEST & MODEL EXAMINATIONS	07	
Total	80	

Design of Blanking Tool:

Design of piercing Tool

Design of Progressive Tool

Design of Compound Tool

Channel Drill Jig

Inspection Fixture

Template Drill Jig

Milling Fixture

Indexing Drill Jig

References:-

- 1. J.R.Paquin, Die design fundamentals, Industrial Press Inc, 1990.
- 2. Donaldson, Tool Design, Tata McGraw-hill Book company, 23rd edition, 2006
- 3. Donald F. Eary., Edward A. Reed, Techniques of Press working sheet metal, Prentice-Hall,Inc.,Second Edition, 1974.
- Indian Standard Specifications IS 3455, IS 6137, IS 6244, IS 6246, IS 7018 : Part 2, IS 3477 and IS 3485.

INSTRUCTIONS FOR QUESTION PAPER SETTING:

- Part A is Tool Design and drawing Question for 50 marks. Either or Type question is to be asked. One question from UNIT I and one question from Unit II. The question asked should be such that it could be answered in 135 minutes time. Please avoid components of very complicated profiles which consumes more time.
- 2. **Part B** is gauge design and drawing question from **UNIT III** for 25 marks . Please ensure that the tolerance grade for gauge design dimensions are given in question paper which is an essential data for gauge design using standards.
- 3. For mark and time allocation please refer the model question paper enclosed herewith

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	PLASTIC MOULDING TECHNOLOGY
Semester	:	VI
Subject Code	:	4022620
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours/ Week	Hours/ Semester	Marks			
			Internal Assessment	Board Examination	Total	Duration
PLASTIC MOULDING TECHNOLOGY	5	80	25	100*	100	3 hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Time allocation

UNIT	TOPIC	TIME (Hrs)
I	Plastic Materials and Processing techniques	14
II	Injection Moulding Machine, Injection Mould and its functional system	15
	Injection Mould Design	15
IV	Compression, Blow and Transfer moulding machine and Mould Design	14
V	Plastic Product Design , Decoration of Plastic Products & Maintenance and repairs of injection moulds	15
	TEST & MODEL EXAMINATIONS	07
	Total	80
RATIONALE: -

Plastic plays an important role in the present day industrial products and for the manufacture of plastic components lot of moulds are used. Hence Considering the immense potential in the fields of Plastic processing, mould design, making and maintenance, it is essential to understand the basics of plastic materials, processing and moulding technology adopted to convert the raw plastic material into desired products.

OBJECTIVES

- Familiarise different plastics materials and their properties
- Familiarise of the conventional injection-moulding machine types, their specification, Operation terminology and their parts.
- Compare different moulding processes used in industries, their application
- Explain the design procedure for injection moulding.
- Explain the design procedure for compression moulding
- Explain the concepts in the design of blow moulds.
- Appreciate the decoration techniques, plating techniques used for plastic components.
- Explain the working of injection moulding machine
- Understand the intermediate injection moulding design concepts

DETAILED SYLLABUS

4022620 - PLASTIC MOULDING TECHNOLOGY

Cor	itents: Theory						
Unit	Name of the Topics	Hours					
No.							
	Plastic Materials and Processing techniques						
	1.0 Plastics: Introduction – type of Plastics - Thermo Plastic Materials –						
	Thermo setting Materials – Commodity Plastics – Engineering materials –						
	Density - Melting Temperature – Shrinkage – Bulk Factor – Moulding	7					
	Properties – Applications – Additives - Master Batches – Pigments.						
	Injection Moulding: Hot Runner Injection Moulding Process, Multi colour						
	and multi component Injection Moulding Process, Reaction Injection						
1	Moulding Process.						
	1.2 Blow Moulding: concept and working principle only	2					
	1.3 Compression & Transfer Moulding – Compression Moulding						
	Procedure- Difference between Injection and Compression moulding	3					
	Transfer Moulding -Advantages and Disadvantages.						
	1.4 Other processes: Rotational Moulding, Thermoforming, Extrusion- Pipe	2					
	extrusion, Blown film, Cast film extrusion, Rod Extrusion– Co extrusion,						
	Injection Moulding machine, injection mould and its functional						
	<u>systems</u>						
	2.1 Injection Moulding Machines: Basic parts and functioning of an						
	injection moulding machine. Types of injection moulding machine (Screw						
	type & Plunger Type) – Single stage and two stage – Clamping unit	3					
	(Toggle & Hydraulic) - Types of nozzles – Typical injection. Moulding cycle,						
П	Cycle time - Machine specifications (Definition only).						
	2.2 Injection Mould: - Terms used in connection with injection moulds,						
	classification of moulds, Functions of the injection moulds.	3					
	2.3 Functional systems of injection mould – Sprue and runner system -						
	Runner, Cross section shape, Runner size, Runner layout – Gates,						
	Necessity, Centre gate, Edge gate, Balanced gating, Types of Gates.	3					
	Core and Cavity- Shrinkage calculation - Core and cavity dimension.						

Parting surface: Flat Parting surface – Non flat parting surface - Venting –	
Mould clamping - direct, indirect.	
2.4 Cooling System – Cooling Integer type cavity plates – Cooling	
integer type core plate - Cooling bolster – Cooling cavity inserts – Cooling	3
core inserts – Water connection and seals. (Concept & Description of	
design only)	
2.5 Ejection system : Ejector grid - Ejector plates assembly – Ejector rod,	
Ejector plate and ejector retaining plate - Methods of Ejection – Ejection	3
from fixed half- Sprue puller.	
Injection Mould Design & Intermediate Moulds	
3.1 -Basic procedure for mould design - Determination of mould size -	
Maximum number of cavities, Clamping force, Maximum clamping area,	
Required opening stroke. Computation of number of cavities, cavity layouts,	4
number of parting lines, Design of runner and gate.	
3.2 Intermediate Moulds: Moulding external undercuts-Split mould - Finger	
cam, dog leg cam & track. Hydraulic & spring actuation of split - Side	
core and side cavity, Methods of actuation - Mould with internal undercut	
: Form pin, actuation, split core, jumping off - Mould for threaded	6
component: Manual & automatic unscrewing methods hand mould for	
rotating & lose core methods - Multi day light mould – Under feed mould –	
Triple day light mould – Hot runner unit mould, Advantages and Limitations,	
Hot runner nozzles & sprue, runner less mould - Materials for Injection	
Mould – Standard Mould systems, Advantages and limitations (Concept	
& Description of design only).	
3.3 Alignment of Moulds: Functions of alignment, alignment with the axis	
of the plasticizing unit, internal alignment and interlocking, alignment of large	5
moulds. Changing of moulds - system for a quick change of moulds for	
thermoplastics, mould exchanger for elastomer moulds.	
	 Parting surface: Flat Parting surface – Non flat parting surface - Venting – Mould clamping - direct, indirect. 2.4 Cooling System – Cooling Integer type cavity plates – Cooling integer type core plate - Cooling bolster – Cooling cavity inserts – Cooling core inserts – Water connection and seals. (Concept & Description of design only) 2.5 Ejection system: Ejector grid - Ejector plates assembly – Ejector rod, Ejector plate and ejector retaining plate - Methods of Ejection – Ejection from fixed half- Sprue puller. Injection Mould Design & Intermediate Moulds 3.1 –Basic procedure for mould design – Determination of mould size – Maximum number of cavities, Clamping force , Maximum clamping area, Required opening stroke. Computation of number of cavities, cavity layouts, number of parting lines, Design of runner and gate. 3.2 Intermediate Moulds: Moulding external undercuts-Split mould - Finger cam, dog leg cam & track. Hydraulic & spring actuation of split - Side core and side cavity, Methods of actuation - Mould for threaded component: Manual & automatic unscrewing methods hand mould for rotating & lose core methods - Multi day light mould – Under feed mould – Triple day light mould – Hot runner unit mould, Advantages and Limitations, Hot runner nozzles & sprue, runner less mould - Materials for Injection Mould – Standard Mould systems, Advantages and limitations (Concept & Description of design only). 3.3 Alignment of Moulds: Functions of alignment, alignment with the axis of the plasticizing unit, internal alignment and interlocking, alignment of large moulds.

		Compression, Blow and Transfer Moulding machines and Mould	
		<u>Design</u>	
		4.1 Compression & Transfer Moulding Machines: - Type of compression	4
		Moulding Machine – Toggle type mechanical machine – Hydraulically	
		operated Machine – Auxiliary Ram type machines (Vertical Transfer	
		Machine) – Bottom Transfer Machine – Machine Parts – Machine	
		Specifications- Pot and plunger Transfer machines	
		4.2 Compression mould Design: Economic determination of no. of	4
		cavities, flash thickness allowances, design of mould cavity, design of	
	N7	loading chamber, bulk factor, loading chamber depth & heat requirement for	
	IV	heating the mould related to - curing time, breathing time. Materials for	3
		Compression mould.	
		4.3 Blow moulding Machines - Extrusion Blow Moulding Machine (EBM) -	
		Stretch Blow Moulding Machine (SBM) – Injection Blow Moulding Machine	3
		(IBM) – Machine Parts – Machine Specifications.	
		4.4 Blow Mould Design: Mould layout, pinch off, venting, Head die design,	
		parison diameter calculation, shrinkage calculation, design of mould	
		clamping accessories.	
		Plastic Product Design, Decoration of Plastic Products and	
		Maintenance & Repair of Injection Moulds:	
		5.1 Plastic Product Design: Wall thickness - Ribs and profiled structures -	
		Gussets or support ribs - Bosses - Holes - Radii & Corners - Tolerances -	4
		Coring - Undercuts – Draft angle.	
		5.2 Decoration of Plastic Parts: Painting and coating (Dipping, Spraying	
	v	and Depositing) – Metalizing (Vacuum metallization, Vacuum evaporation,	7
	v	sputtering) – Plating (Electroless plating, Electrolytic plating) - Flame and	
		arc spraying - hot foil stamping – hot transfer – In mold decorating - Water	
		transfer – Printing– Laser Marking, Vapor polishing, Decals -	
		Understanding Recycling Codes.	
		5.3 Maintenance of Injection Moulds: Advantages of Preventive	4
		maintenance, maintenance of - cooling lines, mould surfaces, heating &	
		control systems. Action taken after examination and cleaning. Repair and	

Text Books:

- 1. Pye.R.G.W., "Injection Mould Design", Affiliated East west press pvt Ltd, 2000
- 2. Athalye.A.S., 'Injection Moulding", 2nd Edn., Multi Tech Publishing Co., 1998

3. George menges and Paul mohren, "How to make Injection moulds", Hawer publishers, 1991

Reference Books:

- 1. Briston and Gosselin, "Introduction to Plastics", Newnes-Butterworths, London, 1970
- 2. Mills.N.J., "Plastics", ELBS, 1986
- 3. Dominick V.Rosato and Donald V.Rosato., "Injection Moulding Hand Book", CBS Publishers & Distributors, Delhi, 1987
- 4. Athalye.A.S., "Plastics Materials Handbook", Multi Tech Publishing Co., 1995

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

III YEAR

N – SCHEME

VI SEMESTER

2020 - 2021 onwards

4020610 – INDUSTRIAL ENGINEERING & MANAGEMENT

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	INDUSTRIAL ENGINEERING AND MANAGEMENT
Semester	:	VI
Subject Code	:	4020610
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination				
Subject	Hours	Hours /	Marks				
	Ι	Semester	Internal	Board	Total	Duration	
	Week	•••••••	Assessment	Examinations			
INDUSTRIAL							
ENGINEERING	5	80	25	100*	100	3 hrs.	
MANAGEMENT							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Plant Engineering and Plant Safety	14
II	Work Study, Method Study and Work Measurement	15
	Principles, Personnel Management and Organizatioal	16
	Behavior:	
IV	Financial and Material Management	14
V	Engineering Ethics and Human Values	14
	TEST & MODEL EXAMINATIONS	07
	Total	80

RATIONALE:

In the Indian Economy, Industries and Enterprises always find prominent place. After globalization, the students should be trained not only in manufacturing process but also in managing activities of industries. The knowledge about plant, safety, work study techniques, personnel management, financial management and engineering ethics and human values will definitely help the students as managers to suit the industries.

OBJECTIVES:

- To study the different types of layout.
- To study the safety aspects and its impacts on an organization.
- To study different work measurement techniques.
- To study engineering ethics and human values.
- To study the staff selection procedure and training of them.
- To study capital and resources of capital.
- To study inventory control system.
- To study about organization and it's behavior.

DETAILED SYLLABUS

4020610 INDUSTRIAL ENGINEERING AND MANAGEMENT

Contents: Theory

Unit	Name of the Topics	Time			
I	Plant Engineering and Plant Safety				
	Chapter: 1.1: Plant Engineering : Plant – Selection of site of industry –	7			
	Plant layout – Principles of a good layout – types – process, product and				
	fixed position - techniques to improve layout - Principles of material				
	handling equipment – Plantmaintenance – importance – Break down				
	maintenance, preventive maintenance and scheduled maintenance.				
	Chapter: 1.2: Plant Safety: Importance – accident - causes and				
	cost of an accident-accident proneness - prevention of accidents -	7			
	Industrial disputes - settlement of Industrial disputes-Collective bargaining,				
	conciliation, Mediation, arbitration - Indian Factories Act 1948 and its				
	provisions related to health, welfare and safety.				

Ш	Work Study, Method Study and Work Measurement	
	Chapter: 2.1: Work Study: Productivity – Standard of living – method of	3
	improving productivity - Objectives - Importance of good working	
	conditions.	
	Chapter: 2.2: Method Study: Definition - Objectives - Selection of a	5
	job for method study -Basic procedure for conduct of method study	
	- Tools used - Operation process chart, Flow process chart, two handed	
	process chart, Man Machine chart, String diagram and flow diagram.	
	Chapter: 2.3: Work Measurement: Definition – Basic procedure in	
	making a time study - Employees rating factor - Application of time	7
	allowances – Rest, Personal, Process, Special and Policy allowances –	
	Calculation of standard time - Problems - Basic concept of production	
	study – Techniques of work measurement-Ratio delay study, Synthesis	
	from standard data, analytical estimating and Pre determined Motion Time	
	System (PMTS).	
	Principles, Personnel Management and Organizational Behavior:	
	Chapter: 3.1: Principles of Management: Definition of management -	6
	Administration - Organization – F.W. Taylor's and Henry Fayol's Principles	
	of Management – Functions of Manager – Directing – Leadership – Types	
	of Leadership – Qualities of a good leader – Motivation – Positive and	
	negative motivationModern management techniques- Management	
	Information Systems – Strategic management – SWOT Analysis -	
	Business Process Re-engineering (BPR) – Enterprises Resource	
	Planning (ERP) – Activity Based Management (ABM) – Global Perspective	
	 Principles and brief description. 	
	Chapter: 3.2: Personnel Management: Responsibility of human	
	resource management - Selection procedure - Training of workers -	6
	Apprentice training – On the job training and vestibule school	
	training – Job evaluation and merit rating – objectives and	
	importance - wages and salary administration - Components of wages -	
	Wage fixation – Type of wage payment – Halsey's 50% plan, Rowan's	

	Chapter: 3.3: Organizational behavior: Definition – organization	
	Types of Organization – Line, Staff, Taylor's Pure functional types – Line	4
	and staff and committee type –Organizational Approaches, individual	
	behavior - causes - Environmental effect - Behavior and Performance,	
	Perception - organizational implications.	
IV	Financial and Material Management	
	Chapter: 4.1: Financial Management: Fixed and working capital -	7
	Resources of capital – shares preference and equity shares – debentures	
	- Type of debentures - Public deposits, Factory costing - direct cost -	
	indirect cost – Factory overhead – Selling price of a product – Profit –	
	Problems. Depreciation – Causes – Methods - Straight line, sinking fund	
	and percentage on diminishing value method – Problems.	
	Chapter: 4.2: Material Management: Objectives of good stock control	
	system – ABC analysis of inventory – Procurement and consumption	7
	cycle – Minimum Stock, Lead Time, Reorder Level - Economic order	
	quantity - problems – supply chain management - Introduction –	
	Purchasing procedure – Store keeping – Bin card.	
V	Engineering Ethics and Human Values	
	Chapter: 5.1: Engineering Ethics: Definition-engineering ethics-personal	8
	and business ethics- duties and rights-engineering as a profession - core	
	qualities of professional practitioners-environment and their impact-code	
	of ethics- procedure for solving ethical conflicts - ethical judgement-	
	Kohiberg's stages of moral development - value based ethics- engineers	
	as managers, consultants and leaders- environmental ethics- computer	
	ethics- Intellectual Property Rights (IPRs).	
	Chapter: 5.2: Human values : morals - values - integrity- service	
	learning-civic virtue - respect for others- living peacefully- caring - sharing	6
	- honesty- courage - valuing time cooperation - commitments - empathy-	
	selfconfidence – character- stress management.	

Reference Books :

- 1. Industrial Engineering and Management, O.P. Khanna, Revised Edition Publications(P)Ltd 2004, 67/4 Madras House, Daryaganj, NewDelhi– 110002.
- Engineering Economics and Management, T.R. Banga& S.C. Sharma, McGraw Hill Editiion. 2 – 2001, NewDelhi.
- 3. HeraldKoontz and Heinz Weihrich,' Essentials of Management', McGraw Hill Publishing Company, Singapore International Edition.Latest
- 4. Govindarajan .M, Natarajan. S, Senthilkumar V.V, Engineering ethics , prentice hall of India New Delhi, 2004.
- Management, Aglobal perspective, Heinz Weihrich, Harold Koontz, 10th Edition, McGraw Hill International Edition.Latest.
- Essentials of Management,4th Edition, Joseph L.Massie,Prentice- Hall of India, NewDelhi 2004.
- 7. S.Chandran, Organizational Behaviours, Vikas Publishing House Pvt. Ltd. Latest
- 8. M.Govindarajan and S.Natarajan ,Principles of Management ,Prentce Hall of India Pvt.Ltd. NewDelhi.Latest.
- 9. Charles B. Fledderman, Engineering ethics, pearson prentice hall, New Jersey, 2004.

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N – SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	INDUSTRIAL ROBOTICS AND 3D PRINTING
Semester	:	VI
Subject Code	:	4020631
Course Name	:	1220 DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Hours / Week	/ Hours / Semester	Marks			
j			Internal	Board	Total	Duration
			Assessment	Examinations	····	
INDUSTRIAL						
ROBOTICS AND	5	80	25	100*	100	3 hrs.
3D PRINTING						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Fundamentals of Robot Technology	12
II	Drive Systems, End Effecters, Sensors and Machine Vision System	12
III	Robot Programming, Robot Applications in Maufacturing	12
IV	Introduction and Design for Additive Manufacturing	18
V	Additive Manufacturing Processes	19
	TEST AND MODEL EXAMINATION	07
	Total	80

RATIONALE:

Rapid industrialization and globalization needs industries to be more competitive and deliver cost effective quality products. This needs industries to implement flexible manufacturing systems where Robotic technology plays major role. Hence study of robotic technology is very essential.

3Dprinting is often utilized when manufacturers need to create a product accurately, quickly and at a low quantity. This has lead to 3D printers being brought in to prototype industrial robots, helping to aid the development of better, more efficient robots in the industrial sector.

OBJECTIVES:

- Understand fundamentals of robotics
- Acquire knowledge structure and elements of robot
- Gain knowledge on controller and various drives used in robotics
- Develop knowledge on role of sensors and vision system
- Acquire skill to program and control robot
- Understand to adopt robot to various industrial applications.
- To acquire the knowledge on 3D Printing and design principles for additive manufacturing
- To understand the principles of latest manufacturing processes in Additive manufacturing

DETAILED SYLLABUS

Contents: Theory

Unit	Name Of The Topic	Hours			
I	Fundamentals of Robot Technology				
	Introduction – History of robot– Definitions– Basic configuration of				
	Robotics – Robot Components – Manipulator, End effecter,				
	Driving system, Controller and Sensors – Degrees of freedom –				
	Links and joints – Types of joints – Joint notation scheme – Pitch,				
	Yaw, Roll – Classification of robots – Work envelope and Work				
	Volume – Effect of structure on Control ,Work envelop and Work				

	volume- Introduction to PUMA robot- Robot controller -	
	Configuration - Four types of controls – Open loop and closed	
	loop controls - Speed of response and stability - Precision of	
	movements: Spatial resolutions, accuracy and repeatability.	
II	Drive Systems, End Effecters, Sensors and Machine Vision	12
	System	
	Pneumatic drives – Hydraulic drives – Mechanical drives –	
	Electrical drives – Stepper motors, DC Servo motors and AC	
	Servo motors- Applications and Comparisons of Drives. End	
	effecters – Grippers – Mechanical Grippers, Magnetic Grippers,	
	Vacuum Grippers- Selection and design considerations in robot	
	gripper- Requirements of Sensors – Position sensors: LVDT,	
	Resolvers, Optical encoders- Proximity sensors: Inductive,	
	Capacitive, Ultrasonic and Optical proximity sensors- Touch	
	Sensors – Range Sensors- Machine Vision System: Sensing &	
	Digitizing Image Data – Image Processing and Analysis -	
	Application	
III	Robot Programming, Robot Applications In Manufacturing	12
	Forward kinematics, Inverse kinematics and differences -	
	Forward kinematics and Reverse kinematics of manipulators with	
	Two and Three degrees of freedom – Derivations. Robot	1
	programming –Lead through programming, Textual programming	
	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming	
	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter	
	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding –	
	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding – Arc welding – Spray painting – Assembling – Finishing-AGV-RGV.	
IV	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding – Arc welding – Spray painting – Assembling – Finishing-AGV-RGV. Introduction and Design for Additive Manufacturing	
IV	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding – Arc welding – Spray painting – Assembling – Finishing-AGV-RGV. Introduction and Design for Additive Manufacturing Introduction to Additive Manufacturing	9
IV	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding – Arc welding – Spray painting – Assembling – Finishing-AGV-RGV. Introduction and Design for Additive Manufacturing Introduction to Additive Manufacturing Additive Manufacturing – 3D Printing – Rapid prototyping –	9
IV	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding – Arc welding – Spray painting – Assembling – Finishing-AGV-RGV. Introduction and Design for Additive Manufacturing Introduction to Additive Manufacturing Additive Manufacturing – 3D Printing – Rapid prototyping – Overview – Need – Additive manufacturing Vs CNC Machining -	9
IV	programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding – Arc welding – Spray painting – Assembling – Finishing-AGV-RGV. Introduction and Design for Additive Manufacturing Introduction to Additive Manufacturing Additive Manufacturing – 3D Printing – Rapid prototyping – Overview – Need – Additive manufacturing Vs CNC Machining - Development of Additive Manufacturing Technology – Principle of	9
IV	 programming –Lead through programming, Textual programming – Teach Pendant for Robot system– Robot programming languages – Motion commands, Sensor commands, End effecter commands. Robot applications – Material handling-Spot welding – Arc welding – Spray painting – Assembling – Finishing-AGV-RGV. Introduction and Design for Additive Manufacturing Introduction to Additive Manufacturing Additive Manufacturing – 3D Printing – Rapid prototyping – Overview – Need – Additive manufacturing Vs CNC Machining - Development of Additive Manufacturing Technology – Principle of AM Process – Generalised Additive Manufacturing Process Chain 	9

	- Classification - Benefits – Direct and Indirect process,	
	Prototyping, Manufacturing and Tooling	l
	Design for Additive Manufacturing	9
	Design tools: Data processing - CAD model preparation – STL file	
	- Part orientation and support structure generation - Model slicing	
	- Tool path generation. Design for Additive Manufacturing:	
	Concepts and objectives - AM unique capabilities - DFAM for part	
	quality improvement – strategies – Design Rules – Quality	
	aspects – Software for AM – MIMICS, etc.	
V	Additive Manufacturing Processes	
	Photo polymerization and Powder Bed Fusion Processes	7
	Photo polymerization: SLA - Photo curable materials - Process -	
	reaction rates - scan patterns - Advantages and Applications.	
	Powder Bed Fusion: SLS - Process description - powder fusion	
	mechanism – material feed system - Process Parameters -	
	Materials and Applications. Electron Beam Melting	
	Extrusion Based And Sheet Lamination Processes	5
	Extrusion Based System: FDM – Introduction - Basic Principle –	
	plotting and path control - Materials - Applications and Limitations	
	- Bio-extrusion. Sheet Lamination Process: LOM – Materials -	
	Gluing or Adhesive bonding - Thermal bonding – Ultrasonic AM.	
	Printing Processes And Beam Deposition Processes	7
	Droplet formation technologies - Continuous mode - Drop on	
	Demand mode - Three Dimensional Printing – Advantages – Bio-	
	plotter - Beam Deposition Process: LENS- Process description -	
	Material delivery - Process parameters - Materials - Benefits.	
	Applications of AM technologies in Automotive, Manufacturing,	
	Architectural, Healthcare, and Consumer products.	

Reference Books:

1. Industrial Robotics – Technology, Programming and Applications, P.Groover, MCGraw Hill, 2001

- 2. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.
- Ian Gibson, David W. Rosen, Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer, 2010.
- 4. Robotics Control, Sensing, Vision and Intelligence, Fu.K.S.Gonzalz.R.C., and Lee C.S.G, McGraw-Hill Book Co., 1987
- 5. Robotics for Engineers, Yoram Koren, McGraw-Hill Book Co., 1992
- 6. Robotics and Image Processing, Janakiraman.P.A, Tata McGraw-Hill, 1995
- Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing" Hanser Gardner Publication 2011.
- 8. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 9. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.
- 10. Tom Page, "Design for Additive Manufacturing" LAP Lambert Academic Publishing, 2012.
- 11. Amit Bandyopadhyay, and Susmita Bose, "Additive Manufacturing", CRC Press.
- 12. John O Milewski., "Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewellery", Springer Series in Materials Science
- 13. Sabrie Soloman. "Additive Manufacturing: Advanced Manufacturing Technology in 3d Print Deposit"
- 14. David Ian Wimpenny and Pulak M Pandey, "Advances in 3D Printing and Additive Manufacturing Technologies"
- 15. Andreas Gebhardt, Hanser, "Understanding Additive Manufacturing"

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	E VEHICLE TECHNOLOGY & POLICY
Semester	:	V
Subject Code	:	4020620
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subiect	Hours /	Hours / Semester	Marks			
,	Week		Internal	Board	Total	Duration
			Assessment	Examinations		
E VEHICLE						
TECHNOLOGY &	5	80	25	100*	100	3 hrs.
POLICY						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Environmental impact and history, Types of Electric vehicles	15
II	Electric vehicle, Electrical Propulsion System	15
	Energy Storages, Charging System, Effects and Impacts	14
IV	Electric Mobility Policy Frame Work	14
V	Tamilnadu E-Vehicle Policy 2019	15
	TEST & MODEL EXAMINATIONS	7
	Total	80

RATIONALE:

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and auto-components. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. Due the rapid depletion of fossil fuel and increase in fuel cost, environmental pollution, the shift to clean transport is necessary. This subject introduced by keeping all the above factors.

OBJECTIVES:

- To learn the environmental impact and history of Electric Vehicles.
- To understand the concept of Electric Vehicle and its types.
- To study the configurations of Electric Vehicles
- To acquire knowledge about Energy Storages, Charging System, Effects and Impacts
- To appreciate the Electric Mobility Policy Frame work India and EV Policy Tamil Nadu 2019.

DETAILED SYLLABUS

4020620 E Vehicle Technology & Policy

Contents: Theory

Unit	Name of the Topics	Hours
I	Environmental impact and history:	8
	Environmental impact of conventional vehicle - Air pollution – Petroleum	
	resources - History of Electric vehicles & Hybrid Electric Vehicles -	
	Conventional drive train system – Rear Wheel, Front Wheel and All	
	wheel - Parts of Drive train system	
	Types of Electric Vehicles:	
	Introduction to Battery Electric Vehicle (BEV) - Definition BEV -	7
	Necessity BEV - Different between BEV and Conventional Vehicle -	
	Advantages of BEV - Block diagram of BEV - Hybrid electric Vehicle	
	(HEV) - Plug-in Hybrid Electric Vehicle (PHEV) - Fuel Cell Electric	
	Vehicle (FCEV) – Description.	
	Electric Vehicles:	7
	Configurations of Electric Vehicle – Performance of Electric Vehicles –	
	Tractive Effort in Normal Driving – energy consumption.	
	Hybrid Electric Vehicles: Concept of Hybrid electric drive trains -	
	Architecture of Hybrid Electric Drive trains – Series, Parallel and Series &	
	Parallel	
	Electric Propulsion Systems:	8
	Types of EV motors - DC motor drives– Permanent Magnetic Brush Less	
	DC Motor Drives (BLDC) – Principles, Construction and Working – Hub	
	motor Drive system – Merits and Demerits of DC motor drive, BLDC	
	motor drive	
	Energy Storages:	6
	Electrochemical Batteries – Battery Technologies – Construction and	
	working of Lead Acid Batteries, Nickel Based Batteries and Lithium	
	Based Batteries - Role of Battery Management System (BMS)- Battery	
	pack development Technology- Cell Series and Parallel connection to	

	develop battery pack.	6
	Charging:	
	Battery Charging techniques - Constant current and Constant voltage,	
	Trickle charging – Battery Swapping Techniques – DC charging –	
	Wireless charging - Maintenance of Battery pack - Latest development	
	in battery chemistry.	
	Effects and Impacts:	
	Effects of EV - Impacts on Power grid - Impacts on Environment -	2
	Impacts on Economy.	
IV	Electric Mobility Policy Frame Work	14
	Government of India Electric Mobility Policy Frame work - Global	
	Scenario of EV adoption - Electric mobility in India - National Electric	
	Mobility Mission Plan 2020 – Action led by Original Equipment	
	Manufacturers – Need of EV Policy – Advantage of EV Eco system –	
	Scope and Applicability of EV Policy – ARAI Standards for Electric	
	Vehicle – AIS 038, AIS 039 & AIS 123 - Key Performance Indicator -	
	Global impact – Trends and Future Developments	
V	Tamil Nadu E-Vehicle Policy 2019	15
	Tamil Nadu E-vehicle Policy 2019: Vehicle Population in Tamil Nadu -	
	Objectives of EV Policy – Policy Measures – Demand side incentives –	
	Supply side incentives to promote EV manufacturing - Revision of	
	Transport Regulation of EV – City building codes – Capacity Building and	
	Skilling - Charging structure - implementing agencies - Reasearch	
	&Development and Business Incubation - Recycling Ecosystem -	
	Battery and EVs	

Reference Books

- 1. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York.
- Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal
- A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development (MDPI), Fuad Un-Noor, Sanjeevikumar Padmanaban, Lucian Mihet-Popa, Mohammad Nurunnabi Mollah and Eklas Hossain.
- 4. Electric Vehicles: A future Projection CII October 2020 report.
- 5. Design and analysis of aluminum/air battery system for electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.
- 6. Propelling Electric Vehicles in India, Technical study of Electric Vehicles and Charging Infrastructure
- ZERO EMISSION VEHICLES (ZEVs): TOWARDS A POLICY FRAMEWORK NTI Aayog.
- 8. FASTER ADOPTION OF ELECTRIC VEHICLES IN INDIA: PERSPECTIVE OF CONSUMERS AND INDUSTRY, The Energy and Resources Institute, New Delhi.
- 9. India EV Story: Emerging Opportunities by Innovation Norway.
- 10. Automotive Industry Standards AIS 038, AIS 039 & AIS 123 Manual

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	SOLID MODELLING PRACTICAL
Semester	:	VI
Subject Code	:	4020640
Course Name	:	1220 DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ictions	Examination			
Subiect	Hours /	Hours / Semester	Marks			
<i></i>	Week		Internal	Board	Total	Duration
			Assessment	Examinations	. otai	
SOLID						
MODELLING	5	80	25	100*	100	3 hrs.
PRACTICAL						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

A Mechanical Engineering Diploma Engineer is expected to possess a thorough understanding of drawing, which includes clear visualization and proficiency in reading and interpreting a wide variety of production drawing. The market driven economy demands frequent changes in product design to suit the customer requirements. The introduction of this subject is to provide hands on experience in sketching and modeling of the industrial components using any one of the Computer Aided Design and Modelling packages. The aim of this subject is to help the student to attain the industry identified competency through practice in CAD software.

OBJECTIVES:

- Prepare 2D Drawing using sketcher or part modelling of any parametric CAD software.
- Generate 3D Solid models from 2D sketch or part modelling of any parametric CAD software.
- Prepare assembly of part models using assembly of any parametric CAD software.
- Generate orthographic views of 3D solid models/assemblies using drafting of any parametric software.
- Plot a drawing for given part model/assembly.

DETAILED SYLLABUS

Contents: Practical

Introduction

Parametric CAD software – sketch – elements – entities: line – circle – arc – ellipse – polygon – text – dimensions – sketch tools – fillet – chamfer – offset – trim – extend – mirror – rotate – block. Partmodelling – reference planes – reference point – reference axes – co-ordinate system – extrude – revolve – swept – helix and spiral – lofts – dome – shell – draft – rib – wrap – intersect – holes – patterns. Assembly – approaches – mate – coincident – sub assembly –rebuild – isolate. Drawing views – Save – Plot – model view – exploded view – projected view – section view – import – export – Appearance – rendering.

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

- 1. Model 1
- 2. Model 2
- 3. Model 3
- 4. Model 4
- 5. Model 5
- 6. Model 6

PART B: Draw the part models and assemble the components using 3D modelling.

- 1. Revolving Centre
- 2. Tail stock
- 3. Machine Vice

- 4. Crane hook
- 5. Petrol Engine Connecting Rod
- 6. Pipe Vice

Board Examination

Note: All the exercises should be completed All the exercises should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Record note book should be submitted during examination.

Two exercises will be given for examination by selecting one exercise in each PART. The printout of exercises of the student work should be submitted with answer paper and the same have to be evaluated as per the allocation.

SI. No.	Performance Indicator Marks					
Part A –	3D Component Modelling					
1	Sketching	15				
2	3D Modelling 15					
Part B –	Assemble Drawing Modelling	·				
3	Sketching / Part modelling	20				
4	Assembly	30				
5	Solid Model / Views	10				
6	Vivavoce	10				
	Total	100				

DETAILLED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for the batch of 30 students)

- Personal computer : 30 Nos.
- Laser Printer : 1 No.
- Software : GUI System Software

:

Modelling package – Sufficient to the strength.

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N – SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Subject Title	:	INDUSTRIAL ROBOTICS AND 3D PRINTING PRACTICAL
Semester	:	VI
Subject Code	:	4020651
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination				
Subiect	Hours / Week	Hours / Semester	Marks				
			Internal	Board	Total	Duration	
			Assessment	Examinations			
INDUSTRIAL	5	80	25	100*	100	3 hrs.	
ROBOTICS AND							
3D PRINTING							
PRACTICAL							

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Objectives

- Study of Robot / Study of robot simulation software
- To study the components required.
- To study the techniques of programming for various industrial manufacturing applications.
- Prepare a record of work done.
- Acquire knowledge in the field of Additive Manufacturing
- Explain the various concepts of Solid Modelling
- Create STL files to manufacture components using 3D Printer

DETAILED SYLLABUS

Contents:

3D Printing : Getting to know the User Interface of the Modelling software – Home Screen – Navigating the main Screen – Options Bar – Application Menu & Quick Access Toolbar – Describe the function of a sketch - Describe the various types of sketches. Create sketches of 3D models. Basic Modelling Considerations – Describe part creation within the design process. Add placed features to existing parts. Create complex shapes by sweeping or lofting profiles. Assemblies - Managing the assemblies - Assemble a mechanical piece of equipment using constraints. STL files – introduction – conversion of parts from other file formats to STL file – Additive Manufacturing – types of 3D Printers – orientation and positioning of parts - producing 3D working models using 3D Printers.

Exercises:

PART A- Robot Programming

- 1. Position recording using Cartesian co-ordinate system (No. of positions 9)
- 2. Position recording using Polar co-ordinate system (No. of positions 9)
- 3. Pick and place the objects No. of objects 6)
- 4. Pick and stack the objects (No. of objects 6)
- 5. Spray painting practice (Area 300mm x 300mm)
- 6. Spot welding practice (No. of spots 9)
- 7. Arc welding practice (Length of weld 50 mm)
- 8. Assembling practice (Minimum 3 Components)
- 9. Profile cutting practice (Complicated profile combination of lines and arcs)
- 10. Machine loading and unloading practice with time delay (No. of times 9)

PART B - 3D Printing

- 1. Create the model and produce the Gear Train in 3D printing.
- 2. Create the model and produce the Sun-planetary gear mechanism.
- 3. Create the model and produce the Geneva Gear & Ratchet mechanism.

4. Create the model and produce the Slide-crank mechanism.

<u>Note:</u> Every student is asked to design and produce only one component of an assembly. After the completion of the product, individual parts are checked for its precision and matting in the assembly. Hence group exercises can be given. The models can be scaled according to the print area of the 3D Printer.

Board Examination

Note:

- All the exercises should be completed. Two exercises will be given for examination by selecting one exercise in each PART.
- All the exercises should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed.
- Record note book should be submitted during examination.

SI. No.	Performance Indicator	Marks				
Part A –	Part A – Robot Programming					
1	Robot Program	20				
2	Simulate / Execution	30				
3	Result	10				
Part B – 3D Prinitng						
4	CAD - Modelling	15				
5	3D Printing	15				
6	Vivavoce	10				
	100					

DETAILLED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (for the batch of 30 students)

Personal computer	:	15 Nos.
6 Axis Robot	:	1 No.
3D Printer	:	1 No.
Software	:	GUI System Software
	:	Modelling package / 3D Printer–Sufficient to the strength.

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN MECHANICAL ENGINEERING

(TOOL& DIE)

III YEAR

N – SCHEME

VI SEMESTER

2020 - 2021 onwards

4020550 – THERMAL ENGINEERING PRACTICAL

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N - SCHEME

(Implemented from the Academic year 2020 - 2021 onwards)

Course Name	:	1020 DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)
Subject Code	:	4020550
Semester	:	VI
Subject Title	:	THERMAL ENGINEERING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Hours / Week	Hours / Semester	Marks			
			Internal	Board	Total	Duration
			Assessment	Examinations	lotal	
STRENGTH OF	5	80	25	100*	100	3 hre
MATERIALS	5	00	25	100	100	51115.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Determine the flash and fire point and viscosity of oil.
- Draw the valve timing diagram of petrol and diesel engines.
- Draw the port timing diagram of petrol and diesel engines.
- Conduct performance test on petrol and diesel engines.
- Prepare heat balance sheet for an IC engine.
- Conduct of C.O.P of Refrigerators.
- Determine the volumetric efficiency of the Air Compressor.

Experiments:

PART-A

- 1. Determine flash and fire point of the given oil using open cup and closed cup apparatus.
- 2. Determine the absolute viscosity of the given lubricating oil using Redwood viscometer.
- 3. Determine the absolute viscosity of the given lubricating oil using Say bolt viscometer.
- 4. Port timing diagram of two stroke petrol Engine
- 5. Valve time diagram for four stroke petrol Engine.
- 6. Valve time diagram for four stroke diesel engines.

PART-B

- 1. Load test (Performance test) on Four Stroke Petrol Engine.
- 2. Load test (Performance test) on Four Stroke diesel Engine.
- 3. Morse test on Multi-cylinder petrol engine.
- 4. Heat balance test on Four Stroke Diesel / Petrol Engine.
- 5. Volumetric efficiency of Air Compressor.
- 6. Determination of COP of Refrigeration System.

BOARD EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Detailled Allocation of Marks

Part A:		35
Observation and Tabular Column	5	
Calculations	20	
Result / Graph	10	
Part B:		55
Observation and Tabular Column	10	
Formulae, Calculations	30	
Result / Graph	15	
Viva Voce		10
Total		100
LIST OF EQUIPMENTS (for the batch of 30 students)

1. Open cup apparatus	- 2 Nos.
2. Close cup apparatus	- 2 Nos.
3. Redwood viscometer	- 2 Nos.
4. Say bolt viscometer	- 2 Nos.
5. Four stroke petrol engine Model	- 2 Nos.
6. Four stroke diesel engine Model	- 2 Nos.
7. Two stroke petrol engine Model	- 2 Nos.
8. Four stroke Petrol Engine Test rig	- 1 No.
9. Four stroke Diesel engine Test rig	- 1 No.
10. Multi -cylinder petrol engine test rig	- 1 No.
11. Air compressor test rig	– 1 No.
12.Refrigeration Test rig	– 1 No.
13. Guarded Plate Apparatus	– 1 No.
14. Measuring instruments	- Required quantity
15.Consumables	- Required quantity

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	:	PLASTIC MOULDS PRACTICAL
Semester	:	VI
Subject Code	:	4022650
Course Name	:	1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
Subject	Houre/	Hours/	Marks			Duration
Oubject	Hours/	Somostor	Internal	Board	Total	Duration
	WEEK	Jemester	Assessment	Examination		
PLASTIC MOULDS	6	06	25	100*	100	16 bro
PRACTICAL	0	90	20	100	100	10 1115.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

OBJECTIVES

- Design and fabricate single cavity injection mould
- Design and fabricate multi cavity injection mould
- Design and fabricate blow mould.
- Design and fabricate of compression mould
- Practice on different machining operations
- Use different machine tools in making plastic moulds

DETAILED SYLLABUS

i) Design of Plastic Moulds:

- **1. Injection Mould Design:** Methodical approach to mould design.
 - Design of Hand injection mould
 - Design of three plate mould
- 2. Design of simple Compression Mould.
- 3. Design of simple Blow mould.

ii) Mould Design and Manufacture Exercises:

1. Design and Fabrication of single cavity hand injection mould with flat parting surface

(To suit to Hand Injection Moulding Machine)

2. Design and fabrication of multi cavity injection mould

(To suit to Hand injection Moulding Machine)

- 3. Design and fabrication of simple compression mould.
- 4. Design and fabrication of simple blow mould.

Note:-

- 1. Batch size should not be more than 5 students for class work.
- 2. For examination, exercise should be given to students individually and not in batches.
- 3. The examination duration is 16 hours.
- Students should be trained in setting the mould and to make necessary adjustments, trial production using the mould manufactured by them and rectification of mould defects if any.
- 5. For Board examination any one of the above tool (S.No 1 to 4) is to be manufactured and trial production should be taken. The evaluation of the performance should be based on the component dimensions and finish obtained from the mould manufactured by the student during the 16 hours examination.

(16 Hrs)

(48 Hrs)

<u>Record</u>: Mould drawings for all the exercises should be drawn in A2 sheet Manually, with all calculations filed neatly for Record work. The Design should include the Sectional Elevation, plan view, Bill of materials with all necessary calculation using methodological mould design. **<u>Examination</u>**:

In the examination students have to Design and fabricate moulds for similar components as practiced in the class work

SCHEME OF EXAMINATION:

Design of Mould	-50 marks
Mould making	-20 marks
Mould setting & trial production	-10 Marks
Component quality	-10 marks
Viva Voce	-10 Marks

Total

-100 Marks

Details of The Equipment's (for a batch of 30 students)

NAM	IE OF THE BRANCH / COURSE MECHANICAL ENGINEERING		G	
		(TOOL & DIE)		
YEAF	R	THIRD		
SEM	ESTER	VI		
NAM	E OF THE LABORATORY	4022650 PLASTIC MOULDS	S PRACTICAL	
	LIST OF THE EQUIPMENTS WI	TH SPECIFICATIONS		
S.N	REMARKS, IF		QUANTITY	
	ANY		REQUIRED	
1	Centre Lathe, 4 1/2' bed length		5	
2	Drilling machine		2	
3	Shaping machine, stroke length 3	300mm	2	
4	Vertical milling machine		2	
5	Surface grinding machine		2	
6	Hand Injection Moulding Machine – 1 OZ		1	
7	Bench vice		10	
8	Fitting file set		10	
9	Tap set		4	
10	Surface plate		2	
11	Vernier height gauge 0-250mm		2	
12	Dial test indicator with magnetic stand		2	
13	Angle plate		2	
14	Tool maker's straight edge – 150 mm		1	
15	Digital Micrometer – 025mm rar	nge, 0.001mm least count	3	
16	Hand injection moulding machine	9	1	
17	Hand injection Blow moulding ma	achine	1	

Exercise – I Single Cavity Injection Mould

• For exercise I, refer the subject 4022340 and the Drawings are available in the subject 4022340 – Computer Aided Machine & Tool Drawing in Exercise no.10

Exercise – II Multi Cavity Injection Mould

			3			2 CADD F	ILE :		
MBOLS									F
SURFACE FINISH SY NISS SURFACE FINISH SY USS NISS NI A NI A NI NISS NI A NI A NI A NI A			40	5 11 Ø65		R2 Ø7	5		E
2. IS: JD2 (Medium) Account 120 315 1000 2060 AcCOH 315 1000 2000 4000 ACCOH 315 1000 2000 4000 ACCOH 315 1000 2000 4000 ACCOH							Ø18		D
KG DEVIATION FOR OPEN DIMEN - 6 30 & INCL. 6 30 120 AMNYE - 11 - 6 30									С
B OVER DIAN. OVER						1			В
	MODEL:			HARDNESS:		FINISHING: -		ITE - DGL	
A	MAT'L: DESIGNED DRAWN CAD	NAME	DATE	QTY:	СО	TOP HAL	<u>F</u> MOUL	D	A
	CHECKED APPROVED			DRG.No. 03 DRG.SHEET	22 66 00 2 OF 4	03 REVISION ROO	SCAL NTS		_

Exercise – IV Blow Mould

CURRICULUM DEVELOPMENT CENTRE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE) N-SCHEME

(Implemented from the academic year 2020-2021 onwards)

Subject Title	: PROJECT WORK & INTERNSHIP
Semester	: VI
Subject Code	: 4022660
Course Name	: 1220: DIPLOMA IN MECHANICAL ENGINEERING (TOOL & DIE)

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	uctions		Examination			
Subject	Hours/	Hours/	Marks				
-	Week	Semester	Internal Assessment	Board Examination	Total	Duration	
PROJECT WORK & INTERNSHIP	6	96	25	100*	100	3hrs	

* Minimum marks for pass is 50 out of which minimum 50 marks should be obtained out of 100 marks in the board Examination alone.

RATIONALE:

This subject 'Project work & Internship' is the continuation of the previous semester subjects. The students are to implement the detailed project plan, which they have prepared. This project is generally an integration of the various types of skills acquired during their course of study. Hence it is essential that students are given opportunity to develop and integrate the highly essential industry-oriented competencies and skills. The subject build up greater confidence to face in the world of work.

OBJECTIVES:

- Implement the theoretical & practical knowledge gained through the curriculum in to an application suitable for a real practical &working environment preferably in an industrial environment.
- Implement the planned activity as a team.

- Take appropriate decisions on collected information.
- Carry out cooperative learning through synchronous guided discussions with in the class in key dates, a synchronous document sharing and discussions, as well as to prepare collaborative edition of final project report.

PROJECT WORK & INTERNSHIP:

The students of all Diploma Courses have to do a Project Work as a part of curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamilnadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for best three projects i.e. Institution wise, region wise & state wise. The project work must be reviewed twice in the same semester. The project work is approved during the Vth semester by the properly constituted committee with guidelines.

Detail of Assessment	Period of Assessment	Max Marks
Project review I	6 th week	10 marks
Project review II	12 th week	10 marks
Attendance	Entire semester	05 marks (Award of marks same as
		theory subject pattern)
	Total	25 marks

a) Internal Assessment Mark for Project Work & Internship:

Proper record should be maintained for the two projects review and preserved for one semester after the publication of board exam results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of marks for Project Work and Internship in Board Examination:

Details Of Marks Allocation	Max Marks	
Demonstration/Presentation	25 marks	
Report	25 marks	
Viva Voce	30 marks	
Internship Report	20 marks	
Total	100* marks	

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV/V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year" Project Work and Internship" for 20 marks. The internship shall be taken in any Industry/Government are Private Certified Agencies which are in social sector/Govt.skill centers/Institution/Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work and Internship Board Examination.